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Approximation of a degenerate semilinear PDEs with a

nonlinear Neumann boundary condition

Khaled Bahlali∗ Brahim Boufoussi † Soufiane Mouchtabih ∗†

Abstract: We consider a system of semilinear partial differential equations (PDEs) with

a nonlinearity depending on both the solution and its gradient. The Neumann boundary

condition depends on the solution in a nonlinear manner. The uniform ellipticity is not

required to the diffusion coefficient. We show that this problem admits a viscosity solution

which can be approximated by a penalization. The Lipschitz condition is required to the

coefficients of the diffusion part. The nonlinear part as well as the Neumann condition are

Lipschitz. Moreover, the nonlinear part is assumed monotone in the solution variable. Note

that the existence of a viscosity solution to this problem has been established in [13] then

completed in [15]. In the present paper, We construct a sequence of penalized system of

decoupled forward backward stochastic differential equations (FBSDEs) then we directly

show its strong convergence. This allows us to deal with the case where the nonlinearity

depends on both the solution and its gradient. Our work extends, in particular, the result

of [4] and, in some sense, those of [1, 3]. In contrast to works [1, 3, 4], we do not pass by

the weak compactness of the laws of the stochastic system associated to our problem.

Keywords: Reflecting stochastic differential equation; Penalization method; Backward

stochastic differential equations; Viscosity solution.

AMS Subject Classification 2010: 60H99; 60H30; 35K61.

1 Introduction

Let D be a regular convex, open and bounded subset of Rd. We introduce the function

ρ ∈ C1
b (R

d) such that ρ = 0 in D̄, ρ > 0 in R
d \ D̄ and ρ(x) = (d(x, D̄))2 in a neighborhood

of D̄. On the other hand, since the domain D is smooth (say C3), it is possible to consider
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an extension l ∈ C2
b (R

d) of the function d(· , ∂D) such that D and ∂D are characterized by

D = {x ∈ R
d : l(x) > 0} and ∂D = {x ∈ R

d : l(x) = 0} ,

and for every x ∈ ∂D, ∇l(x) coincides with the unit normal pointing toward the interior of

D (see for example [9, Remark 3.1]). In particular we may and do choose ρ and l such that

〈∇l(x) , δ(x)〉 ≤ 0 , for all x ∈ R
d , (1)

where δ(x) := ∇ρ(x) and is called the penalization term. We have

1

2
δ(x) = x− πD̄(x), ∀x ∈ R

d

where πD̄ is the projection operator on D̄. Consider the second-order differential operator

L =
1

2

∑

i,j

(σσ∗(.))ij
∂2

∂xi∂xj
+
∑

i

bi(.)
∂

∂xi

where b : Rd → R
d and σ : Rd → R

d×d′ are given functions satisfying suitable assumptions.

Our first aim is to establish the existence of a viscosity solution via penalization to

the following system of partial differential equations with nonlinear Neumann boundary

condition, defined for 1 ≤ i ≤ m, 0 ≤ t ≤ T , x ∈ D.























∂ui
∂t

(t, x) + Lui(t, x) + fi(t, x, u(t, x), (∇uσ)(t, x)) = 0

u(T, x) = g(x) , x ∈ D
∂u

∂n
(t, x) + h(t, x, u(t, x)) = 0 , (t, x) ∈ [0, T ) × ∂D .

(2)

To this end, we consider a sequence (un) of viscosity solutions of the following semi-linear

partial differential equations (1 ≤ i ≤ m, 0 ≤ t ≤ T , x ∈ R
d, n ∈ N).























∂uni
∂t

(t, x) + Luni (t, x) + fi(t, x, u
n(t, x), (∇unσ)(t, x))

− n < δ(x),∇uni (t, x) +∇l(x) > hi(t, x, u
n(t, x)) = 0 ;

un(T, x) = g(x) .























(3)

then we show that for each n, equation (3) has a viscosity solution un which converges to

a function u, and u is a viscosity solution to (2). Our method is probabilistic.

The authors of [1, 3, 4] considered the case where f does not depends on ∇u. Using

the connection between backward stochastic differential equations (BSDEs) and partial

differential equations (PDEs), the convergence of un to u has been established in [4] for
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bounded and uniformly Lipschitz coefficients b and σ. The authors of [1] extended the

result of [4] to the case where b and σ are bounded continuous. The case where b, σ and f

are bounded measurable is considered in [3] in the framework of Lp-viscosity solution. The

techniques developed in the previous works rely on tightness properties of the associated

sequence of BSDEs in the Jakubowski S-topology. The main drawback of this method

is that it does not allow to deal with the nonlinearity f depending on ∇u. Here, our

method is direct and does not pass by weak compactness properties. Usually, when the

nonlinearity f depends in the gradient of the solution, PDEs techniques are used to control

the gradient ∇u in order to get the convergence of the associated BSDE. And generally,

a uniform ellipticity of the diffusion is required to get a good control of the gradient ∇u,

see for instance [2, 5, 6] where this method is used in homogenization of nonlinear PDEs.

Our approach is completely different: We use a purely probabilistic method, which allows

us to deal with (possibly) degenerate PDEs. The convergence of the penalized BSDE is

provided only by the convergence of the penalized forward SDE. Our proof essentially use

[14, Proposition 6.80, Annex C]. The latter has been already used by the authors of [15]

in order to prove the continuity of the solution of a system of SDE-BSDE in its initial

data (t, x). By bringing essential modifications in the idea developed in [15], we prove the

convergence of our sequence of penalized BSDEs.

The paper is organized as follows: Section 2 contains some facts about reflected stochas-

tic differential equations (SDEs) and generalized BSDEs. This mainly consists in approx-

imation, existence, uniqueness results and a priori estimates of the solutions. Section 3 is

devoted to the penalization of the nonlinear Neumann PDE.

2 Preliminaries and formulation of the problem

Throughout the paper, for a fixed T > 0, (Wt; t ∈ [0, T ]) is a d−dimensional Brownian

motion defined on a complete probability space (Ω,F ,P) and for every t ∈ [0, T ], F t
s is the

σ−algebra σ(Wr; t ≤ r ≤ s) ∨N if s ≥ t and F t
s = N if s ≤ t, where N is the P−zero sets

of F . For q ≥ 0, we denote by Sq
d [0, T ] the space of continuous progressively measurable

stochastic processes X : Ω× [0, T ] → R
d, such that for q > 0 we have

E sup
t∈[0,T ]

|Xt|q < +∞.
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For q ≥ 0, we denote by Mq
d(0, T ) the space of progressively measurable stochastic processes

X : Ω× [0, T ] → R
d such that:

E

[

(∫ T

0
|Xt|2dt

)

q

2

]

< +∞ if q > 0; and

∫ T

0
|Xt|2dt < +∞ P− a.s. if q = 0.

