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Abstract: Human activities in the sea, such as intensive fishing and exploitation of offshore wind1

farms, may impact negatively on the marine mega fauna. As an attempt to control such impacts,2

surveying, and tracking of marine animals are often performed on the sites where those activities3

take place. Nowadays, thank to high resolution cameras and to the development of machine4

learning techniques, tracking of wild animals can be performed remotely and the analysis of the5

acquired images can be automatized using state-of-the-art object detection models. However,6

most state-of-the-art detection methods require lots of annotated data to provide satisfactory7

results. Since analyzing thousands of images acquired during a flight survey can be a cumbersome8

and time consuming task, we focus in this article on the weakly supervised detection of marine9

animals. We propose a modification of the patch distribution modeling method (PaDiM), which is10

currently one of the state-of-the-art approaches for anomaly detection and localization for visual11

industrial inspection. In order to show its effectiveness and suitability for marine animal detection,12

we conduct a comparative evaluation of the proposed method against the original version, as well13

as other state-of-the-art approaches on two high-resolution marine animal image datasets. On14

both tested datasets, the proposed method yielded better F1 and recall scores (75% recall/41%15

precision, and 57% recall/60% precision, respectively) when trained on images known to contain16

no object of interest. This shows a great potential of the proposed approach to speed up the17

marine animal discovery in new flight surveys. Additionally, such a method could be adopted18

for bounding box proposals to perform faster and cheaper annotation within a fully-supervised19

detection framework.20

Keywords: marine animal monitoring; anomaly detection; deep learning; weakly supervised21

learning; convolutional neural networks.22

1. Introduction23

With the ever-growing exploitation of marine natural resources, surveying human24

activities in the sea has become essential [1]. Activities, such as the installation of25

offshore wind farms and intensive fishing, should be closely monitored, as they can have26

a serious impact on the marine mega fauna. For instance, the noise produced during27

the different phases of an offshore wind farm development, including the site survey,28

the wind farm construction and the deployment of turbines, can potentially lead to29

various levels of physical injury, physiological, and behavioral changes in mammals,30

fish, and invertebrates [2–5]. In order to ensure that such human activities can take place31

without harming the marine ecosystem, different surveillance approaches have been32

adopted in the past years.33

Nowadays, aerial surveys are among the standard non-invasive approaches for34

tracking the marine mega fauna [6–10]. Those surveys consist of flight sessions over the35
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sea, during which environmental specialists are able to remotely observe the marine36

animals (e.g., seabirds, mammals, and fish) that emerge on the surface. In parallel,37

high resolution videos and photographs can be captured during the flight and, later,38

be used to validate the observations made by the specialists. During a single flight39

session, thousands of aerial images, or a few hours of videos composed of thousands40

of frames, can be recorded. This makes the visual analysis of these data laborious and41

time consuming.42

With the advance of deep learning techniques, such as convolutional neural net-43

works (CNN), a natural direction towards optimizing marine mega fauna surveys is to44

automatize marine animal detection in aerial images using state-of-the-art methods for45

object detection [6–10]. Currently, the most efficient methods use variations of CNNs for46

feature extraction, and are trained in a supervised manner using lots of ground-truth47

bounding boxes. Hence, in order to use such methods, we still cannot skip the cumber-48

some task of analysing and annotating large amounts of data. On the other hand, using49

unsupervised and weakly supervised methods, we can benefit from all the available50

data without spending so much time on annotation. However, unsupervised models are51

still far behind supervised ones in terms of object detection performance. In this research,52

we aim to reduce the gap between the performances of supervised and unsupervised53

deep learning applied to object detection. This problem is tackled in the complex context54

of marine animal detection.55

In this article, our main contributions are twofold: (1) a modification of the unsu-56

pervised anomaly detection method PaDiM (patch distribution modeling) [11], which57

we prove to be better adapted for marine animal detection than the original method;58

and (2) an evaluation of the proposed method and of other state-of-the-art approaches,59

namely PaDiM [11], OrthoAD [12], and AnoVAEGAN [13], on two high-resolution60

marine animal image datasets. Our codes are published and available online https:61

