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Abstract—The AffecMove challenge organised in the context
of the H2020 EnTimeMent project offers three tasks of move-
ment classification in realistic settings and use-cases. Our team,
from the EuroMov DHM laboratory participated in Task 1,
for protective behaviour (against pain) detection from motion
capture data and EMG, in patients suffering from pain-inducing
muskuloskeletal disorders. We implemented two simple baseline
systems, one LSTM system with pre-training (NTU-60) and a
Transformer. We also adapted PA-ResGCN a Graph Convolu-
tional Network for skeleton-based action classification showing
state-of-the-art (SOTA) performance to protective behaviour
detection, augmented with strategies to handle class-imbalance.
For PA-ResGCN-N51 we explored naı̈ve fusion strategies with
an EMG-only convolutional neural network that didn’t improve
the overall performance. Unsurprisingly, the best performing
system was PA-ResGCN-N51 (w/o EMG) with a F1 score of
53.36% on the test set for the minority class (MCC 0.4247). The
Transformer baseline (MoCap + EMG) came second at 41.05%
F1 test performance (MCC 0.3523) and the LSTM baseline third
at 31.16% F1 (MCC 0.1763). On the validation set the LSTM
showed performance comparable to PA-ResGCN, we hypothesize
that the LSTM over-fitted on the validation set that wasn’t very
representative of the train/test distribution.

Index Terms—AffectMove Task 1, Multimodal behaviour clas-
sification, Deep learning architectures.

I. INTRODUCTION

The 2021 AffectMove challenge [1] organised in the con-
text of the EnTimeMent H2020 project and collocated, as
a workshop, with the ACII 20201 conference, offered the
opportunity of participating in three challenge tasks that involve
the detection of characteristics of human motion in multimodal
and unimodal settings:

1) Protective Behaviour Detection based on Multimodal
Body Movement Data. This first task provided partici-
pants with Motion capture (MoCap) + Electromyography
(EMG) data from the EMOPAIN [2] for protective
behaviour detection (which is a response to pain while
performing the actions) across several subjects and tasks,
with fixed three-second recordings.

2) Detection of Reflective Thinking based on Body
Movement Data. The second task provided participants
with MoCap data only for reflective thinking classification

This work was granted access to the HPC resources of IDRIS under the
allocation 2021-AD011011309R1 made by GENCI.

across several subjects and tasks, with variable recording
lengths and uneven sampling.

3) Detection of Lightness and Fragility in Dance Move-
ment based on Multimodal Data. The third tasked
involved the multimodal classification of movement from
video and accelerometers to detect frailty in dance moves.

Task 1 focuses mainly on protective behaviour detection
in response to pain in subjects suffering from disorders due
to chronic musculoskeletal pain. Such disorders, including
the typical example of low-back-pain, although it may appear
to be a mundane non-systemic disease of little concern, in
reality it affects a significant part of the population. Chronic
musculoskeletal pain causes significant disruptions of quality of
life, but is also a leading cause of medical leave in professionals.
Musculoskeltal disorder and the resulting pain are a significant
burden on national healthcare systems. Although there are
general principles in their treatment, few objective criteria exist
to evaluate the recuperation of patients or their level of pain
(strong psychosomatic component). Protective behaviour in
response to pain in particular, hinders recovery by accentuating
non-use, and also constitutes an objective marker in gauging
the real level of pain (as opposed to self-reported scales). Being
able to detect protective behaviour automatically from sensor
data, can provide a valuable tool to reform clinical protocols
in the treatment of chronic musculoskeletal disorders.

In the dataset of Task 1, each subject and experimental
sequence pair represented one record and was materialized
as a single file. The MoCap data was encoded in the first 51
columns of the data file (17 joints × 3 spatial coordinates) and
the EMG data (two electrodes on the upper fibres of trapezius
muscles, two on the lumbar paraspinal muscles) was encoded
in the next 4 columns, followed by the action identifier. Each
instance was composed of 180 frames (60fps) and the EMG
signal was prepossessed (signal envelope), down-sampled and
aligned with MoCap frames.

Predicting the protective behaviour requires devising systems
that either rely on MoCap solely or multimodal systems
considering both MoCap and EMG.