2.1 Penalization for reflected stochastic differential equation

Let (t, x) ∈ [0, T ]× D̄. The reflected SDE under consideration is































Xt,x
s = x+

∫ s

t
b(Xt,x

r ) dr +

∫ s

t
σ(Xt,x

r ) dWr +Kt,x
s ,

Kt,x
s =

∫ s

t
∇l(Xt,x

r )d|Kt,x|[t,r],

|Kt,x|[t,s] =
∫ s

t
1{Xt,x

r ∈∂D}d|Kt,x|[t,r], s ∈ [t, T ],

(4)

where the notation |Kt,x|[t,s] stands for the total variation of Kt,x on the interval [t, s], we

denote this continuous increasing process by kt,xs . In particular we have

kt,xs =

∫ s

t
< ∇l(Xt,x

r ), dKt,x
r > . (5)

Several authors have studied the problem of the existence of solutions of the reflected

diffusion and its approximation by solutions of equations with penalization terms, we refer

for example to [9, 7, 18, 19, 20]. We consider the following sequence of penalized SDEs

associated with our reflected diffusion Xt,x

Xt,x,n
s = x+

∫ s

t

[

b(Xt,x,n
r )− nδ(Xt,x,n

r )
]

dr +

∫ s

t
σ(Xt,x,n

r )dWr, s ∈ [t, T ]. (6)

For s ∈ [t, T ], we put

Kt,x,n
s :=

∫ s

t
−nδ(Xt,x,n

r )dr and kt,x,ns :=

∫ s

t
< ∇l(Xt,x,n

r ), dKt,x,n
r > . (7)

We introduce the following assumption

(A.1) : There exist positive constants C and µ such that for every (x, y) ∈ R
d:

(i) |b(x)| + |σ(x)‖ ≤ C(1 + |x|),
(ii) |b(x)− b(y)|+ |σ(x) − σ(y)‖ ≤ µ|x− y|.

It is known that under assumption (A.1) equation (6) admits, for any fixed n ∈ N, a unique

strong solution, and we have for every q ≥ 1:

sup
n≥0

E sup
s∈[t,T ]

|Xt,x,n
s |2q + sup

n≥0
E sup

s∈[t,T ]
|Kt,x,n

s |2q + sup
n≥0

E|Kt,x,n|q[t,T ] < +∞. (8)
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The proof of the previous estimates can be found e.g. in [1, Lemma 3.1].

The first assertion of the following theorem is proved in [20], while the second one follows

from [18].

Theorem 1 Under assumption (A.1), we have

(i) the system (4) admits a unique solution,

(ii) for every 1 ≤ q < ∞ and 0 < T < ∞,

E

[

sup
t≤s≤T

|Xt,x,n
s −Xt,x

s |q
]

−→ 0, as n → ∞,

the limit is uniform in (t, x) ∈ [0, T ] × D̄.

We extend the processes (Xt,x,Kt,x) and (Xt,x,n,Kt,x,n) to [0, t) by putting

Xt,x
s = Xt,x,n

s := x, Kt,x
s = Kt,x,n

s := 0, for s ∈ [0, t).

As a consequence of Theorem 1, we have the following convergence, which is established in

[4, Lemma 2.2].

Lemma 2 ([4]) Under assumptions of Theorem 1, we have, for any q ≥ 1:

(i) lim
n→∞

E

[

sup
0≤s≤T

∣

∣Kt,x,n
s −Kt,x

s

∣

∣

q

]

= 0;

(ii) lim
n→∞

E

[

sup
0≤s≤T

∣

∣

∣

∣

∫ s

0
ϕ(Xn

r ) dK
t,x,n
r −

∫ s

0
ϕ(Xr) dK

t,x
r

∣

∣

∣

∣

q
]

= 0 for every ϕ ∈ C1
b (R

d).

Remark 3 (i) Using Lemma 2 and the representations (5), (7), it holds that for any

q ≥ 1 and any (t, x) ∈ [0, T ]× D̄

lim
n→+∞

E sup
s∈[0,T ]

|kt,x,ns − kt,xs |q = 0. (9)

(ii) From [17, Corollary 2.5], it follows that for each q ≥ 1 and each (t, x) ∈ [0, T ] × D̄

E sup
s∈[0,T ]

|Xt,x
s |2q + E sup

s∈[0,T ]
|Kt,x

s |2q + E|Kt,x|q[0,T ] < +∞. (10)

2.2 Backward inequality

We state a lemma which is a version of [14, Proposition 6.80, Annex C]. This lemma is

essential in our proofs. We give its proof for the convenience.
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Lemma 4 Let (Y,Z) ∈ S0
m ×M0

m×d, satisfying

Yt = YT +

∫ T

t
dKr −

∫ T

t
ZrdWr, 0 ≤ t ≤ T, P− a.s.,

where K ∈ S0
m and K.(ω) ∈ BV ([0, T ];Rm) (the space of bounded variation processes).

Assume be given

• a non-decreasing stochastic process L with L0 = 0,

• a stochastic process R.(ω) ∈ BV ([0, T ],R), with R0 = 0,

• a continuous stochastic process V.(ω) ∈ BV ([0, T ],R), such that V0 = 0,

E

(

sup
s∈[0,T ]

∫ T

s
e2VrdRr

)

< ∞,

and

(i) < Yr, dKr >≤ α
2 ‖Zr‖2dr + |Yr|2dVr + |Yr|dLr + dRr as measures on [0, T ],

(ii) E supr∈[0,T ] e
2Vr |Yr|2 < +∞.

We have the following conclusion : if α < 1, then there exist positive constants C1, C2 and

C3, depending only on α, such that

E

(

sup
r∈[0,T ]

|eVrYr|2
)

+ E

(∫ T

0
e2Vr‖Zr‖2dr

)

≤ C1 E|eVT YT |2 + C2E

(∫ T

0
eVrdLr

)2

+ C3E sup
s∈[0,T ]

∫ T

s
e2VrdRr.