//github.com/Pangoraw/MarineMammalsDetection (accessed on 6 January 2022).62

2. Marine Animal Detection: Challenges and Current Solutions63

The development of machine learning and, in particular, of deep learning methods64

in the past decade was boosted by an increasing computational power and by large65

amounts of available annotated datasets. Under favorable conditions, the accuracy of66

deep learning methods can even be similar to human’s for some specific tasks, including67

pathology detection [14] and animal behavioral analysis [15]. For image classification68

on large datasets, such as ImageNet [16] (14,000,000+ annotated images), deep learning69

methods provide state-of-the-art results, reaching accuracy levels of over 90% [17]. More-70

over, for object detection on large-scale image datasets, e.g., MS COCO [18] (300,000+71

images with bounding box annotations belonging to nearly one hundred classes), deep72

learning also provides state-of-the-art results, though reaching human performance on73

such challenging scenarios is still an open problem.74

In view of the success of deep learning in several computer vision tasks, extending75

the current state-of-the-art object detection methods for marine animal detection seems76

promising. On the one hand, a single session of an aerial survey over the sea surface77

can provide thousands of images with potentially several hundreds of animal instances,78

which, in theory, makes enough data to train a deep learning model. On the other hand,79

annotating this kind of data are a challenge for the following reasons:80

1. Different animal species cannot be easily distinguished by untrained eyes, and,81

hence, annotations should be provided or at least validated by specialists. For in-82

stance, the dolphins of Figure 1a,b look very much alike, but they belong to different83

species: Delphinus delphis and Stenella coeruleoalba, respectively.84

https://github.com/Pangoraw/MarineMammalsDetection
https://github.com/Pangoraw/MarineMammalsDetection
https://github.com/Pangoraw/MarineMammalsDetection
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(a) (b)
Figure 1. Dolphins of the Delphinus delphis (a) and Stenella coeruleoalba (b) species.

2. The appearance of marine animals changes as they swim deeper in the ocean,85

leading to ground-truth annotations with different confidence levels. For instance,86

in the images of Figure 2, the presence of dolphins of the Delphinus delphis species87

was confirmed by specialists, but lower confidence levels were assigned to those88

annotations due to their blurry appearance.89

Figure 2. Ground-truth bounding boxes of dolphins with low confidence levels.
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3. Depending on the flight altitude, animal instances are so small that they can only be90

detected through their context. As an example, Figure 3 shows an image captured91

during a flight session of Ifremer (Institut Français de Recherche pour l’Exploitation92

de la Mer: https://wwz.ifremer.fr/ (accessed on 6 January 2022)). According to93

specialists, the bright dots inside the green bounding boxes probably correspond94

to marine animals, while that the ones inside the red box may be sun glitters. We95

can observe that this analysis is only possible by taking into consideration the96

proximity of each patch to the sun reflection.97

4. Although it is desirable to perform the flight sessions when the weather is favorable98

(no rain, not too much wind, and good visibility), it is not always possible due to99

other constraints, such as the availability of the pilot and other members of the100

crew. For that reason, waves crests and sun glitters, which may appear similar to101

animals (see Figure 4), are often visible in the images. Obtaining models which102

are robust to such kind of noise is one of the most difficult challenges in marine103

animal detection.104

https://wwz.ifremer.fr/


Version January 12, 2022 submitted to Journal Not Specified 5 of 19

Figure 3. Image captured during an Ifremer flight session. The bright dots inside the green boxes
may correspond to marine animals while that the ones inside the red box might be sun glitters.
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(a) (b)
Figure 4. Original aerial image of marine birds (a) and its ground-truth bounding boxes (b).

