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Human activities in the sea, such as intensive fishing and exploitation of offshore wind 1 farms, may impact negatively on the marine mega fauna. As an attempt to control such impacts, 2 surveying, and tracking of marine animals are often performed on the sites where those activities 3 take place. Nowadays, thank to high resolution cameras and to the development of machine 4 learning techniques, tracking of wild animals can be performed remotely and the analysis of the 5 acquired images can be automatized using state-of-the-art object detection models. However, 6 most state-of-the-art detection methods require lots of annotated data to provide satisfactory 7 results. Since analyzing thousands of images acquired during a flight survey can be a cumbersome 8 and time consuming task, we focus in this article on the weakly supervised detection of marine 9 animals. We propose a modification of the patch distribution modeling method (PaDiM), which is currently one of the state-of-the-art approaches for anomaly detection and localization for visual industrial inspection. In order to show its effectiveness and suitability for marine animal detection, we conduct a comparative evaluation of the proposed method against the original version, as well as other state-of-the-art approaches on two high-resolution marine animal image datasets. On both tested datasets, the proposed method yielded better F1 and recall scores (75% recall/41% precision, and 57% recall/60% precision, respectively) when trained on images known to contain no object of interest. This shows a great potential of the proposed approach to speed up the marine animal discovery in new flight surveys. Additionally, such a method could be adopted for bounding box proposals to perform faster and cheaper annotation within a fully-supervised detection framework.

Introduction

With the ever-growing exploitation of marine natural resources, surveying human activities in the sea has become essential [START_REF] Hooper | The implications of energy systems for ecosystem services: A detailed case study of offshore wind[END_REF]. Activities, such as the installation of offshore wind farms and intensive fishing, should be closely monitored, as they can have a serious impact on the marine mega fauna. For instance, the noise produced during the different phases of an offshore wind farm development, including the site survey, the wind farm construction and the deployment of turbines, can potentially lead to various levels of physical injury, physiological, and behavioral changes in mammals, fish, and invertebrates [START_REF] Bergström | Effects of offshore wind farms on marine wildlife-a generalized impact assessment[END_REF][START_REF] Verfuss | Review of offshore wind farm impact monitoring and mitigation with regard to marine mammals[END_REF][START_REF] Nabe-Nielsen | Predicting the impacts of anthropogenic disturbances on marine populations[END_REF][START_REF] Mooney | Acoustic impacts of offshore wind energy on fishery resources: An evolving source and varied effects across a wind farm's lifetime[END_REF]. In order to ensure that such human activities can take place without harming the marine ecosystem, different surveillance approaches have been adopted in the past years.

Nowadays, aerial surveys are among the standard non-invasive approaches for tracking the marine mega fauna [START_REF] Saqib | Real-Time Drone Surveillance and Population Estimation of Marine Animals from Aerial Imagery[END_REF][START_REF] Maire | Automating Marine Mammal Detection in Aerial Images Captured During Wildlife Surveys: A Deep Learning Approach[END_REF][START_REF] Hong | Application of Deep-Learning Methods to Bird Detection Using Unmanned Aerial Vehicle Imagery[END_REF][START_REF] Boudaoud | Marine Bird Detection Based on Deep Learning using High-Resolution Aerial Images[END_REF][START_REF] Kellenberger | 21 000 birds in 4.5 h: Efficient large-scale seabird detection with machine learning[END_REF]. Those surveys consist of flight sessions over the 

2.

The appearance of marine animals changes as they swim deeper in the ocean, 

3.