Proof. By Itô’s formula, we have

|eVtYt|2 = |eVT YT |2 − 2

∫ T

t
e2Vs |Ys|2dVs + 2

∫ T

t
e2Vs < Ys, dKs >

−
∫ T

t
e2Vs‖Zs‖2ds− 2

∫ T

t
< eVsYs, e

VsZsdWs >

= |eVT YT |2 + 2

∫ T

t
e2Vs

(

< Ys, dKs > −|Ys|2dVs

)

−
∫ T

t
e2Vs‖Zs‖2ds

−2

∫ T

t
< eVsYs, e

VsZsdWs > .

Using (i) of Lemma 4, we get

|eVtYt|2 + (1− α)

∫ T

t
e2Vs‖Zs‖2ds ≤

|eVT YT |2 + 2

∫ T

t
e2Vs (dRs + |Ys|dLs)− 2

∫ T

t
< eVsYs, e

VsZsdWs > .
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We consider the following sequence of stopping time

Tn := T ∧ inf{s ≥ t : sup
r∈[t,s]

|eVrYr − eVtYt|+
∫ s

t
e2Vr‖Zr‖2dr +

∫ s

t
eVrdLr ≥ n}.

For s ∈ [t, T ], we put Ns := 2
∫ s
0 1[t,Tn](r) < eVrYr, e

VrZrdWr >.

Since

E (< N >T )
1

2 ≤ CE

(
∫ Tn

t
e4Vr |Yr|2‖Zr‖2dr

)

1

2

≤
√
2CE

([

sup
r∈[t,Tn]

|eVrYr − eVtYt|2 + |eVtYt|2
]

∫ Tn

t
e2Vr |Zr|2dr

)1

2

≤
√
2CE

(

|eVtYt|+ n
)√

n < +∞.

Then, the process {Ns : s ∈ [0, T ]} is a martingale.

By the forgoing, we have

|eVtYt|2 + (1− α)

∫ Tn

t
e2Vs‖Zs‖2ds ≤ |eVTnYTn

|2 + 2

∫ Tn

t
e2Vs (dRs + |Ys|dLs)− (NTn

−Nt).

Taking expectation, it follows that

E

(

|eVtYt|2 + (1− α)

∫ Tn

t
e2Vs‖Zs‖2ds

)

≤

E

(

|eVTnYTn
|2 + 2

∫ Tn

t
e2Vs (dRs + |Ys|dLs)

)

. (11)

On the other hand, we have

E sup
r∈[0,Tn]

|eVrYr|2 ≤ E

(

|eVTnYTn
|2 + 2 sup

s∈[0,Tn]

∫ Tn

s
e2VrdRr + 2

∫ Tn

0
e2Vs |Ys|dLs + 2 sup

r∈[0,Tn]
|Nr|

)

.
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The Burkholder-Davis-Gundy inequality shows that

E sup
r∈[0,Tn]

|eVrYr|2 ≤ E

(

|eVTnYTn
|2 + 2 sup

s∈[0,Tn]

∫ Tn

s
e2VrdRr + 2

∫ Tn

0
e2Vs |Ys|dLs

)

+ 2CBDGE

(∫ Tn

0
e4Vr |Yr|2‖Zr‖2dr

)

1

2

≤ E

(

|eVTnYTn
|2 + 2 sup

s∈[0,Tn]

∫ Tn

s
e2VrdRr + 2

∫ Tn

0
e2Vs |Ys|dLs

)

+ 2CBDGE

(

sup
r∈[0,Tn]

e2Vr |Yr|2
∫ Tn

0
e2Vr‖Zr‖2dr

)
1

2

≤ E

(

|eVTnYTn
|2 + 2 sup

s∈[0,Tn]

∫ Tn

s
e2VrdRr + 2

∫ Tn

0
e2Vs |Ys|dLs

)

+ E

(

1

2
sup

r∈[0,Tn]
e2Vr |Yr|2 + 2C2

BDG

∫ Tn

0
e2Vr‖Zr‖2dr

)

≤ 2E

(

|eVTnYTn
|2 + 2 sup

s∈[0,Tn]

∫ Tn

s
e2VrdRr + 2

∫ Tn

0
e2Vs |Ys|dLs

)

+ 4C2
BDGE

(∫ Tn

0
e2Vr‖Zr‖2dr

)

,

where CBDG denotes the Burkholder-Davis-Gundy constant.

From inequality (11), we get

E sup
r∈[0,Tn]

|eVrYr|2 +
1

2
E

∫ Tn

0
e2Vr‖Zr‖2dr ≤ µE

(

|eVTnYTn
|2
)

+2µE

(

sup
s∈[0,Tn]

∫ Tn

s
e2VrdRr

)

+ 2µE

(
∫ Tn

0
e2Vs |Ys|dLs

)

,

where

µ = 2 +
2C2

BDG

1− α
+

1

2(1− α)
.
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It follows that

E sup
r∈[0,Tn]

|eVrYr|2 +
1

2
E

∫ Tn

0
e2Vr‖Zr‖2dr ≤ E

(

µ |eVTnYTn
|2 + 2µ sup

s∈[0,Tn]

∫ Tn

s
e2VrdRr

)

+ 2µE

(

sup
r∈[0,Tn]

eVr |Yr|
∫ Tn

0
eVrdLr

)

E sup
r∈[0,Tn]

|eVrYr|2 +
1

2
E

∫ Tn

0
e2Vr‖Zr‖2dr ≤ E

(

µ|eVTnYTn
|2 + 2µ sup

s∈[0,Tn]

∫ Tn

s
e2VrdRr

)

+
1

2
E sup

r∈[0,Tn]
e2Vr |Yr|2 + 2µ2

E

(
∫ Tn

0
eVrdLr

)2

E sup
r∈[0,Tn]

|eVrYr|2 + E

∫ Tn

0
e2Vr‖Zr‖2dr ≤ E

(

2µ|eVTnYTn
|2 + 4µ sup

s∈[0,Tn]

∫ Tn

s
e2VrdRr

)

+ 4µ2
E

(
∫ Tn

0
eVrdLr

)2

.

Put

C1 := 2µ, C2 := 4µ and C3 := 4µ2.

We then have,

E

(

sup
r∈[0,Tn]

|eVrYr|2 +
∫ Tn

0
e2Vr‖Zr‖2dr

)

≤ C1E|eVTnYTn
|2 + C2E sup

s∈[0,Tn]

∫ Tn

s
e2VrdRr

+ C3E

(∫ T

0
eVrdLr

)2

.

Letting n tends to +∞, we conclude by using the Beppo-Levi theorem for the left-hand

side term of the previous inequality, and the Lebesgue dominated convergence theorem for

the right-hand side term.