Due to the complexity of detecting marine animals in those various scenarios,105

research studies in the literature often limit their scope to the detection of a single animal106

species [7,9] and/or to images with high density of animal instances [8,10]. For instance,107

in the early work of [7], the authors tackle the detection of dugongs in aerial images108

by combining an unsupervised region proposal method with a classification CNN.109

On their dataset, whose number of images was not provided, the best precision and110

recall scores were 27% and 80%, respectively. Similarly to [7], the authors of [9] targeted111

marine bird detection through a combination of an unsupervised region proposal with a112

classification CNN. Even though high accuracy scores (>95%) for their pre-trained CNN113

were reported, visual results presented in the paper show the difficulty of obtaining a114

model which is robust to sun glitters similar to the ones illustrated in Figure 4. In [6],115

the authors performed an end-to-end supervised detection of dolphins and stingrays116

in aerial images. Due to the high density and occlusion of animals in some areas, low117

average precision scores were obtained for both species: 30% and 35% for the detection118

of dolphins and of stingrays, respectively. In [8], both marine and terrestrial birds are119

targeted. As a novelty, the authors were able to boost the number of birds in their120

dataset by introducing samples of bird decoys. Using some of the state-of-the-art object121

detection models, including Faster R-CNN [19] or YOLOv4 [20], an average precision122

(AP) score of over 95% was reported on a set of positive samples, i.e., samples which123

contain at least one ground-truth bounding box.124

In a more recent work on seabirds detection [10], efforts were made to reduce125

the manual workload required to obtain annotated training data. The authors trained126

a CNN to detect different species of seabirds, including terns and gulls, using only127

200 training samples per class. To make up for the low number of training samples,128

prior-knowledge about the spatial distribution of birds was introduced during post-129

processing steps, which led to high precision and recall scores of approximately 90%130

for the most abundant class, but lower scores for the sparse classes. Though some of131

the methods reviewed above perform well on their dataset, they require some level132

of supervised labeling or some prior-knowledge about the distribution of the targeted133

animals. The literature on unsupervised and weakly-supervised methods for marine134

animal detection is still scarce, which motivated us to focus on weakly-supervised135

detection of different kinds of marine animals, such as turtles, birds, and dolphins,136

as described in the following sections.137
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3. Unsupervised and Weakly-Supervised Object and Anomaly Detection138

The sparse distribution of marine animals makes it hard to gather sufficient data139

to train and test supervised models. Often, less than 5% of the images gathered during140

a flight survey will contain animals (see Section 5.1). The differences in appearance141

caused by the variations in animal depth shown in Figure 2 can also make it hard for142

supervised models to learn class-specific features. To better handle these constraints143

and to account for different weather conditions, we propose to train an object detector144

by applying anomaly localization techniques to sea images. By training on sea images145

without animals, our models require little to no-supervision compared to data-intensive146

supervised techniques. Classes with a very small number of training samples should147

offer comparable performance to that of other classes since the training data do not suffer148

from class imbalance. In our experiments, we focus on detection only. The classification149

of the detected animals will be left for future work.150

Anomaly localization, as the name suggests, aims to localize the regions or area151

of pixels from an image that diverge from the “norm”, where the norm is usually152

determined by image patterns (e.g., colors and textures) found in the training set. As a153

result, each pixel of an image is assigned an anomaly score. The goal is to detect all154

anomalous pixels that are different from the normal data present in the training set.155

A subset of this task is anomaly detection, where the goal is to classify whether an image156

contains an anomaly or not. We refer to an image without anomalies as a normal image157

and an image with anomalies as an anomalous image. Since marine animal detection158

requires predicting the precise location of an animal within an image, we focus on159

anomaly localization.160

In the literature, most anomaly detection methods are proposed either in an indus-161

trial or in a medical context. The performance benchmarks are often made on the MVTec162

Anomaly Detection [21] (MVTec AD) dataset which contains a variety of textures and163

objects classes. The training set for each of these classes is composed of only normal164

images. A variety of methods already exists to localize anomalies in images, and some165

of them are reviewed below.166

Reconstruction based methods train generative models to reconstruct the normal167

images from the training data by minimizing the reconstruction loss. The intuition168

is that anomalous samples will be poorly reconstructed and thus easy to detect by169

comparing the reconstruction with the original image. The most used models are autoen-170

coders (AE) [22], variational autoencoders (VAE) [13,23] or adversarial autoencoders171