Possible machine learning approaches include those from
conventional machine learning and deep learning. Relevant
model architectures mainly stem from computer vision and
particularly from skeleton-based action recognition systems. In
this work, we choose to focus on deep learning approaches,
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building at first the baselines with simple methods (LSTM
[3], [4] and Transformer [5]) and then exploring one state-of-
the-art (SOTA) system of action recognition based on graph
convolutional networks [6], which leverage the specificity of
skeleton data (skeleton topology, relative distances, velocities).
Each of the systems was developed by a different member of the
team independently and then integrated in a common evaluation
setting, in order to perform comparable model selection.

In this paper, we give a synthetic account of related work,
followed by a description of the three systems (design, model
selection, evaluation) and then a meta-analysis of the results
with regard to the overall objective and the final scores of our
systems on the test set of the challenge.

II. RELATED WORK

The common baseline neural network model to treat time
series type data is generally based on LSTM (Long short-term
memory) architectures and skeleton-based action recognition
is no exception. In the EMOPAIN Challenge 2020 [3], that
is based on the same EMOPAIN dataset [2] as the current
AffectMove task (with different labels), participants (also in
[4]) used a stacked LSTM model as baseline built with three
LSTM layers (32 hidden units) followed by a dropout layer
with probability of 0.5. This model gave an average accuracy
of 0.828 on test set (MOCAP and EMG data combined).

More generally, LSTMs when applied to movement classifi-
cation in larger benchmarks such as NTU-60 or NTU-120 [7]
have either, been augmented to take into account spatiotemporal
information, showing moderate performance (STA-LSTM at
64% accuracy [8]), or with attention mechanisms, showing
close to SOTA performance (AGC-LSTM at 95% accuracy
[9]).

Besides approaches based on recurrent neural networks,
Transformers have shown tremendous potential, initially in
Natural Language Processing, but in the past year the model
has been adapted and applied to other types of modalities, from
speech, to computer vision, to multi-modal systems. There are
now numerous Transformer adaptations on temporal, spatial or
spatio-temporal data, including architectures specific to Motion
Capture and/or pose estimation data. A few notable examples
include:
• the Variational Autoencoder Transfomer (Transformer

VAE [10]) that allows learning a representation of pa-
rameters of human motion (MoCap), pre-trained on an
action-conditioned movement generation task;

• the Spatial Temporal Transformer Network (ST-TA [11]),
is also a Transformer specifically adapted to MoCap time-
series, by a fusion of a temporal attention model (in
the standard formulation of temporal self-attention) and
of a spatial transformer that extends the more typical
graph convolutional network approach with an attention
mechanism.

While Transformer VAE isn’t technically an action recog-
nition system, it can, and has been evaluated as such (on a
small subset of NTU-13). Although it doesn’t show SOTA

performance on-par with systems specialized for action recog-
nition, the architecture is extremely innovative and could be
eventually harnessed to produce multi-task representations of
movement similar to what has transformed Natural Language
Processing since 2018. ST-TR on the other hand shows SOTA
performance (96.1% accuracy on NTU-60), but the “temporal
transformer” is actually implemented as a convolutional neural
network with KQV (Key-Query-Value) attention on top, and the
spatial transformer is in fact a Graph Convolutional Network
with added attention. As such, ST-TR is much more similar
to the more common GCN architectures than it is with the
Transformer, besides the use of attention, which in itself
isn’t specific to transformers and has existed long before the
inception of Transformers.

Speaking of GCNs, they constitute the other major family
of approaches for skeleton-based action-recognition and the
current SOTA system among GCNs, PA-ResGCN [6], is almost
ex aequo with ST-TR at 96.1%, which probably doesn’t
constitute a significant difference. ResGCN combines the 3D
coordinates with spatial skeleton structure (relative distances
between joints) and with velocity gradients. Additionally, part-
wise attention is used to inform the contribution of 5 manually
defined body parts (sub-graphs) to the overall classification.
We shall not further describe the state of the art of GCNs for
skeleton based action recognition, but Song et al. [6] already
present a very comprehensive literature review and comparison.
GCNs have already been applied to the EMOPAIN dataset as
well [12].

Based on the observations, we chose to implement a
vanilla Transformer baseline without adaptations to evaluate
its potential for Task 1. We also set-out to adapt and apply
the current non-Transformer SOTA system for skeleton-based
action recognition, PA-ResGCN to gauge its performance in
the real-life setting offered by Task 1.