2.3 The BSDEs associated to the nonlinear Neumann problem

We introduce the generalized BSDEs which we have to use. Let f : [0, T ] × R
d × R

m ×
R
m×d′ → R

m, h : [0, T ] × R
d × R

m → R
m and g : R

d → R
m be continuous functions,

satisfying the following assumptions:

(A.4) There exist C, lf positive constants and β < 0, µf ∈ R such that for every t ∈ [0, T ]

and every (x, x′, y, y′, z, z′) ∈
(

R
d
)2 × (Rm)2 × (Rm×d′)2 we have:

(i) < y − y′, f(t, x, y, z) − f(t, x, y′, z) >≤ µf |y − y′|2,

(ii) |f(t, x, y, z) − f(t, x, y, z′)| ≤ lf‖z − z′‖,
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(iii) |f(t, x, y, 0)| ≤ C (1 + |y|),
(iv) < y − y′, h(t, x, y) − h(t, x, y′) >≤ β|y − y′|2,
(v) |h(t, x, y)| ≤ C (1 + |y|),
(vi) |g(x)| ≤ C(1 + |x|).

For every t ∈ [0, T ] and s ∈ [t, T ], consider the following generalized BSDEs

Y t,x,n
s = g(Xt,x,n

T ) +

∫ T

s
f(r,Xt,x,n

r , Y t,x,n
r , Zt,x,n

r ) dr +

∫ T

s
h(r,Xt,x,n

r , Y t,x,n
r )dkt,x,nr

−
∫ T

s
Zt,x,n
r dWr, (12)

and

Y t,x
s = g(Xt,x

T )+

∫ T

s
f(r,Xt,x

r , Y t,x
r , Zt,x

r ) dr+

∫ T

s
h(r,Xt,x

r , Y t,x
r )dkt,xr −

∫ T

s
Zt,x
r dWr. (13)

According to [12, 13], assumption (A.4) ensures the existence of unique solutions to equa-

tions (12) and (13). The solutions of equations (12) and (13) will be respectively denoted

by (Y t,x,n
s , Zt,x,n

s )s∈[t,T ] and (Y t,x
s , Zt,x

s )s∈[t,T ].

Lemma 5 Under assumptions (A.1)(i) and (A.4), it holds that for any t ∈ [0, T ],

sup
n≥1

E

(

sup
r∈[t,T ]

|Y t,x,n
r |2 +

∫ T

t
|Y t,x,n

r |2dkt,x,nr +

∫ T

t
‖Zt,x,n

r ‖2dr
)

< +∞ (14)

and

E( sup
r∈[t,T ]

|Y t,x
r |)q + E

(
∫ T

t
‖Zt,x

r ‖2dr
)

q

2

< +∞, ∀ q > 1. (15)

Proof. We prove the first assertion. Itô’s formula gives

|Y t,x,n
s |2 +

∫ T

s
‖Zt,x,n

r ‖2dr = |g(Xt,x,n
T )|2

+2

∫ T

t
< Y t,x,n

r , f(r,Xt,x,n
r , Y t,x,n

r , Zt,x,n
r ) > dr

+2

∫ T

t
< Y t,x,n

r , h(r,Xt,x,n
r , Y t,x,n

r ) > dkt,x,nr − 2

∫ T

t
< Y t,x,n

r , Zt,x,n
r dWr > .

Using assumption (A.4), we find

|Y t,x,n
s |2 +

∫ T

s
‖Zt,x,n

r ‖2dr ≤ C2T + 2C2 + 2C2|Xt,x,n
T |2

+(1 + 2µf + 2l2f )

∫ T

s
|Y t,x,n

r |2dr + 2

∫ T

s

(

β|Y t,x,n
r |2 + C|Y t,x,n

r |
)

dkt,x,nr

−2

∫ T

s
< Y t,x,n

r , Zt,x,n
r dWr > .

10



Since −β > 0, we use the inequality 2ab ≤ (−β)a2 + b2

(−β) , to get

|Y t,x,n
s |2 +

∫ T

s
‖Zt,x,n

r ‖2dr ≤ C2T + C2 + C2|Xt,x,n
T |2

+(1 + 2µf + 2l2f )

∫ T

s
|Y t,x,n

r |2dr − C2

β
kt,x,nT + β

∫ T

s
|Y t,x,n

r |2dkt,x,nr

−2

∫ T

s
< Y t,x,n

r , Zt,x,n
r dWr > .

Since the process (
∫ .
0 < Y t,x,n

r , Zt,x,n
r )dWr >) is a uniformly integrable martingale, we take

expectation in the previous inequality to show that

E

(

|Y t,x,n
s |2 + |β|

∫ T

s
|Y t,x,n

r |2dkt,x,nr +

∫ T

s
‖Zt,x,n

r ‖2dr
)

≤ C2T + C2 + C2
E|Xt,x,n

T |2

+
C2

|β|Ek
t,x,n
T + (1 + 2µf + 2l2f )E

∫ T

s
|Y t,x,n

r |2dr.

Using estimate (8) and Gronwall’s inequality, we obtain

sup
n≥1

sup
s∈[t,T ]

E

(

|Y t,x,n
s |2 +

∫ T

s
|Y t,x,n

r |2dkt,x,nr +

∫ T

s
‖Zt,x,n

r ‖2dr
)

< +∞.

Burkholder-Davis-Gundy inequality shows that

sup
n≥1

E

(

sup
s∈[t,T ]

|Y t,x,n
s |2 +

∫ T

t
|Y t,x,n

r |2dkt,x,nr +

∫ T

t
‖Zt,x,n

r ‖2dr
)

< +∞.

Inequality (14) is proved. Using [10, Proposition A.2], we prove inequality (15).

We extend the processes (Y t,x,n, Zt,x,n) and (Y t,x, Zt,x) to [0, t) as follows

Y t,x,n
s := Y t,x,n

t , Y t,x
s := Y t,x

t and Zt,x,n
s = Zt,x

s := 0, s ∈ [0, t). (16)

3 Penalization of the nonlinear Neumann PDE

We divide this section into two parts. The first one concerns the convergence of the solution

of the BSDE (12). The second one is an application of our convergence to the nonlinear

Neumann boundary problem.