Depending on the flight altitude, animal instances are so small that they can only be 90 detected through their context. As an example, Figure 3 shows an image captured 91 during a flight session of Ifremer (Institut Français de Recherche pour l'Exploitation 92 de la Mer: https://wwz.ifremer.fr/ (accessed on 6 January 2022)). According to 93 specialists, the bright dots inside the green bounding boxes probably correspond 94 to marine animals, while that the ones inside the red box may be sun glitters. We 95 can observe that this analysis is only possible by taking into consideration the 96 proximity of each patch to the sun reflection. Although it is desirable to perform the flight sessions when the weather is favorable 98 (no rain, not too much wind, and good visibility), it is not always possible due to 99 other constraints, such as the availability of the pilot and other members of the 100 crew. For that reason, waves crests and sun glitters, which may appear similar to 101 animals (see Figure 4), are often visible in the images. Obtaining models which 102 are robust to such kind of noise is one of the most difficult challenges in marine 103 animal detection. Due to the complexity of detecting marine animals in those various scenarios, 105 research studies in the literature often limit their scope to the detection of a single animal 106 species [START_REF] Maire | Automating Marine Mammal Detection in Aerial Images Captured During Wildlife Surveys: A Deep Learning Approach[END_REF][START_REF] Boudaoud | Marine Bird Detection Based on Deep Learning using High-Resolution Aerial Images[END_REF] and/or to images with high density of animal instances [START_REF] Hong | Application of Deep-Learning Methods to Bird Detection Using Unmanned Aerial Vehicle Imagery[END_REF][START_REF] Kellenberger | 21 000 birds in 4.5 h: Efficient large-scale seabird detection with machine learning[END_REF]. For instance, 107 in the early work of [START_REF] Maire | Automating Marine Mammal Detection in Aerial Images Captured During Wildlife Surveys: A Deep Learning Approach[END_REF], the authors tackle the detection of dugongs in aerial images 108 by combining an unsupervised region proposal method with a classification CNN.

109

On their dataset, whose number of images was not provided, the best precision and 110 recall scores were 27% and 80%, respectively. Similarly to [START_REF] Maire | Automating Marine Mammal Detection in Aerial Images Captured During Wildlife Surveys: A Deep Learning Approach[END_REF], the authors of [START_REF] Boudaoud | Marine Bird Detection Based on Deep Learning using High-Resolution Aerial Images[END_REF] targeted 111 marine bird detection through a combination of an unsupervised region proposal with a 112 classification CNN. Even though high accuracy scores (>95%) for their pre-trained CNN 113 were reported, visual results presented in the paper show the difficulty of obtaining a 114 model which is robust to sun glitters similar to the ones illustrated in Figure 4. In [START_REF] Saqib | Real-Time Drone Surveillance and Population Estimation of Marine Animals from Aerial Imagery[END_REF],

115 the authors performed an end-to-end supervised detection of dolphins and stingrays 116 in aerial images. Due to the high density and occlusion of animals in some areas, low 117 average precision scores were obtained for both species: 30% and 35% for the detection 118 of dolphins and of stingrays, respectively. In [START_REF] Hong | Application of Deep-Learning Methods to Bird Detection Using Unmanned Aerial Vehicle Imagery[END_REF], both marine and terrestrial birds are 119 targeted. As a novelty, the authors were able to boost the number of birds in their 120 dataset by introducing samples of bird decoys. Using some of the state-of-the-art object 121 detection models, including Faster R-CNN [START_REF] Ren | Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[END_REF] or YOLOv4 [START_REF] Bochkovskiy | Yolov4: Optimal speed and accuracy of object detection[END_REF], an average precision 122 (AP) score of over 95% was reported on a set of positive samples, i.e., samples which 123 contain at least one ground-truth bounding box.

124

In a more recent work on seabirds detection [START_REF] Kellenberger | 21 000 birds in 4.5 h: Efficient large-scale seabird detection with machine learning[END_REF], efforts were made to reduce 