This review doesn’t address the multi-modal integration of
EMG, although our Transformer baseline significantly benefited
from EMG through the most naı̈ve form of early fusion:
concatenation of EMG features with the 3D joint coordinates.
The PA-ResGCN system doesn’t allow such a use of EMG,
and the time allotted for the challenge didn’t allow us to
explore effective late fusion strategies either. We did make
attempts on simple late fusion, through the concatenation of
a fully connected layer from the PA-ResGCN output (-N51)
with that of a simple CNN effective at EMG classification
with a common training objective. However, these attempts
were unsuccessful (lower performance than without fusion).
However, attempts for multimodal fusion of EMG and MoCap
on EMOPAIN, have shown some success, particularly with
more sophisticated fusions mechanisms [4], [13], indicating
that this may be a path forward for further improvement.
Another aspect of interest to exploiting the Task 1 data set,
is the handling of significant class imbalance (Table I), we
won’t explore the literature exhaustively, but we employed a
dynamic weighting scheme from the literature [14] for the
binary cross entropy loss, which proved capital in obtaining
good convergence during training. We also experimented with



using a Mathew’s Correlation Coefficient loss [15], which is
robust to class imbalance and matched the metric used in
Task 1. Although it was also successful in countering the class
imbalance, it’s numerically less numerical stable.

III. METHODS

A. Dataset and Protocol

As described earlier, the data set provides a sequence of
180 3D skeleton joints (17 × 3) along with 4 channels of
EMG signal downsampled and synchronized. The dataset is
labeled with actions and protective behaviour annotations, but
the labels are only provided to participants for the training and
validation subsets. Table I presents some general statistics about
training and validation data. One important characteristic is the
strong class imbalance and the significantly smaller size of the
validation set. Additionally, since there are several repetitions
by several subjects (a joint inter/intra subjects acquisition
design), it is important to keep subject sessions atomically
linked together if the data set is shuffled prior to training a
system, as otherwise significant bias would be induced.

TABLE I
CHARACTERISTICS AND DISTRIBUTION OF CLASSES ACROSS THE TRAIN

AND VALIDATION SETS.

Training set Validation set

Protective Count Percent Protective Count Percent
0 4522 77.60% 0 1580 85.68%
1 1305 22.40% 1 264 14.32%

We also observed, in one of the baselines for the EMOPAIN
dataset [3], that the scores obtained on the validation set are
surprisingly low (accuracy 0.4636, and F1 0.4811 [4]) for a
binary classification problem, while the performance on the
training set was higher, and comparable to that obtained on the
test set. These discordant scores between validation and test
sets suggest that these two datasets are hypothetically highly
different in feature space (they represent different distributions
of classes and subjects). It appears that in the AffectMove
challenge in 2021, a similar data splitting rule was likely applied
in preparing the data sets, given the observed distribution
(Table I), as models with good performance on the training
set systematically showed less interesting performance on the
validation set in a consistent manner. This raises the question
of how representative the validation set is compared to the final
tests set, as tuning hyper parameters on a non-representative
distribution would likely lead to a system that significantly
under-performs on the test set.

In this work, we chose to use the validation set to fine-tune
the systems and to produce the final prediction, although in
hindsight, a retraining on both the training and validation sets to
produce the final predictions could have been more appropriate
for some of the models, particularly the LSTM which suffered
greatly for significant overfitting on the validation set, as we
will describe later.

B. Transformer-based architectures

Several simple Transformer models [5] have been tested in
our experiments. These models rely on the very popular self-
attention mechanism to construct an embedding representation
of the input signal, that will next be used to perform the final
binary classification. We introduce the general design approach
considered as well as details about the Transformer architecture
we have adopted.

1) General Architecture: We consider a general seq-to-one
approach i.e. for a given sequence of input values indexed
by the temporal dimension (MoCap and corresponding EMG
data), the model produces a single 2D output corresponding
to the probability distribution of observed protective behaviour
(probability that a protective behaviour is observed or not).

The several steps considered are (i) iterative computation
of timestep embeddings using transformer blocks based on
self-attention, (ii) instance embedding averaging the timestep
embeddings, (iii) linear transformation of the instance em-
bedding into R2, (iv) softmax to obtain the final probability
distribution over the two classes for protective behaviour.