(AAE) [13,24]. Although easy to understand, generative models are sometimes able to172

reconstruct the anomalies even though they are not part of the training set, making the173

anomalies undetectable by standard dissimilarity measures computed from the original174

and reconstructed images. An anomaly can also lead to a failed reconstruction larger175

than the original anomaly making the precise anomaly localization impossible.176

Deep embedding methods use the embedding vectors created by networks trained177

on other tasks to model the normal data. They can use a model pre-trained on another178

supervised dataset or on proxy tasks for a self-supervised training mode. To model the179

training data and detect embedding vectors that are anomalous, several methods have180

been proposed. Patch-SVDD [25] uses a proxy classifying task to encode the image and a181

Deep-SVDD [26] one-class classifier to classify the patch as either anomalous or normal.182

DifferNet [27] trains normalizing flows (NF) to maximize the likelihood of the training183

set and localizes anomalies by computing the gradient of the likelihood with regard to184

the input image. SPADE [28] compares the testing samples to the normal-only training185

set using a K-nearest neighbors retrieval on vectors created using a model pre-trained186

on supervised image classification. PaDiM [11] proposes to model each patch location187

using a Gaussian distribution and then use the Mahalanobis distance to compute the188

anomaly scores.189

We experiment with both generative and embeddings based methods to reformulate190

the animal detection problem as an anomaly localization problem. Leveraging the fact191
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that a majority of the recorded aerial imagery does not contain animals, we target marine192

animal detection models trained in a weakly-supervised setting.193

4. Proposed Method for Weakly-Supervised Marine Animal Detection194

Convolutional neural networks (CNN) pre-trained on supervised tasks have proven195

to be robust image feature extractors [28,29]. Their use in anomaly detection has al-196

ready given interesting results in state-of-the-art benchmarks [11,12,30,31]. Since the197

benchmark datasets commonly used for anomaly detection from images are different198

from datasets available for marine mammals detection that can be made of thousands of199

images and involve a strong texture component, we propose to modify and adapt deep200

feature embedding methods to tackle the marine animals detection problem.201

As first proposed in [28], to model the normal training set, the images are first
encoded using a ResNet [32] model pre-trained on the ImageNet [16] dataset. To use
different semantic levels, activations from the three intermediate layers are concatenated
to create a feature map as used in [11,12,28]. Since this feature map is deep, the number
of channels is often reduced using either random-dimensions selection [11] or a semi-
orthogonal embedding matrix [12]. In practice, we found that using a semi-orthogonal
embedding yields more consistent results because the random dimension selection
requires to test multiple dimensions in order to find a good combination. The method [11]
then models these normal feature maps using a Gaussian distribution for each patch
location. During training, only a single forward pass is necessary to encode the training
set and to compute the mean vectors and covariance matrices estimating the Gaussian
distribution. Both can be computed online using the formulas in Equations (1) and (2):

µi,j =
1
N

N

∑
k=1

xk,i,j (1)

Σi,j =
1

N − 1

(
N

∑
k=1

xk,i,jx>k,i,j − N × (µi,jµ
>
i,j)

)
+ εI (2)

where xk,i,j is the feature vector at location i, j of the kth training sample and N is the202

number of training samples. A regularization term εI, where I is the identity matrix203

of corresponding size, is added to the covariance matrices for numerical stability for204

invariant patches as proposed in [11].205

Once a Gaussian distribution has been estimated for each patch location, the anomaly
score s(xi,j) for each patch xi,j of a test image is computed using the Mahalanobis dis-
tance:

s(xi,j) =
√
(xi,j − µi,j)>Σ−1

i,j (xi,j − µi,j) (3)

For the Gaussian distribution, the Mahalanobis distance is proportional to the206

square root of the negative log-likelihood. If the Gaussian distribution hypothesis is207

valid, detecting anomalous patches is similar to an out-of-distribution (OOD) samples208

detection process. With this method, the learnt distributions are depending on the patch209

location. This gives good performance on the MVTec AD dataset where the normal210

objects are always located at the same location in the image. This means that the model is211

not invariant to image transformations such as rotations and translations. However, such212

geometric transformations are common in aerial imagery, while anomalies should still213

be located. The Gaussian distribution is also a uni-modal distribution. This method is214

able to model only one modality of the normal class. This is not a problem in the MVTec215