Unsupervised and Weakly-Supervised Object and Anomaly Detection 138

The sparse distribution of marine animals makes it hard to gather sufficient data 139 to train and test supervised models. Often, less than 5% of the images gathered during 140 a flight survey will contain animals (see Section 5.1). The differences in appearance 141 caused by the variations in animal depth shown in Figure 2 can also make it hard for 142 supervised models to learn class-specific features. To better handle these constraints is that anomalous samples will be poorly reconstructed and thus easy to detect by 169 comparing the reconstruction with the original image. The most used models are autoen-170 coders (AE) [START_REF] Chen | Outlier Detection with Autoencoder Ensembles[END_REF], variational autoencoders (VAE) [START_REF] Baur | Deep Autoencoding Models for Unsupervised Anomaly Segmentation in Brain MR Images[END_REF][START_REF] Bergmann | Improving Unsupervised Defect Segmentation by Applying Structural Similarity to Autoencoders[END_REF] or adversarial autoencoders 171 (AAE) [START_REF] Baur | Deep Autoencoding Models for Unsupervised Anomaly Segmentation in Brain MR Images[END_REF][START_REF] Akcay | Semi-Supervised Anomaly Detection via Adversarial Training[END_REF]. Although easy to understand, generative models are sometimes able to 
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As first proposed in [START_REF] Cohen | Sub-Image Anomaly Detection with Deep Pyramid Correspondences[END_REF], to model the normal training set, the images are first encoded using a ResNet [START_REF] He | Deep Residual Learning for Image Recognition[END_REF] model pre-trained on the ImageNet [START_REF] Russakovsky | Imagenet large scale visual recognition challenge[END_REF] dataset. To use different semantic levels, activations from the three intermediate layers are concatenated to create a feature map as used in [START_REF] Defard | A Patch Distribution Modeling Framework for Anomaly Detection and Localization[END_REF][START_REF] Kim | Semi-orthogonal Embedding for Efficient Unsupervised Anomaly Segmentation[END_REF][START_REF] Cohen | Sub-Image Anomaly Detection with Deep Pyramid Correspondences[END_REF]. Since this feature map is deep, the number of channels is often reduced using either random-dimensions selection [START_REF] Defard | A Patch Distribution Modeling Framework for Anomaly Detection and Localization[END_REF] or a semiorthogonal embedding matrix [START_REF] Kim | Semi-orthogonal Embedding for Efficient Unsupervised Anomaly Segmentation[END_REF]. In practice, we found that using a semi-orthogonal embedding yields more consistent results because the random dimension selection requires to test multiple dimensions in order to find a good combination. The method [START_REF] Defard | A Patch Distribution Modeling Framework for Anomaly Detection and Localization[END_REF] then models these normal feature maps using a Gaussian distribution for each patch location. During training, only a single forward pass is necessary to encode the training set and to compute the mean vectors and covariance matrices estimating the Gaussian distribution. Both can be computed online using the formulas in Equations ( 1) and ( 2):

µ i,j = 1 N N ∑ k=1 x k,i,j (1) 
Σ i,j = 1 N -1 N ∑ k=1 x k,i,j x k,i,j -N × (µ i,j µ i,j ) + I (2) 
where x k,i,j is the feature vector at location i, j of the kth training sample and N is the 202 number of training samples. A regularization term I, where I is the identity matrix 203 of corresponding size, is added to the covariance matrices for numerical stability for 204 invariant patches as proposed in [START_REF] Defard | A Patch Distribution Modeling Framework for Anomaly Detection and Localization[END_REF].

205

Once a Gaussian distribution has been estimated for each patch location, the anomaly score s(x i,j ) for each patch x i,j of a test image is computed using the Mahalanobis distance:

s(x i,j ) = (x i,j -µ i,j ) Σ -1 i,j (x i,j -µ i,j ) (3) 
For the Gaussian distribution, the Mahalanobis distance is proportional to the To build a spatially-invariant anomaly detection pipeline, the anomaly score should not be dependant on the patch coordinates. A simple modification could be to make the model a single Gaussian distribution fit to every patch samples of each image. However, since there are multiple patch modalities, the data may not fit a Gaussian distribution. This can be confirmed by looking at the statistical moments of the patches. Depending on the dimensionality reduction, the skewness and kurtosis of the data are not those of a Gaussian distribution. This is emphasized when using the random dimension downsampling technique proposed in [START_REF] Defard | A Patch Distribution Modeling Framework for Anomaly Detection and Localization[END_REF]. To use a Gaussian model, we propose to transform the patch distribution into a Gaussian distribution using a normalizing flow (NF). A normalizing flow consists of an invertible transformation T(•) of an unknown input distribution x = T -1 (z) to a known latent distribution z ∼ p Z . Using the change of variable formula, we can compute the likelihood of any x:

p X (x) = p Z (z) det ∂z ∂x ( 4 
)
where det ∂z ∂x is the Jacobian determinant of T(•). Therefore, T is built so that its Jacobian Our model is similar to PaDiM estimated using a single shared Gaussian estimator for all 234 patches but with a learnt arbitrary complex transformation of the prior distribution p X 235 into a Gaussian distribution (see figure 5). We also experiment with using an ensemblistic 236 approach by using multiple normalizing flows in parallel and by taking the maximum 237 log-likelihood of all models for a given patch. This allows each model to specialize in a 238 type of patch. The loss function for the models is described in Equation ( 5):

239 L = 1 N × W × H ∑ n,i,j min k {-log p Z k (T k (x n,i,j ))} (5) 
where k ∈ {1, . . . , K}, K is the number of models in parallel, W and H are the dimensions 240 of the patch grid, and x n,i,j corresponds to the embedding vector at location (i, j) of the between two bounding boxes and is commonly used in detection tasks.

261

The entire box proposal pipeline can be seen on Figure 6. In this section, we describe the datasets used to evaluate our proposed methods for 265 marine animal detection. Since the aerial imagery is taken with large optical sensors that 266 produce large images, the images are cut into smaller sub-patches of size 416 × 416 pixels.

267

When images are cropped into patches, it may happen that one ground-truth bounding 268 box is split into two or four patches. In that case, this ground truth is assigned only to 

Experimental Setup

311

As in [START_REF] Defard | A Patch Distribution Modeling Framework for Anomaly Detection and Localization[END_REF], we use a Wide-ResNet50 [START_REF] Zagoruyko | Wide Residual Networks[END_REF] as our encoding backbone. The features 312 are then downsampled to a depth of c = 100 features using a semi-orthogonal projection 313 matrix as described in [START_REF] Kim | Semi-orthogonal Embedding for Efficient Unsupervised Anomaly Segmentation[END_REF]. We use seven masked autoregressive density estimator [START_REF] Germain | Masked Autoencoder for Distribution Estimation[END_REF] 314 (MADE) layers in our MAF model. They have seven hidden units with 130 connections 315 each. The Adam [START_REF] Kingma | A Method for Stochastic Optimization[END_REF] optimizer is used with a learning rate of 0.001.
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We compare our results with the PaDiM and OrthoAD methods from [START_REF] Defard | A Patch Distribution Modeling Framework for Anomaly Detection and Localization[END_REF][START_REF] Kim | Semi-orthogonal Embedding for Efficient Unsupervised Anomaly Segmentation[END_REF] using the same parameters. We also train an adversarial convolutional variational encoder (AnoVAEGAN) similar to [START_REF] Baur | Deep Autoencoding Models for Unsupervised Anomaly Segmentation in Brain MR Images[END_REF] to reconstruct normal images. The anomalies are detected by comparing the image reconstruction with the original image using the structural similarity [START_REF] Wang | Image quality assessment: From error visibility to structural similarity[END_REF] (SSIM) metric. To measure the performance of the detection methods, we consider that a detection is positive if the IoU between the prediction box and the ground truth box is greater than 0.1. The F1 score, recall and precision can then be measured. They are computed as follows:

Recall = #detected #objects (6) Precision = #detected #proposals (7) F1 score = 2 × Recall × Precision Recall + Precision (8)
Because the F1 score blends information about both the recall and precision, we 317 use it as our main metric. We also evaluate the classification performance between 318 anomalous and normal images of the models by computing the area under the receiver 319 operating characteristic curve (AUROC). The anomaly score for an image is defined as 320 the maximum anomaly score among all its patches. 321

Results

322

The object detection scores for the Semmacape and Kelonia datasets are given in 323 Tables 1 and2, respectively. For all metrics, higher scores indicate better performance.