In the following we index by t ∈ J1, 180K the different
timesteps composing a given input to classify.1 For a timestep
t, we also denote respectively the 4×1D EMG input values and
the 17×3D MoCap input values by xtEMG ∈ R4, and xtMOC ∈
R51 respectively. In this section xt = (xtEMG, x

t
MOC) is the

concatenation of the two vectors xtEMG and xtMOC at time t
(xt ∈ R55). The input provided to the transformer model was
X = [x(1), . . . , x(180)]ᵀ ∈ R55×180. No additional efforts have
been made to help the model (i) extract specific characteristics
of the MOCAP and EMG data (e.g. by applying specific
preprocessing steps), (ii) explicitly distinguish between the
17 3D coordinates corresponding to the MoCap data.

The general transformer architecture considered in our exper-
iments can mainly be seen as an encoder stacking n transformer
blocks that are trainable mappings, i.e. a transformer block
i ∈ J1, nK is a mapping B(i) : Rd×180 → Rd×180, i.e. the
stacking is the composition B(n)(. . . (B(1)(X))). A linear
transformation is first applied element-wise to each of the
timestep entries of X ∈ R55×180 to obtain the Rd×180 input
that will be given to the first transformer block, i.e. the same
linear transformation from R55 to Rd is used to project each
xt, t ∈ J1, 180K into Rd (d is the embedding size and an
hyperparameter of our system).

Each transformer block applies standard treatments such
as : (i) standard Multi-Head self-Attention (MHA), (ii) nor-
malization prior and after MHA, (iii) a feedforward network
applied element-wise using 2 fully connected layers based on
ReLu activation function. The Query, Key, and Value linear
transformations of each transformer block is a transformation
from Rd to Rd with each of the h head processing an input in
Rd/h (with configurations defined such as d mod h = 0).

Since standard Transformers are permutation invariant, we
implemented optional positional embeddings a trainable linear

1Ji, jK denotes the set of integer between i and j, both included.
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Fig. 1. The transformer baseline architecture.

projection applied to each timestep (linear transformation from
J1, nK to Rd). When we activate positional embeddings, the
embedding is summed to the inputs prior to applying the first
transformer block.

The final instance embedding has been defined as the average
of the output of block B(n) which can be seen as the final
timestep embeddings. A simple linear projection is then applied
to obtain a R2 projection on which a softmax is applied to
obtain the probability distribution referring to the protective
behaviour. Figure 1 illustrates the model.

2) Specific design choices: In order to constrain the archi-
tecture which relies on a large number of parameters, we have
considered shared trainable parameters among the transformers
blocks (i.e. same parameters among each B(i), i ∈ J1, nK).
Considering an architecture with n transformer blocks, the
encoder part of the model in charge of the processing from the
input data (optionally augmented by the positional embeddings)
to the timesteps embeddings can therefore be seen has a
repeated processing of the same transformer block. In addition,
no residual connection (skipping connection) has been used.

3) Training: We added several dropout layers during training
to avoid overfitting. The loss function we consider is a weighted
Binary Cross entropy (weights computed at batch level),
optimized with Adam.

We train several Transformer models based on the aforemen-
tioned architecture using different hyperparameters (number of
blocks, number of heads, size of internal projections d, using
positional embeddings or not, batch size, the learning rate).
We then select 21 models that maximizing the sum of the
F1 measure obtained on both given training and validation
sets considering all training epochs – these models have been
trained up to 4k epochs. F1 sums of the selected models range
from 1.63 to 1.60. Figure 2 and 3 show the results obtained in
training two architecture configurations from which some of
the 21 final models have been selected (smoothed with 10-point
moving average). Note that several selected models share the
same hyperparameter configurations but have been obtained at
different training epochs.

Fig. 2. Evolution of several performance metrics (F1, MCC, Accuracy
and Balanced Accuracy) during training for a specific tested Transformer
architecture (blue training set, orange validation set) - values have been smooth
averaging the 100 surrounding values of each point. The architecture used
all 55 features, 15 blocks, 4 heads, embedding sizes of 256, used positional
embedding; training has been made using a batch size of 50 and a learning
rate of 10−4.

Fig. 3. Similar to Figure 2 with different hyperparameters: 55 features, 3
blocks, 8 heads, embedding sizes of 256, used positional embedding; training
has been made using a batch size of 50 and a learning rate of 10−4.

4) Prediction: We then use a voting strategy over the
predictions of the 21 models. For a given test input, the
prediction is output maximising the probability of the output
class. The final class considered for a given test input is defined
using majority voting of all 21 predictions made by the 21
models. Figure 4 presents the distribution of the percentage
of votes for majority classes. We observe that the 21 selected
models fully agree (same prediction) in 76.4% of the test cases.
A majority agreement of less than 90% of the models can be
observed in 11.3% of the test cases.