AD dataset where all training samples are similar and part of the same modality. How-216

ever, for a general anomaly detection framework where normal images are composed of217

different normal textures (sea, waves, sun glitters...), this leads to only the majority class218

being learnt and the minority normal classes being flagged as anomalous. To address219

these limitations, we propose a spatially-invariant anomaly localization pipeline using220

normalizing flows to handle multi-modal normal data.221
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To build a spatially-invariant anomaly detection pipeline, the anomaly score should
not be dependant on the patch coordinates. A simple modification could be to make the
model a single Gaussian distribution fit to every patch samples of each image. However,
since there are multiple patch modalities, the data may not fit a Gaussian distribution.
This can be confirmed by looking at the statistical moments of the patches. Depending
on the dimensionality reduction, the skewness and kurtosis of the data are not those
of a Gaussian distribution. This is emphasized when using the random dimension
downsampling technique proposed in [11]. To use a Gaussian model, we propose to
transform the patch distribution into a Gaussian distribution using a normalizing flow
(NF). A normalizing flow consists of an invertible transformation T(·) of an unknown
input distribution x = T−1(z) to a known latent distribution z ∼ pZ. Using the change
of variable formula, we can compute the likelihood of any x:

pX(x) = pZ(z)
∣∣∣∣det

∂z
∂x

∣∣∣∣ (4)

where det ∂z
∂x is the Jacobian determinant of T(·). Therefore, T is built so that its Jacobian222

determinant is known and fast to compute. Usually, pZ is taken to be a centered multi-223

variate Gaussian distribution z ∼ N (0, 1). To perform the transformation T, we use224

the Masked Autoregressive Flow [33] (MAF) model which uses a series of masked225

autoregressive dense layers, as described in [34]. The masked layers and auto-regressive226

property allow for a fast probability estimation in a single forward pass. Sampling,227

however, requires computing a series of probabilities p(xi|x1:i−1) because each xi is a228

regression of the previous i − 1 variables. In our case, we only leverage the density229

estimation and do not make use of the sampling from the learnt distribution pX .230

The transformation parameters can be trained by maximizing the log-likelihood of231

the normal only training dataset. Anomaly scores for new samples can be evaluated by232

computing the negative log-likelihood after transformation of the sample through T(·).233

Our model is similar to PaDiM estimated using a single shared Gaussian estimator for all234

patches but with a learnt arbitrary complex transformation of the prior distribution pX235

into a Gaussian distribution (see figure 5). We also experiment with using an ensemblistic236

approach by using multiple normalizing flows in parallel and by taking the maximum237

log-likelihood of all models for a given patch. This allows each model to specialize in a238

type of patch. The loss function for the models is described in Equation (5):239

L =
1

N ×W × H ∑
n,i,j

min
k
{− log pZk (Tk(xn,i,j))} (5)

where k ∈ {1, . . . , K}, K is the number of models in parallel, W and H are the dimensions240

of the patch grid, and xn,i,j corresponds to the embedding vector at location (i, j) of the241

nth sample in the training set. This multi-headed model can also be used to produce242

pseudo-segmentation maps by using the index of the model giving the highest log-243

likelihood as a pseudo-label for the patch. Since the normalizing flow used can already244

model multiple modalities, we found that this modification had little to no positive245

impact on the performance of the model.246
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NF NF

Figure 5. Architecture of the multi-headed model. After extracting and downscaling the features,
each model computes the negative log-likelihood of each patch and the final score for a patch is
the maximum of all K = 2 predictions.