3.1 Convergence of the penalized BSDE

For (t, x) ∈ [0, T ] × D̄, let (Y t,x,n
s , Zt,x,n

s )s∈[0,T ] and (Y t,x
s , Zt,x

s )s∈[0,T ] be respectively, the

solutions of BSDEs (12) and (13). Our first main result is

11



Theorem 6 Let assumptions (A.1) and (A.4) hold. Then, we have the following conver-

gence

E

(

sup
r∈[0,T ]

|Y t,x,n
r − Y t,x

r |2 +
∫ T

0
‖Zt,x,n

r − Zt,x
r ‖2dr

)

→ 0, as n → +∞.

Proof. We adapt the proof of [15, Theorem 3.1] to our situation by bringing some modifi-

cations. From now on, we suppress the superscripts (t, x), and C will denote a nonnegative

constant, which may vary from one line to another, but does not depend on n. We shall

apply Lemma 4 to the following BSDE

Y n
s − Ys = g(Xn

T )− g(XT ) +

∫ T

s
dKn

r −
∫ T

s
(Zn

r − Zr)dWr

where

dKn
r := [f(r,Xn

r , Y
n
r , Zn

r )− f(r,Xr, Yr, Zr)] dr + h(r,Xn
r , Y

n
r )dknr − h(r,Xr, Yr)dkr.

Using (A.4)(i)-(A.4)(ii), we get for every 0 ≤ t ≤ s ≤ T ,

∫ T

s
< Y n

r − Yr, f(r,X
n
r , Y

n
r , Zn

r )− f(r,Xr, Yr, Zr) > dr

=

∫ T

s
< Y n

r − Yr, f(r,X
n
r , Y

n
r , Zn

r )− f(r,Xn
r , Yr, Z

n
r ) > dr

+

∫ T

s
< Y n

r − Yr, f(r,X
n
r , Yr, Z

n
r )− f(r,Xn

r , Yr, Zr) > dr

+

∫ T

s
< Y n

r − Yr, f(r,X
n
r , Yr, Zr)− f(r,Xr, Yr, Zr) > dr

≤
∫ T

s
µf |Y n

r − Yr|2dr + lf |Y n
r − Yr| ‖Zn

r − Zr‖dr

+

∫ T

s
|Y n

r − Yr||f(r,Xn
r , Yr, Zr)− f(r,Xr, Yr, Zr)|dr

≤
∫ T

s
(l2f + µf )|Y n

r − Yr|2dr +
1

4
‖Zn

r − Zr‖2dr

+

∫ T

s
|Y n

r − Yr||f(r,Xn
r , Yr, Zr)− f(r,Xr, Yr, Zr)|dr.

12



On the other hand, thanks to assumption (A.4)(iv), we obtain

∫ T

s
< Y n

r − Yr, h(r,X
n
r , Y

n
r )dknr − h(r,Xr , Yr)dkr >

=

∫ T

s
< Y n

r − Yr, h(r,X
n
r , Y

n
r )− h(r,Xn

r , Yr) > dknr

+

∫ T

s
< Y n

r − Yr, h(r,X
n
r , Yr)− h(r,Xr , Yr) > dknr

+

∫ T

s
< Y n

r − Yr, h(r,Xr , Yr)(dk
n
r − dkr) >

≤ β

∫ T

s
|Yr − Y n

r |2dknr +

∫ T

s
|Y n

r − Yr||h(r,Xn
r , Yr)− h(r,Xr , Yr)|dknr

+

∫ T

s
< Y n

r − Yr, h(r,Xr , Yr) > (dknr − dkr)

≤
∫ T

s
|Y n

r − Yr||h(r,Xn
r , Yr)− h(r,Xr , Yr)|dknr +

∫ T

s
< Y n

r − Yr, h(r,Xr , Yr) > (dknr − dkr).

By the foregoing, it holds that, for λ = (l2f + µf ) ∨ l2f ,

< Y n
r − Yr, dKn

r > ≤ 1

4
‖Zn

r − Zr‖2dr + λ|Y n
r − Yr|2dr

+|Y n
r − Yr||h(r,Xn

r , Yr)− h(r,Xr , Yr)|dknr
+|Y n

r − Yr||f(r,Xn
r , Yr, Zr)− f(r,Xr, Yr, Zr)|dr

+ < Y n
r − Yr, h(r,Xr , Yr) > (dknr − dkr)

=
1

4
‖Zn

r − Zr‖2dr + λ|Y n
r − Yr|2dr + |Y n

r − Yr|dLn
r + dRn

r ,

where Ln and Rn are defined by

dLn
r := |f(r,Xn

r , Yr, Zr)− f(r,Xr, Yr, Zr)|dr + |h(r,Xn
r , Yr)− h(r,Xr , Yr)|dknr (17)

dRn
r := < Y n

r − Yr, h(r,Xr , Yr) > (dknr − dkr). (18)

Therefore, by Lemma 4, there exist positive constants C1, C2 and C3 such that

E

(

sup
r∈[0,T ]

e2λr|Y n
r − Yr|2

)

+ E

(∫ T

0
e2λr‖Zn

r − Zr‖2dr
)

(19)

≤ C1 Ee
2λT |g(Xn

T )− g(XT )|2 + C2E

(
∫ T

0
eλrdLn

r

)2

+ C3E sup
s∈[0,T ]

∫ T

s
e2λrdRn

r .

We shall give several auxiliary assertions ensuring that the right-hand side term of the

previous inequality converges to zero as n goes to +∞.
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Lemma 7 Under assumptions (A.1) and (A.4)(vi), the following convergence holds

lim
n→∞

E

(

e2λT |g(Xn
T )− g(XT )|2

)

= 0.

Proof. Taking into account the convergence of Xn
T to XT , the continuity of g, assumption

(A.4)(vi) and estimates (8) and (10), the result follows by using the Lebesgue dominated

convergence theorem.

Lemma 8 Let Ln be the processes given by equation (17). Assume that (A.1) and (A.4)

are satisfied. Then,

lim
n→∞

E

(∫ T

0
eλrdLn

r

)2

= 0.

Proof. Using the triangular inequality, we obtain

E

(∫ T

0
eλrdLn

r

)2

≤ 2E

(∫ T

0
eλr|f(r,Xn

r , Yr, Zr)− f(r,Xr, Yr, Zr)|dr
)2

+2E

(∫ T

0
eλr|h(r,Xn

r , Yr)− h(r,Xr , Yr)|dknr
)2

:= In1 + In2 .