C. LSTM

Here, we used two bi-directional LSTM layers model with
batch normalization and dropout. Considering that LSTM
type models in the two works [3], [4] showed relatively poor



Fig. 4. Distribution of the percentages of votes given to the selected class
(majority voting).

performance, we introduced a similar external human action
skeleton NTU RGB+D dataset [7] to pre-train this model, then
perform fine-tuning with the AffectMove challenge dataset. The
NTU RGB+D dataset is one of the largest 3D Human Activity
data sets, containing 60 different classes including daily, mutual,
and health-related actions. We use only the skeleton sequences
dataset extracted from 56, 880 videos samples. Since NTU
RGB+D features recordings with 25 body joints instead of the
17 in the EUROPAIN dataset and the AffectMove dataset, only
the corresponding 17 joints are kept. The skeleton sequences
are also zero-padded or truncated to 180 frames in agreement
with the EUROPAIN/AffectMove sequence length.

BiLSTMHidden 512
Sequence 180

BiLSTMHidden 256
Sequence 180

128 Units Fully Connected

Fully Connected
2 Units

Fully Connected
60 Units Pretraining Fine-tuning

BatchNorm

Dropout0.5

Fig. 5. Baseline BiLSTM model structure for pre-training (left) and fine-tuning
on protective action prediction.

Only the MoCap data is used in this baseline model as pre-
training couldn’t include EMG data. The input of the model
is thus 51 × 180 (17 sequences of 3D-joints). All data is
normalized with z-score in which the main mean and standard
deviation used for the filtering are estimated from the pre-
training set. Since the pre-training dataset is quite large and
complex, the number of hidden units are set relatively high
(512 units for the 1st layer, 256 units for the 2nd layer). The

learning-rate is fixed at 0.01 in the whole training and final
testing process. No voting is applied, only the model that
gave the best performance on the validation set is chosen to
predict with unlabeled test set. This means that the final model
tends to be “biased” towards the validation set whether there’s
over-fitting or not, which creates the risk of a collapse of
performance under the test set.

Fig. 6. Pre-training process on NTU RGB+D dataset. NTU RGB+D dataset
is randomly split into training 90% and validation 10% sets in which the
classes are stratified. The stopping validation accuracy at 57 epochs on the 60
classes is 70.69%.

The pre-training on NTU RGB+D reached a stable valida-
tion accuracy 70.69%. For the fine-tuning of the pre-trained
model, the best model obtained showed an accuracy of 90%,
F1 at 0.6514 for protective behaviour class. On the validation
set, it seemed that this model is interesting in that it appeared to
outperform the more complex models (Transformer and GCN),
however, as we’ll see in the meta analysis, the phenomenon
didn’t persist in the final evaluation on the test set.

TABLE II
RE-TRAINING RESULTS WITH THE PRE-TRAINED MODEL ON training SET,
EVALUATED ON validation SET (1844 SAMPLES), EARLY STOPPED AT THE

END OF 3 EPOCHS

Metrics
Prot. B. 0 Prot. B. 1

Specificity 0.6552 0.9413
Precision 0.9430 0.6477
Recall 0.9413 0.6552
F1 0.9421 0.6514
MCC 0.5936
Accuracy 0.9008

D. Graph Convolutional Network

Graph Convolutional Networks for skeleton-based action
recognition take into account the spatial and temporal charac-
teristics specific to human skeleton data. Indeed, the human
skeleton can be seen as a natural graph, and if we also
consider the evolution over time of 3D joint coordinates,
skeleton-pose data can be modeled as a temporal graph. Such a
representation is efficient with regard to skeletal pose data and
also in preserving the most important information and topology.



TABLE III
MODEL SELECTION RESULTS FOR PA-RESGCN. THE FIRST THREE LINES AND THE LAST LINE ARE BASED ON THE PA-RESGCN-N51 MODEL, WHILE LINE

FOUR IS BASED ON THE PA-RESGCN-B19.

Model Params. EMG Weighted. Loss Optimizer Class F1 P R Avg. F1 Weighted Avg. F1 MCC Acc. Balanced Acc.