Although anomaly localization models produce anomaly maps, our datasets for247

animal detection are annotated using bounding boxes. To convert the anomaly map into248

relevant region proposals, we propose a multi-step pipeline:249

1. First, the anomaly maps are normalized to have their values between 0 and 1;250

2. Then, given an anomaly map A =
{

ai,j ∈ [0, 1]
}

, a threshold t is applied to create a251

binary map of the same size Abin = {1ai,j≥t};252

3. Next, by computing the connected components of this binary map, a set of re-253

gions can be proposed using the coordinates and dimensions of each connected254

component;255

4. Finally, using prior knowledge on the dataset, small proposals are removed from256

the proposed regions. The non-maximum suppression algorithm is also used to257

filter out duplicate overlapping regions;258

5. During the test phase, the proposals are compared to the ground truth bounding259

boxes using the Intersection over Union (IoU). It measures the relative overlap260

between two bounding boxes and is commonly used in detection tasks.261

The entire box proposal pipeline can be seen on Figure 6.262

5. Experiments263

5.1. Datasets264

In this section, we describe the datasets used to evaluate our proposed methods for265

marine animal detection. Since the aerial imagery is taken with large optical sensors that266

produce large images, the images are cut into smaller sub-patches of size 416× 416 pixels.267

When images are cropped into patches, it may happen that one ground-truth bounding268

box is split into two or four patches. In that case, this ground truth is assigned only to269
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(a) Input image

(b) Anomaly map (min-max norm)

(c) Binary threshold (x ≥ 0.8)

(d) Box proposal and IoU
Figure 6. Illustration of the box proposal pipeline: First, the input image (a) is converted to an
anomaly map (b) where warmer colors are associated with a higher anomaly score. This anomaly
map is then converted to a binary mask (c). Finally, the propositions (red boxes) are compared
with the ground truth boxes (green) using the IoU (d).



Version January 12, 2022 submitted to Journal Not Specified 12 of 19

the patch which contains the center of its bounding box. In both datasets, annotations270

were validated by specialists in marine mega fauna.271

The Semmacape dataset comprises a set of 165 annotated aerial images acquired272

as part the SEMMACAPE (https://semmacape.irisa.fr/ (accessed on 6 January 2022))273

project, which partially funded the present research and whose main objective is to274

automatize the survey of marine animals in offshore wind-farms. The images of this275

dataset were collected in the Gironde estuary and Pertuis sea Marine Nature Park,276

France, during the spring of 2020. In total, it contains 165 images of 14,204 × 10,652277

pixels with 528 ground-truth annotations belonging to one of the following classes:278

• Dolphin (see some examples in Figures 1 and 2). A total of 258 annotations subdi-279

vided into four classes: striped dolphin ( Stenella coeruleoalba), common dolphin (280

Delphinus delphis), common bottlenose dolphin ( Tursiops truncatus), and a separated281

class for dolphins whose species could not be determined;282

• Bird (see some examples in Figure 4). A total of 270 annotations subdivided into283

flying and landed birds belonging to four species: gannet, seagull, little shearwater284

( Puffinus assimilis), and sterna.285

Since our focus is on marine animal detection, other classes (seaweed, jellyfish,286

floating waste, ...) were not included from the testing dataset. The dataset contains a287

variety of settings from homogeneous sea images to images covered with sun glitters and288

waves, making it challenging to learn the normal distribution of the data. After filtering289

and creating the sub-patches, the dataset is composed of 345 patches containing at least290

one object (anomalous) and 138,544 patches without objects (normal). The percentage of291

anomalous images is then about 0.25%.292

The Kelonia dataset, provided by the Centre d’Etude et de Découverte des Tortues293

Marines (CEDTM) and by the Kélonia aquarium (https://museesreunion.fr/kelonia/294

(accessed on 6 January 2022)), is composed of aerial images of marine turtles acquired in295

Réunion island between 2015 and 2018. This dataset contains 1983 images with ground296

truth bounding boxes belonging to one of these three classes: turtle, unturtle (unsure297

annotations of turtles), and ray. In our experiments, we will consider only the turtle and298

unturtles classes, which comprise the majority of the annotations. Unlike the Semmacape299

dataset, the images have a larger variety of background and color settings because the300

sea is shallower, showing the seabed. Furthermore, the training set contains images that301

may not be representative of the normal class and are not found in the testing set. This302

makes training on this dataset harder because the learnt distribution may not be optimal303

for anomaly detection on the testing set. Example samples from the dataset can be seen304

on Figure 7.305

https://semmacape.irisa.fr/
https://museesreunion.fr/kelonia/


Version January 12, 2022 submitted to Journal Not Specified 13 of 19

Figure 7. Normal (top) and anomalous (bottom) images from the Kelonia dataset.