324

On both datasets, the highest F1 scores among all tested approaches were obtained by 325 one of our proposed methods. The most significant improvements were observed on 326 the Semmacape dataset, for which our method provided an improvement of 6.1% and 327 of 22.6% in terms of F1 and recall scores, respectively, with respect to the state-of-the-

328

art AnoVAEGAN [START_REF] Baur | Deep Autoencoding Models for Unsupervised Anomaly Segmentation in Brain MR Images[END_REF]. On this dataset, the classification of patches into anomalous 329 and normal images is also significantly improved by our method, as attested by an 330 augmentation of 12.4% of AUROC in comparison to OrthoAD [START_REF] Kim | Semi-orthogonal Embedding for Efficient Unsupervised Anomaly Segmentation[END_REF]. On the other hand, 331 more modest improvements were observed on the Kelonia dataset: 1.3% and 5.2% in 332 terms of F1 and recall scores, respectively, when compared to OrthoAD [START_REF] Kim | Semi-orthogonal Embedding for Efficient Unsupervised Anomaly Segmentation[END_REF].

333

The improvement from using a normalizing flow to transform the embedding 

Discussion

Our method proposes a first step in performing weakly supervised marine mammal Rocks and waves have a higher anomaly score than water, using the appropriate anomaly threshold is important for the proposed regions to be interesting.

Figure 1 .

 1 Dolphins of the Delphinus delphis (a) and Stenella coeruleoalba (b) species.

Figure 2 .

 2 Figure 2. Ground-truth bounding boxes of dolphins with low confidence levels.

Figure 3 .Figure 4 .

 34 Figure 3. Image captured during an Ifremer flight session. The bright dots inside the green boxes may correspond to marine animals while that the ones inside the red box might be sun glitters.

125

  the manual workload required to obtain annotated training data. The authors trained 126 a CNN to detect different species of seabirds, including terns and gulls, using only 127 200 training samples per class. To make up for the low number of training samples, 128 prior-knowledge about the spatial distribution of birds was introduced during post-129 processing steps, which led to high precision and recall scores of approximately 90% 130 for the most abundant class, but lower scores for the sparse classes. Though some of 131 the methods reviewed above perform well on their dataset, they require some level 132 of supervised labeling or some prior-knowledge about the distribution of the targeted 133 animals. The literature on unsupervised and weakly-supervised methods for marine 134 animal detection is still scarce, which motivated us to focus on weakly-supervised 135 detection of different kinds of marine animals, such as turtles, birds, and dolphins, 136 as described in the following sections.

143

  and to account for different weather conditions, we propose to train an object detector 144 by applying anomaly localization techniques to sea images. By training on sea images 145 without animals, our models require little to no-supervision compared to data-intensive 146 supervised techniques. Classes with a very small number of training samples should 147 offer comparable performance to that of other classes since the training data do not suffer 148 from class imbalance. In our experiments, we focus on detection only. The classification 149 of the detected animals will be left for future work. 150 Anomaly localization, as the name suggests, aims to localize the regions or area 151 of pixels from an image that diverge from the "norm", where the norm is usually 152 determined by image patterns (e.g., colors and textures) found in the training set. As a 153 result, each pixel of an image is assigned an anomaly score. The goal is to detect all 154 anomalous pixels that are different from the normal data present in the training set.

155A

  subset of this task is anomaly detection, where the goal is to classify whether an image 156 contains an anomaly or not. We refer to an image without anomalies as a normal image 157 and an image with anomalies as an anomalous image. Since marine animal detection 158 requires predicting the precise location of an animal within an image, we focus on 159 anomaly localization. 160 In the literature, most anomaly detection methods are proposed either in an indus-161 trial or in a medical context. The performance benchmarks are often made on the MVTec 162 Anomaly Detection [21] (MVTec AD) dataset which contains a variety of textures and 163 objects classes. The training set for each of these classes is composed of only normal 164 images. A variety of methods already exists to localize anomalies in images, and some 165 of them are reviewed below. 166 Reconstruction based methods train generative models to reconstruct the normal 167 images from the training data by minimizing the reconstruction loss. The intuition 168