N51 0.73m 7 7 SGD 1 0.54 0.55 0.52 0.73 0.87 0.46 0.87 0.730 0.93 0.92 0.93

N51 0.73m 7 X SGD 1 0.64 0.56 0.74 0.78 0.89 0.58 0.88 0.820 0.93 0.95 0.90

N51 0.73m 7 X Adam 1 0.50 0.42 0.63 0.70 0.83 0.41 0.82 0.740 0.89 0.93 0.85

B19 3.61m 7 X SGD 1 0.56 0.47 0.69 0.73 0.86 0.48 0.84 0.780 0.91 0.94 0.87

N51 + CNN 0.86m X X SGD 1 0.60 0.56 0.64 0.75 0.88 0.53 0.88 0.780 0.93 0.94 0.91

Architecture like ResGCN [6] also includes part-wise attention,
which can be beneficial for protective behaviour detection, as
some parts of the body are more significantly involved in the
protective behaviour (the area impacted by pain, typically the
lower neck or the lower back).

1) Architecture: For the GCN implementation we started
from ResGCN in its PA-ResGCN variant [6], which encodes
three main features extracted from skeleton poses: joints
(like most other systems), velocities and bones. The use of
these three features allows PA-ResGCN to reach strong SOTA
results as highlighted in Section 2. We modify the official
implementation of ResGCN 2 by adapting the data loader for
the data format of AffectMove Task 1, notably the formulation
of the graph for the GCN. The class imbalance in the dataset
prevents PA-ResGCN from performing as well as the baseline
models, which is why we propose a weighted reformulation of
the binary cross-entropy loss that accounts for and compensates
the imbalance during training.

Additionally, we propose a simple multimodal extension
that performs a late fusion between PA-ResGCN(-N51) and a
convolutional neural network for EMG classification.

For the latter, the signals are first filtered with an exponential
moving average (α = 0.2). The CNN architecture consists of
one layer normalization per Batch to adjust scale of input
EMG data with learnable parameters, followed by one 2D
convolutional layer, batch pooling and two linear layers. PReLU
activation is used after the convolutional layers and Tanh in
between the two linear layers. This architecture serves to extract
128 EMG features, which are then concatenated to the 256
features extracted by PA-ResGCN-N51. Figure 7 illustrates the
full multimodal architecture, please refer to Song et al. [6] for
the details of the PA-ResGCN-N51 architecture and part-wise
attention.

2) Loss definition: We use Binary cross-entropy with logits
along with an added weighing scheme to penalize the majority
class. The weights are computed per batch like in Cui et al.
[14], where we consider β → 1, so that following the paper’s
notation, En = ns,k. The loss lk for the kth batch is defined

2https://github.com/yfsong0709/ResGCNv1
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Exp. Moving Average
0.2
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Fig. 7. Architecture of the multimodal PA-ResGCN-N51 + EMG CNN system.
The final run only includes the left branch without EMG.

as :

lk =
∑

(s,ys)∈Bk

ws[yslogσ(xs)+(1−ys) · log(1−σ(xs))] (1)

ws =
1

ns,k
ns,k =

{
n−,k + ε, if ys = 0

n+,k + ε, otherwise
(2)

Where Bk is the set of training examples of the kth batch,
ws is the weight per sample s where n(−,k) and n(+,k) are
respectively the number of negative and positive samples
present in the kth batch, ε was set to 10−6 to avoid division
by 0 errors.

3) Training & Optimization schedule: First, we use only
the 3D MoCap data to train the PA-ResGCN, particularly
the PA-ReGCN-N51 variant where N51 means there are 51
convolutional or FC layers within the model and where PA
stands for part Attention. We experiment with two types of
optimisation approaches: (i) Optimizer based on stochastic
gradient descent (SGD) with a Nesterov momentum of 0.9,
weight decay of 10−4 and with cosine scheduler (warm restarts
[16]), similarly to Song et al. [6], (ii) an Adam optimizer with
an initial learning rate of 10−3. The SGD optimizer with a
cosine scheduler led to better results in comparison with the

https://github.com/yfsong0709/ResGCNv1


Adam optimizer (albeit slightly slower). Secondly, we jointly
train the CNN for EMG measures and PA-ResGCN-N51 for 3D
skeleton data for training the architecture to include information
from EMG.