The choice of normal images is critical for training an efficient anomaly localization306

method. Indeed, if the model is trained with only homogeneous images, it will detect307

sun glitters and waves as anomalies. However, training solely on heterogeneous images308

will cause the model to expect glitters and waves in a normal setting which leads to309

unexpected proposals on homogeneous images.310

5.2. Experimental Setup311

As in [11], we use a Wide-ResNet50 [35] as our encoding backbone. The features312

are then downsampled to a depth of c = 100 features using a semi-orthogonal projection313

matrix as described in [12]. We use seven masked autoregressive density estimator [34]314

(MADE) layers in our MAF model. They have seven hidden units with 130 connections315

each. The Adam [36] optimizer is used with a learning rate of 0.001.316

We compare our results with the PaDiM and OrthoAD methods from [11,12] using
the same parameters. We also train an adversarial convolutional variational encoder
(AnoVAEGAN) similar to [13] to reconstruct normal images. The anomalies are detected
by comparing the image reconstruction with the original image using the structural
similarity [37] (SSIM) metric. To measure the performance of the detection methods, we
consider that a detection is positive if the IoU between the prediction box and the ground
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truth box is greater than 0.1. The F1 score, recall and precision can then be measured.
They are computed as follows:

Recall =
#detected
#objects

(6)

Precision =
#detected

#proposals
(7)

F1 score =
2× Recall× Precision

Recall + Precision
(8)

Because the F1 score blends information about both the recall and precision, we317

use it as our main metric. We also evaluate the classification performance between318

anomalous and normal images of the models by computing the area under the receiver319

operating characteristic curve (AUROC). The anomaly score for an image is defined as320

the maximum anomaly score among all its patches.321

5.3. Results322

The object detection scores for the Semmacape and Kelonia datasets are given in323

Tables 1 and 2, respectively. For all metrics, higher scores indicate better performance.324

On both datasets, the highest F1 scores among all tested approaches were obtained by325

one of our proposed methods. The most significant improvements were observed on326

the Semmacape dataset, for which our method provided an improvement of 6.1% and327

of 22.6% in terms of F1 and recall scores, respectively, with respect to the state-of-the-328

art AnoVAEGAN [13]. On this dataset, the classification of patches into anomalous329

and normal images is also significantly improved by our method, as attested by an330

augmentation of 12.4% of AUROC in comparison to OrthoAD [12]. On the other hand,331

more modest improvements were observed on the Kelonia dataset: 1.3% and 5.2% in332

terms of F1 and recall scores, respectively, when compared to OrthoAD [12].333

The improvement from using a normalizing flow to transform the embedding334

vector is greater on the Semmacape dataset than on the Kelonia dataset. This is due335

to the fact that the training dataset for Semmacape contains normal patches that are336

different from anomalous patches of the testing set. For the Kelonia dataset however,337

there are rocks and patches that are more similar to the turtles in the training set. Since338

the negative log-likelihood is minimized during training, some “turtle” patches will339

then be assigned a high likelihood because they are similar to rocks in the training set.340

This can lead to some failed detection because the area around the object will have a341

normal score. For the same reason, the generative method AnoVAEGAN performs worse342

on the Kelonia dataset because of training images containing rocks that are similar to343

turtles. The model is then able to reconstruct the turtles accurately and fails to detect344

them during testing. The classification performance on the Kelonia dataset can also be345

explained by the fact that some normal images are very dissimilar from the rest, which346

leads the model to classify them as anomalous.347

Table 1. Results on the Semmacape dataset. All the models have been trained using the same set
of 1000 training images.

Method F1 Score Recall Precision AUROC

PaDiM [11] 0.383 0.434 0.343 0.606
OrthoAD [12] 0.458 0.373 0.594 0.795
AnoVAEGAN [13] 0.469 0.531 0.420 0.697

Ours, 1×MAF [33] 0.530 0.757 0.408 0.919
Ours, 2×MAF [33] 0.486 0.523 0.455 0.869
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Table 2. Results on the Kelonia dataset. All the models have been trained using the same set of
1000 training images.