  172 reconstruct the anomalies even though they are not part of the training set, making the 173 anomalies undetectable by standard dissimilarity measures computed from the original 174 and reconstructed images. An anomaly can also lead to a failed reconstruction larger 175 than the original anomaly making the precise anomaly localization impossible. 176 Deep embedding methods use the embedding vectors created by networks trained 177 on other tasks to model the normal data. They can use a model pre-trained on another 178 supervised dataset or on proxy tasks for a self-supervised training mode. To model the 179 training data and detect embedding vectors that are anomalous, several methods have 180 been proposed. Patch-SVDD [25] uses a proxy classifying task to encode the image and a 181 Deep-SVDD [26] one-class classifier to classify the patch as either anomalous or normal. 182 DifferNet [27] trains normalizing flows (NF) to maximize the likelihood of the training 183 set and localizes anomalies by computing the gradient of the likelihood with regard to 184 the input image. SPADE [28] compares the testing samples to the normal-only training 185 set using a K-nearest neighbors retrieval on vectors created using a model pre-trained 186 on supervised image classification. PaDiM [11] proposes to model each patch location 187 using a Gaussian distribution and then use the Mahalanobis distance to compute the 188 anomaly scores. 189 We experiment with both generative and embeddings based methods to reformulate 190 the animal detection problem as an anomaly localization problem. Leveraging the fact that a majority of the recorded aerial imagery does not contain animals, we target marine 192 animal detection models trained in a weakly-supervised setting.

193 4 .

 4 Proposed Method for Weakly-Supervised Marine Animal Detection 194 Convolutional neural networks (CNN) pre-trained on supervised tasks have proven 195 to be robust image feature extractors [28,29]. Their use in anomaly detection has al-196 ready given interesting results in state-of-the-art benchmarks [11,12,30,31]. Since the 197 benchmark datasets commonly used for anomaly detection from images are different 198 from datasets available for marine mammals detection that can be made of thousands of 199 images and involve a strong texture component, we propose to modify and adapt deep 200 feature embedding methods to tackle the marine animals detection problem.
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  square root of the negative log-likelihood. If the Gaussian distribution hypothesis is 207 valid, detecting anomalous patches is similar to an out-of-distribution (OOD) samples 208 detection process. With this method, the learnt distributions are depending on the patch 209 location. This gives good performance on the MVTec AD dataset where the normal 210 objects are always located at the same location in the image. This means that the model is 211 not invariant to image transformations such as rotations and translations. However, such 212 geometric transformations are common in aerial imagery, while anomalies should still 213 be located. The Gaussian distribution is also a uni-modal distribution. This method is 214 able to model only one modality of the normal class. This is not a problem in the MVTec 215 AD dataset where all training samples are similar and part of the same modality. How-216 ever, for a general anomaly detection framework where normal images are composed of 217 different normal textures (sea, waves, sun glitters...), this leads to only the majority class 218 being learnt and the minority normal classes being flagged as anomalous. To address 219 these limitations, we propose a spatially-invariant anomaly localization pipeline using 220 normalizing flows to handle multi-modal normal data.

  222determinant is known and fast to compute. Usually, p Z is taken to be a centered multi-223 variate Gaussian distribution z ∼ N (0, 1). To perform the transformation T, we use 224 the Masked Autoregressive Flow[START_REF] Papamakarios | Masked Autoregressive Flow for Density Estimation[END_REF] (MAF) model which uses a series of masked 225 autoregressive dense layers, as described in[START_REF] Germain | Masked Autoencoder for Distribution Estimation[END_REF]. The masked layers and auto-regressive 226 property allow for a fast probability estimation in a single forward pass. Sampling, 227 however, requires computing a series of probabilities p(x i |x 1:i-1 ) because each x i is a 228 regression of the previous i -1 variables. In our case, we only leverage the density 229 estimation and do not make use of the sampling from the learnt distribution p X . 230 The transformation parameters can be trained by maximizing the log-likelihood of 231 the normal only training dataset. Anomaly scores for new samples can be evaluated by 232 computing the negative log-likelihood after transformation of the sample through T(•).

  233

241 nth sample inFigure 5 . 5 .