We shall show that In1 and In2 tend to zero as n tends to ∞. Hölder’s inequality leads to

In1 = E

(
∫ T

0
eλr|f(r,Xn

r , Yr, Zr)− f(r,Xr, Yr, Zr)|dr
)2

≤ 2Te2λTE

(∫ T

0
|f(r,Xn

r , Yr, Zr)− f(r,Xr, Yr, Zr)|2dr
)

. (20)

Again by the convergence of Xn to X in each Lq with respect to the uniform norm and the

continuity of f we deduce that the sequence |f(r,Xn
r , Yr, Zr)− f(r,Xr, Yr, Zr)|2 converges

to zero in probability, a.e. r ∈ [0, T ]. Since by assumptions (A.4)(ii) and (A.4)(iii) on f we

have

|f(r,Xn
r , Yr, Zr)− f(r,Xr, Yr, Zr)|2 ≤ C(1 + |Yr|2 + ‖Zr‖2), a.e. r ∈ [0, T ],

it follows that

E|f(r,Xn
r , Yr, Zr)− f(r,Xr, Yr, Zr)|2 → 0, as n → +∞, a.e. r ∈ [0, T ].

Using the Lebesgue dominated convergence theorem, we get limn→+∞In1 = 0. Concerning

In2 , Hölder’s inequality yields

In2 = 2E

(∫ T

0
eλr|h(r,Xn

r , Yr)− h(r,Xr, Yr)|dknr
)2

≤ 2 e2λT

(

E sup
r∈[0,T ]

|h(r,Xn
r , Yr)− h(r,Xr , Yr)|4

)
1

2
(

sup
n≥1

E (knT )
4

) 1

2

. (21)
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On the other hand, by the linear growth assumption on h, we have for each q > 1

E sup
r∈[0,T ]

|h(r,Xn
r , Yr)− h(r,Xr , Yr)|4q ≤ C(1 + E sup

r∈[0,T ]
|Yr|4q).

It follows from estimates (15) that the sequence of random variables

supr∈[0,T ]|h(r,Xn
r , Yr) − h(r,Xr , Yr)|4 is uniformly integrable. Since Xn converges to X

in each Lq for the uniform norm, we deduce that the sequence supr∈[0,T ]|h(r,Xn
r , Yr) −

h(r,Xr , Yr)|4 converges to zero in probability as n goes to +∞. This combined with estimate

(8) ensure that limn→+∞In2 = 0. Lemma 8 is proved.

We will show an estimate for the solution Y n that will be used to control the term

E sups∈[0,T ]

∫ T
s e2λrdRn

r . To this end, let N ∈ N, N > T and the partition of [0, T ], ri =
iT
N

i = 0, ..., N . We put r/N := max{ri; ri ≤ r}. Given a continuous stochastic process

(Hr)r∈[0,T ], we define

HN
r :=

N−1
∑

i=0

Hri1[ri,ri+1)(r) +HT1{T}(r) = Hr/N .

Lemma 9 Assume (A.1) and (A.4) hold. Then, for any q ∈]1, 2[, there exists a positive

constant C depending on T , q and independent on N , such that:

lim sup
n→∞

E

(
∫ T

0
|Y n

r − Y n,N
r |q(dknr + dkr)

)

≤ C

N q/2
+ C

[

E max
i=1,...,N

(

kri − kri−1

)
2q

2−q

]
2−q

4

.

Proof. We write BSDE (12) between s/N and s

Y n,N
s = Y n

s +

∫ s

s/N
f(r,Xn

r , Y
n
r , Zn

r )dr

+

∫ s

s/N
h(r,Xn

r , Y
n
r )dknr −

∫ s

s/N
Zn
r dWr.

Hölder’s inequality gives

|Y n,N
s − Y n

s |q ≤ C

N q/2

[

∫ s

s/N
|f(r,Xn

r , Y
n
r , Zn

r )|2dr
]q/2

+C
(

kns − kns/N

)q/2
[

∫ s

s/N
|h(r,Xn

r , Y
n
r )|2dknr

]q/2

+ C

∣

∣

∣

∣

∣

∫ s

s/N
Zn
r dWr

∣

∣

∣

∣

∣

q

.

It follows that

E

(∫ T

0
|Y n

r − Y n,N
r |q(dknr + dkr)

)

≤ Jn,N
1 + Jn,N

2 + Jn,N
3

15



where

Jn,N
1 :=

C

N q/2
E

∫ T

0

[

∫ s

s/N
|f(r,Xn

r , Y
n
r , Zn

r )|2dr
]q/2

(dkns + dks),

Jn,N
2 := C E

∫ T

0
(kns − kns/N )q/2

(

∫ s

s/N
|h(r,Xn

r , Y
n
r )|2dknr

)q/2

(dkns + dks),

Jn,N
3 := C E

∫ T

0

∣

∣

∣

∣

∣

∫ s

s/N
Zn
r dWr

∣

∣

∣

∣

∣

q

(dkns + dks).

We shall estimate Jn,N
1 , Jn,N

2 and Jn,N
3 . We use Hölder’s inequality to obtain

Jn,N
1 =

C

N q/2
E

∫ T

0

[

∫ s

s/N
|f(r,Xn

r , Y
n
r , Zn

r )|2dr
]q/2

(dkns + dks)

≤ C

N q/2
E

(

(knT + kT )

[
∫ T

0
|f(r,Xn

r , Y
n
r , Zn

r )|2dr
]q/2

)

≤ C

N q/2

(

E(knT + kT )
2

2−q

)
2−q

2

(

E

∫ T

0
|f(r,Xn

r , Y
n
r , Zn

r )|2dr
)q/2

.

By the linear growth of f in its third variable and Lipschitz continuity with respect to the

fourth argument, we get

Jn,N
1 ≤ C

N q/2

(

E(knT + kT )
2

2−q

)
2−q

2

(

1 + E sup
r∈[0,T ]

|Y n
r |2 + E

∫ T

0
‖Zn

r ‖2dr
)q/2

≤ C

N q/2

where in the last line we have used inequalities (8), (10) and (14).