Method F1 Score Recall Precision AUROC

PaDiM [11] 0.504 0.443 0.586 0.431
OrthoAD [12] 0.571 0.514 0.643 0.431
AnoVAEGAN [13] 0.051 0.033 0.107 0.469

Ours, 1×MAF [33] 0.568 0.559 0.578 0.410
Ours, 2×MAF [33] 0.584 0.566 0.604 0.391

When varying the IoU threshold for positive predictions (Figure 8), the F1 score348

decreases as the threshold increases. With an IoU threshold of 0.3, the F1 score is down349

to less than 0.45 for the best performing method on the Semmacape dataset. A higher350

IoU threshold means that the proposed bounding boxes must be more similar to the351

ground truth boxes in order to be counted as a positive prediction. For the PaDiM352

method, the rate at which the performance decreases as the IoU threshold increases is353

greater than our method. This is because large objects can sometimes be counted as354

positive even with failed predictions when the anomaly threshold is low and a large355

portion of the image is proposed as a region of interest. This region will then have an356

IoU greater than the IoU threshold with the ground-truth bounding box. We can see357

that the PaDiM method has a larger confidence interval on the F1 score because of the358

random dimension selection which plays a role in the performance of the model and is359

effectively sampled differently at each run.360
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Figure 8. F1 score on the Semmacape dataset with different IoU thresholds. The mean performance
and 95% confidence interval is reported over 3 runs.

As seen on Figure 9, the methods are not very sensitive to a variation in the number361

of training samples. This means that modeling the normal dataset does not require a362

large number of training samples. In fact, since some images have similar visual features363

because they are shot in sequence above the sea, having a wide variety of images364
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covering the whole spectrum of the normal setting is more important than having many365

similar training samples. However, too few training samples can lead to over-fitting of366

the model which will cause new normal images to be classified as anomalous during367

testing because they are different from the training set. In practice, we train with 1000368

training images. Examples of predictions for both datasets can be seen on Figure 10.369
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Figure 9. F1 score on the Semmacape dataset with different numbers of training samples. The mean
performance and 95% confidence interval is reported over 3 runs.

6. Discussion370

Our method proposes a first step in performing weakly supervised marine mammal371

detection. As such, it requires less human intervention on the training data generation372

process compared to supervised methods and is also able to propose individual bounding373

boxes for each detected mammal. However, in this study we do not consider the problem374

of classifying species. As a consequence, other anomalous floating objects such as boats375

or marine debris could be detected. In practice, the performance from our method376

should be assessed and the predictions should be confirmed by comparing the output to377

other population estimation methods, such as field sampling campaigns.378

The proposed bounding boxes could also serve as a starting point in computer379

assisted ecology by guiding human annotators to larger area of interest first or as an380

initialization method for other computer assisted annotation methods which require381

pre-trained models or active learning [38].382

7. Conclusions383

By transposing the problem of anomaly localization from an industrial setting384

to marine animals localization, we are able to provide class-agnostic bounding box385

proposals on aerial imagery. The produced detection can either be used to speed up the386

object discovery for new flight surveys or for direct bounding box proposal and animal387

population density estimation. By leveraging pre-trained convolutional neural network388

features without full annotations, the proposed approach is able to detect marine animals.389
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Figure 10. Example predictions (left) and their corresponding anomaly maps (right) from the
Semmacape (2 first rows) and Kelonia (2 last rows) dataset. Rocks and waves have a higher
anomaly score than water, using the appropriate anomaly threshold is important for the proposed
regions to be interesting.
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Although not yet on par with supervised methods, this is a first step on enabling weakly390

supervised detection of marine animals. During the work, one of our observations is that391

the training set should contain normal samples with good quality, since most anomaly392

detection methods, including ours, are often sensible to the contamination of the training393

set with anomalous images.394

Despite its great potential in marine animal localization from aerial images, the pro-395

posed method cannot classify between different species. Future work on unsupervised396

clustering of proposals could result in improving precision by detecting irrelevant pro-397

posal beyond providing some solutions for the unsupervised classification task.398
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