E. Model selection & validation

The model selection results are presented in Table III.
We first evaluated the PA-ResGCN-N51 architecture at 0.77
million parameters in different Loss/optimizer settings, we
then evaluated the best performing combination with the PA-
ResGCN-B19 model with basic blocks (B19 stands for 19 basic
blocks, 3.61 million parameters) that achieved SOTA on NTU-
60 and NTU-120. Finally, we evaluate the multimodal inclusion
of EMG to PA-ResGCN-N51 (best performing model). The
PA-ResGCN-N51 model configuration with a weighted loss
and SGD gives the best performance with an F1 score 0.64 in
comparison with the same model with SGD and an unweighted
loss (0.54 F1, +10%). This improvement demonstrates the
benefits introduced by the weighted loss. We can see that
unweighted loss generally gives a slightly better precision
(compared to the PA-ResGCN-B19 model), with a recall
approximately similar to precision, while the weighted loss
maximizes the recall and F1 score. The Adam optimizer (on
PA-ResGCN-N51) shows sub-par performance compared to
SGD with the cosine scheduler. With the PA-ResGCN-B19
model for the best previous loss/optimizer combination, we
observed lower overall performance. Contrarily to NTU-60 or
NTU120, which are very large databases, our training data is
comparatively smaller for Task 1 and we hypothesize that this
model needs a lot more data to actually converge to something
better. Likewise, the introduction of the EMG signals to the
PA-ResGCN-N51 model degrades the results, as performance
deteriorates by -6%. The reason for this decrease could be
either a low signal-to-noise ratio in the filtered EMG signal
envelope, or the cause of an ill-adapted fusion technique (single
fully connected layer).

IV. RESULTS AND DISCUSSION

If we consider the final ranking of our submitted runs on
the test set of Task 1, unsurprisingly, the best performing
system was PA-ResGCN-N51 (w/o EMG) with a F1 score of
53.36% on the test set for the minority class (MCC 0.4247,
Table IV line 3). The Transformer baseline (MoCap + EMG)
came second at 41.05% F1 test performance (MCC 0.3523,
Table IV line 2) and the LSTM baseline third at 31.16% F1

(MCC 0.1763, Table IV, line 1). While the Transformer had
a comparable behaviour on the validation set and on the test
set, the LSTM was actually on-par with PA-ResGCN-N51
on the validation set. On the test set the performance of the
LSTM collapsed with a F1 of only 0.3116. This seems to
comfort the hypothesis that, the distribution of subjects in
the validation set is quite different from the training or test
test sets. Although, the objective of the task was to provide
a realistic setting, the careful selection of a good validation
set is paramount to producing models that generalize well
regardless of the non-competitive framing. Another reason

TABLE IV
OFFICIAL RESULTS ON TASK 1 TEST SET FOR THE THREE SUBMITTED RUNS

System F1 C0 F1 C1 MCC Acc.

1. LSTM Baseline 85.83 31.16 0.17628 76.49
2. Transformer Baseline 89.96 41.05 0.35234 82.84
3. PA-ResGCN-N51 89.07 53.36 0.42471 82.28

of the poor test performance of the LSTM could be that
MoCap-only may be insufficient to predict if one behaviour is
protective or not. Even though pre-training has been proved to
be useful in many other application, since the test set labels
are not disclosed yet, one cannot truly evaluate whether pre-
training is beneficial or whether it hurts the generalizability of
protective behaviour detection. Despite the poor behaviour of
the LSTM architecture on the test corpus, pre-training did lead
to a significant improvement on the validation set, and we can
extrapolate that an architecture like ResNet in its larger form,
could have benefited much more from pre-training on other
datasets such as NTU, before fine-tuning on Task 1.

V. CONCLUSION

In this work, our team has explored two baseline strategies
(Transformer and LSTM) and a state of the art approach (PA-
ResGCN) for the skeleton + EMG based protective behaviour
prediction for Task 1 of the AffectMove challenge. The
SOTA architecture of PA-ResGCN did indeed achieve the
best performance both on the validation set and test set of the
challenge compared to the baseline approaches without using
the EMG signal. Although the fusion strategy we implemented
to add EMG to PA-ResGCN-N51 was unsuccessful, it was
trivial in nature due to the time constraints. More state of
the art multi-modal fusion strategies may prove successful
at integrating EMG and leading to increased performance
(as observed with the Transformer). The effectiveness of PA-
ResGCN remains relative, as the amount of training data for
task 1 is on the smaller end of the scale. A more thorough
error-analysis will allow for specific adaptations to PA-ResGCN
that would lead to better results.
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