 55 Figure 5. Architecture of the multi-headed model. After extracting and downscaling the features, each model computes the negative log-likelihood of each patch and the final score for a patch is the maximum of all K = 2 predictions.Although anomaly localization models produce anomaly maps, our datasets for
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  (a) Input image (b) Anomaly map (min-max norm) (c) Binary threshold (x ≥ 0.8) the patch which contains the center of its bounding box. In both datasets, annotations 270 were validated by specialists in marine mega fauna. 271 The Semmacape dataset comprises a set of 165 annotated aerial images acquired 272 as part the SEMMACAPE (https://semmacape.irisa.fr/ (accessed on 6 January 2022)) 273 project, which partially funded the present research and whose main objective is to 274 automatize the survey of marine animals in offshore wind-farms. The images of this 275 dataset were collected in the Gironde estuary and Pertuis sea Marine Nature Park, 276 France, during the spring of 2020. In total, it contains 165 images of 14,204 × 10,652 277 pixels with 528 ground-truth annotations belonging to one of the following classes: 278 • Dolphin (see some examples in Figures 1 and 2). A total of 258 annotations subdi-279 vided into four classes: striped dolphin ( Stenella coeruleoalba), common dolphin ( 280 Delphinus delphis), common bottlenose dolphin ( Tursiops truncatus), and a separated 281 class for dolphins whose species could not be determined; 282 • Bird (see some examples in Figure 4). A total of 270 annotations subdivided into 283 flying and landed birds belonging to four species: gannet, seagull, little shearwater 284 Puffinus assimilis), and sterna. 285 Since our focus is on marine animal detection, other classes (seaweed, jellyfish, 286 floating waste, ...) were not included from the testing dataset. The dataset contains a 287 variety of settings from homogeneous sea images to images covered with sun glitters and 288 waves, making it challenging to learn the normal distribution of the data. After filtering 289 and creating the sub-patches, the dataset is composed of 345 patches containing at least 290 one object (anomalous) and 138,544 patches without objects (normal). The percentage of 291 anomalous images is then about 0.25%. 292 The Kelonia dataset, provided by the Centre d'Etude et de Découverte des Tortues 293 Marines (CEDTM) and by the Kélonia aquarium (https://museesreunion.fr/kelonia/ 294 (accessed on 6 January 2022)), is composed of aerial images of marine turtles acquired in 295 Réunion island between 2015 and 2018. This dataset contains 1983 images with ground 296 truth bounding boxes belonging to one of these three classes: turtle, unturtle (unsure 297 annotations of turtles), and ray. In our experiments, we will consider only the turtle and 298 unturtles classes, which comprise the majority of the annotations. Unlike the Semmacape 299 dataset, the images have a larger variety of background and color settings because the 300 sea is shallower, showing the seabed. Furthermore, the training set contains images that 301 may not be representative of the normal class and are not found in the testing set. This 302 makes training on this dataset harder because the learnt distribution may not be optimal 303 for anomaly detection on the testing set. Example samples from the dataset can be seen 304 on Figure 7.

Figure 7 .

 7 Figure 7. Normal (top) and anomalous (bottom) images from the Kelonia dataset. The choice of normal images is critical for training an efficient anomaly localization
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Figure 8 .

 8 Figure 8. F1 score on the Semmacape dataset with different IoU thresholds. The mean performance and 95% confidence interval is reported over 3 runs.As seen on Figure9, the methods are not very sensitive to a variation in the number

Figure 9 .

 9 Figure 9. F1 score on the Semmacape dataset with different numbers of training samples. The mean performance and 95% confidence interval is reported over 3 runs.

371detection.

  As such, it requires less human intervention on the training data generation 372 process compared to supervised methods and is also able to propose individual bounding 373 boxes for each detected mammal. However, in this study we do not consider the problem 374 of classifying species. As a consequence, other anomalous floating objects such as boats 375or marine debris could be detected. In practice, the performance from our method 376 should be assessed and the predictions should be confirmed by comparing the output to 377 other population estimation methods, such as field sampling campaigns.378The proposed bounding boxes could also serve as a starting point in computer 379 assisted ecology by guiding human annotators to larger area of interest first or as an 380 initialization method for other computer assisted annotation methods which require 381 pre-trained models or active learning[START_REF] Kellenberger | Accelerating image-based ecological surveys with interactive machine learning[END_REF].