Concerning Jn,N
2 , we use Hölder’s inequality, the monotony of kn and the linear growth
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condition on h, to obtain

Jn,N
2 = C E

∫ T

0
(kns − kns/N )q/2

(

∫ s

s/N
|h(r,Xn

r , Y
n
r )|2dknr

)q/2

(dkns + dks)

≤ C E

(
∫ T

0
|h(r,Xn

r , Y
n
r )|2dknr

)q/2 N
∑

i=1

∫ ri

ri−1

(kns − kns/N )q/2(dkns + dks)

≤ C

(

E

∫ T

0
|h(r,Xn

r , Y
n
r )|2dknr

)q/2


E

(

N
∑

i=1

∫ ri

ri−1

(kns − kns/N )q/2(dkns + dks)

)

2

2−q





2−q

2

≤ C

(

E

∫ T

0
|h(r,Xn

r , Y
n
r )|2dknr

)q/2


E

(

N
∑

i=1

(knri − knri−1
)q/2(knri + kri − knri−1

− kri−1
)

)

2

2−q





2−q

2

≤ C

(

E

∫ T

0
1 + |Y n

r |2dknr
)q/2



E

(

N
∑

i=1

(knri − knri−1
)q/2(knri + kri − knri−1

− kri−1
)

)

2

2−q





2−q

2

≤ C

(

EknT + E

∫ T

0
|Y n

r |2dknr
)q/2



E

(

N
∑

i=1

(knri − knri−1
)q/2(knri + kri − knri−1

− kri−1
)

)

2

2−q





2−q

2

.

Hence, by inequalities (8) and (14), we see that

Jn,N
2 ≤ C



E

(

N
∑

i=1

(knri − knri−1
)q/2(knri + kri − knri−1

− kri−1
)

)

2

2−q





2−q

2

.

Taking into account the convergence of kn to k (Remark 3 (i)), estimates (8) and (10), we

pass to the limit as n goes +∞ then we use the Lebesgue dominated convergence theorem

to get

lim sup
n→∞

Jn,N
2 ≤ C



E

(

N
∑

i=1

(kri − kri−1
)q/2(kri − kri−1

)

)

2

2−q





2−q

2

≤ C

[

E

(

max
i=1,...,N

(kri − kri−1
)q/2kT

) 2

2−q

]

2−q

2

≤ C

[

E max
i=1,...,N

(kri − kri−1
)

q

2−q k
2

2−q

T

]
2−q

2

≤ C

[

E max
i=1,...,N

(kri − kri−1
)

2q

2−q

]
2−q

4
[

Ek
4

2−q

T

]
2−q

4

.
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For Jn,N
3 , we have

Jn,N
3 = C E

∫ T

0

∣

∣

∣

∣

∣

∫ s

s/N
Zn
r dWr

∣

∣

∣

∣

∣

q

(dkns + dks)

= C E

N
∑

i=1

∫ ri

ri−1

∣

∣

∣

∣

∣

∫ s

s/N
Zn
r dWr

∣

∣

∣

∣

∣

q

(dkns + dks)

≤ C

N
∑

i=1

E sup
s∈[ri−1,ri]

∣

∣

∣

∣

∣

∫ s

s/N
Zn
r dWr

∣

∣

∣

∣

∣

q

(knri − knri−1
+ kri − kri−1

)

≤ C
N
∑

i=1



E sup
s∈[ri−1,ri]

∣

∣

∣

∣

∣

∫ s

ri−1

Zn
r dWr

∣

∣

∣

∣

∣

2




q

2
(

E(knri − knri−1
+ kri − kri−1

)
2

2−q

)
2−q

2

.

Using the Burkholder-Davis-Gundy inequality, we obtain

Jn,N
3 ≤ C

N
∑

i=1

(

E

∫ ri

ri−1

‖Zn
r ‖2 dr

)
q

2
(

E(knri − knri−1
+ kri − kri−1

)
2

2−q

)
2−q

2

.

Again by Hölder’s inequality, we find

Jn,N
3 ≤ C

(

N
∑

i=1

E

∫ ri

ri−1

‖Zn
r ‖2 dr

)

q

2
(

N
∑

i=1

E(knri − knri−1
+ kri − kri−1

)
2

2−q

)

2−q

2

≤ C

(

E

∫ T

0
‖Zn

r ‖2 dr
)

q

2

(

N
∑

i=1

E(knri − knri−1
+ kri − kri−1

)
2

2−q

)

2−q

2

.

Keeping in mind inequality (14) and the convergence of kn to k, we pass to the limit as

n → +∞, to obtain

lim
n→∞

Jn,N
3 ≤ C

(

N
∑

i=1

E(kri − kri−1
)

2

2−q

)

2−q

2

≤ C

(

E max
i=1,N

(kri − kri−1
)

q

2−q

N
∑

i=1

(kri − kri−1
)

)

2−q

2

≤ C

(

E max
i=1,N

(kri − kri−1
)

q

2−q kT

)
2−q

2

≤ C
(

Ek2T
)

2−q

4

(

E max
i=1,N

(kri − kri−1
)

2q

2−q

)
2−q

4

≤ C

(

E max
i=1,N

(kri − kri−1
)

2q

2−q

)
2−q

4

.

This completes the proof of Lemma 9.
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Lemma 10 Let Rn be the process defined by (18). Under assumptions (A.1) and (A.4),

the following inequality holds

lim sup
n→∞

E sup
s∈[0,T ]

∫ T

s
e2λrdRn

r ≤ 0.

Proof. Set hr = h(r,Xr , Yr) and |h|∞ = supr∈[0,T ] |hr|, we have

< Y n
r − Yr, hr > = < Y n,N

r − Y N
r , hr − hNr > + < Y N

r − Yr, hr >

+ < Y n,N
r − Y N

r , hNr > + < Y n
r − Y n,N

r , hr > .

E

(

sup
s∈[0,T ]

∫ T

s
e2λrdRn

r

)

= E

(

sup
s∈[0,T ]

∫ T

s
e2λr < Y n

r − Yr, h(r,Xr , Yr)(dk
n
r − dkr) >

)

≤ E

[

(

(|Y n|∞ + |Y |∞)|h− hN |∞ + |Y N − Y |∞|h|∞
)

e2λT (knT + kT )
]

+E

(

sup
s∈[0,T ]

N
∑

i=1

< Y n
ri−1

− Yri−1
, hri−1

>

∫ ri

s∧ri−1

e2λrd(knr − kr)

)

+E

(

e2λT |h|∞
∫ T

0
|Y n,N

r − Y n
r |(dknr + dkr)

)

.