383

  By transposing the problem of anomaly localization from an industrial setting 384 to marine animals localization, we are able to provide class-agnostic bounding box 385 proposals on aerial imagery. The produced detection can either be used to speed up the 386 object discovery for new flight surveys or for direct bounding box proposal and animal 387 population density estimation. By leveraging pre-trained convolutional neural network 388features without full annotations, the proposed approach is able to detect marine animals.

Figure 10 .

 10 Figure10. Example predictions (left) and their corresponding anomaly maps (right) from the Semmacape (2 first rows) and Kelonia (2 last rows) dataset. Rocks and waves have a higher anomaly score than water, using the appropriate anomaly threshold is important for the proposed regions to be interesting.

Table 1 .

 1 Results on the Semmacape dataset. All the models have been trained using the same set of 1000 training images.

	334				
	335	vector is greater on the Semmacape dataset than on the Kelonia dataset. This is due
	336	to the fact that the training dataset for Semmacape contains normal patches that are
	337	different from anomalous patches of the testing set. For the Kelonia dataset however,
	338	there are rocks and patches that are more similar to the turtles in the training set. Since
	339	the negative log-likelihood is minimized during training, some "turtle" patches will
	340	then be assigned a high likelihood because they are similar to rocks in the training set.
	341	This can lead to some failed detection because the area around the object will have a
	342	normal score. For the same reason, the generative method AnoVAEGAN performs worse
	343	on the Kelonia dataset because of training images containing rocks that are similar to
	344	turtles. The model is then able to reconstruct the turtles accurately and fails to detect
	345	them during testing. The classification performance on the Kelonia dataset can also be
	346	explained by the fact that some normal images are very dissimilar from the rest, which
		leads the model to classify them as anomalous.	
		Method	F1 Score	Recall	Precision	AUROC
		PaDiM [11]	0.383	0.434	0.343	0.606
		OrthoAD [12]	0.458	0.373	0.594	0.795
		AnoVAEGAN [13]	0.469	0.531	0.420	0.697
		Ours, 1× MAF [33]	0.530	0.757	0.408	0.919
		Ours, 2× MAF [33]	0.486	0.523	0.455	0.869

347

Table 2 .

 2 Results on the Kelonia dataset. All the models have been trained using the same set of 1000 training images.

		Method	F1 Score	Recall	Precision	AUROC
		PaDiM [11]	0.504	0.443	0.586	0.431
		OrthoAD [12]	0.571	0.514	0.643	0.431
		AnoVAEGAN [13]	0.051	0.033	0.107	0.469
		Ours, 1× MAF [33]	0.568	0.559	0.578	0.410
		Ours, 2× MAF [33]	0.584	0.566	0.604	0.391
	348	When varying the IoU threshold for positive predictions (Figure 8), the F1 score
	349	decreases as the threshold increases. With an IoU threshold of 0.3, the F1 score is down
	350	to less than 0.45 for the best performing method on the Semmacape dataset. A higher
		IoU threshold means that the proposed bounding boxes must be more similar to the
	360				

351

ground truth boxes in order to be counted as a positive prediction. For the PaDiM 352 method, the rate at which the performance decreases as the IoU threshold increases is 353 greater than our method. This is because large objects can sometimes be counted as 354 positive even with failed predictions when the anomaly threshold is low and a large 355 portion of the image is proposed as a region of interest. This region will then have an 356 IoU greater than the IoU threshold with the ground-truth bounding box. We can see 357 that the PaDiM method has a larger confidence interval on the F1 score because of the 358 random dimension selection which plays a role in the performance of the model and is 359 effectively sampled differently at each run.
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Data Availability Statement:

The Semmacape and Kélonia datasets used in the present research

Although not yet on par with supervised methods, this is a first step on enabling weakly