Let 1 < q < 2. Using Hölder’s inequality repeatedly to obtain

E

(

sup
s∈[0,T ]

∫ T

s
e2λrdRn

r

)

≤
[

E

[

e2λT (|Y n|∞ + |Y |∞)
]2
]

1

2
[

E(knT + kT )
4
]
1

4
[

E|h− hN |4∞
]
1

4

+

[

E

[

e2λT (knT + kT )|h|∞
]2
] 1

2
[

E|Y N − Y |2∞
]
1

2

+2Ne2λT (1 + λT )

[

E

[

e2λT (|Y n|∞ + |Y |∞)
]2
]

1

2
[

E|h|4∞
]
1

4

(

E

[

sup
s∈[0,T ]

|kns − ks|4
])

1

4

+e2λT
[

E|h|
2q

q−1

∞

]
q−1

2q [

E (knT + kT )
2
]

q−1

2q

[

E

∫ T

0
|Y n,N

r − Y n
r |q(dknr + dkr)

]

1

q

. (22)

The linear growth hypothesis on h combined with estimate (15) show that for every p ≥ 1,

E|h|p∞ = E sup
r∈[0,T ]

|h(r,Xr , Yr)|p ≤ C(1 + E sup
r∈[0,T ]

|Yr|p) < +∞.

On the other hand, we use inequalities (8), (10), (14) and (15) along with Lemma 9 then

we pass to the limit as n goes to +∞ in inequality (22) to get, for all N ∈ N
∗,

lim sup
n→+∞

E

(

sup
s∈[0,T ]

∫ T

s
e2λrdRn

r

)

≤ C
(

E|h− hN |4∞
)1/4

+ C
(

E|Y N − Y |2∞
)1/2

+

[

C

N q/2
+C

[

E max
i=1,N

(

kri − kri−1

)
2q

2−q

]
2−q

4

]1/q

.
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Since the integrands are uniformly integrable, then passing to the limit as N → +∞, we

get the result. Lemma 10 is proved.

Now, combining inequality (19) with Lemmas 7, 8 and 10, we complete the proof of

Theorem 6.

3.2 Convergence of the penalized PDE

This subsection is devoted to an application of our convergence of the BSDE. Namely, we

will establish the convergence of a viscosity solution of the following systems






















∂uni
∂t

(t, x) + Luni (t, x) + fi(t, x, u
n(t, x), (∇unσ)(t, x))

− n < δ(x),∇uni (t, x) +∇l(x) > hi(t, x, u
n(t, x)) = 0 ,

un(T, x) = g(x) , 1 ≤ i ≤ m, 0 ≤ t ≤ T, x ∈ R
d, n ∈ N

(23)

to a viscosity solution of a system of the form























∂ui
∂t

(t, x) + Lui(t, x) + fi(t, x, u(t, x), (∇uσ)(t, x)) = 0 , 1 ≤ i ≤ m, (t, x) ∈ [0, T )×D ,

u(T, x) = g(x) , x ∈ D ,
∂u

∂n
(t, x) + h(t, x, u(t, x)) = 0 , ∀(t, x) ∈ [0, T ) × ∂D .

(24)

Since, we consider viscosity solutions, we introduce the following condition

(A.5) fi, the i-th coordinate of f , depends only on the i-th row of the matrix z.

For the self-contained, we recall the definition of the viscosity solution of system (24).

Definition 11 (i) u ∈ C([0, T ]× D̄,Rm) is called a viscosity sub solution of system (24)

if ui(T, x) ≤ gi(x), x ∈ D̄, 1 ≤ i ≤ m and, for any 1 ≤ i ≤ m, ϕ ∈ C1,2([0, T ] × R
d),

and (t, x) ∈ (0, T ]× D̄ at which ui − ϕ has a local maximum, one has

−∂ϕ

∂t
(t, x)− Lϕ(t, x)− fi(t, x, u(t, x), (∇ϕσ)(t, x)) ≤ 0, if x ∈ D,

min

(

−∂ϕ

∂t
(t, x)− Lϕ(t, x) − fi(t, x, u(t, x), (∇ϕσ)(t, x)),

−∂ϕ

∂n
(t, x)− hi(t, x, u(t, x))

)

≤ 0, if x ∈ ∂D.

(ii) u ∈ C([0, T ] × D̄,Rd) is called a viscosity super-solution of (24) if ui(T, x) ≥ gi(x),

x ∈ D̄, 1 ≤ i ≤ m and, for any 1 ≤ i ≤ m, ϕ ∈ C1,2([0, T ]×R
d), and (t, x) ∈ (0, T ]×D̄
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at which ui − ϕ has a local minimum, one has

−∂ϕ

∂t
(t, x)− Lϕ(t, x)− fi(t, x, u(t, x), (∇ϕσ)(t, x)) ≥ 0, if x ∈ D,

max

(

−∂ϕ

∂t
(t, x)− Lϕ(t, x)− fi(t, x, u(t, x), (∇ϕσ)(t, x)),

−∂ϕ

∂n
(t, x)− hi(t, x, u(t, x))

)

≥ 0, if x ∈ ∂D.

(iii) u ∈ C([0, T ]×D̄,Rm) is called a viscosity solution of system (24) if it is both a viscosity

sub and super-solution.

We recall a continuity of the map (t, x) 7→ Y t,x
t where Y t,x is the solution of BSDE (13).

This continuity has been proved in [15].

Proposition 12 ([15]) Under assumptions (A.1) and (A.4), the mapping (t, x) → Y t,x
t is

continuous.

Our second main result is

Theorem 13 Assume (A.1), (A.4) and (A.5). There exist a sequence of continuous func-

tions un : [0, T ] × R
d → R

m and a function u : [0, T ] × D̄ → R
m such that: un is a

viscosity solution to system (23), u is a viscosity solution to system (24) and the following

convergence holds for every (t, x) ∈ [0, T ]× D̄

lim
n→+∞

un(t, x) = u(t, x).

Proof. We set,

un(t, x) := Y t,x,n
t and u(t, x) := Y t,x

t . (25)

It follows from Theorem 3.2 of [12] that un is a viscosity solution of PDEs (23). Thanks to

[15, 13], u is a viscosity solution of PDEs (24). Further, we have for each (t, x) ∈ [0, T ]× D̄

|un(t, x)− u(t, x)|2 = |Y t,x,n
t − Y t,x

t |2 ≤ E sup
s∈[0,T ]

|Y t,x,n
s − Y t,x

s |2.

Thanks to Theorem 6, we have limn→∞E sups∈[0,T ] |Y t,x,n
s − Y t,x

s |2 = 0. It follows that,

lim
n→+∞

un(t, x) = u(t, x).

The theorem is proved.

Remark 14 When u is the unique viscosity solution of system (24), then it is constructible

by penalization. This is the case when d = d′, since by [14, Theorem 5.43, p 423] or [15,

Theorem 5.1] the viscosity solution of system (24) is unique.
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