
HAL Id: hal-03523474
https://hal.science/hal-03523474v1

Submitted on 12 Jan 2022 (v1), last revised 18 Jan 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Multifractal Analysis and Machine Learning Based
Intrusion Detection System with an Application in a

UAS/RADAR System
Ruohao Zhang, Jean-Philippe Condomines, Emmanuel Lochin

To cite this version:
Ruohao Zhang, Jean-Philippe Condomines, Emmanuel Lochin. A Multifractal Analysis and Machine
Learning Based Intrusion Detection System with an Application in a UAS/RADAR System. Drones,
2022, �10.3390/drones6010021�. �hal-03523474v1�

https://hal.science/hal-03523474v1
https://hal.archives-ouvertes.fr


����������
�������

Citation: Ruohao, Z.; Condomines,

J.-P.; Lochin, E. A Multifractal

Analysis and Machine Learning

Based Intrusion Detection System

with an Application in a

UAS/RADAR System. Drones 2022, 6,

21. https://doi.org/10.3390/drones

6010021

Academic Editor: Vishal Sharma

Received: 10 December 2021

Accepted: 6 January 2022

Published: 12 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

A Multifractal Analysis and Machine Learning Based
Intrusion Detection System with an Application in a
UAS/RADAR System
Ruohao Zhang * , Jean-Philippe Condomines and Emmanuel Lochin

ENAC, 7, Avenue Edouard Belin, CEDEX 4, 31055 Toulouse, France; jean-philippe.condomines@enac.fr (J.-P.C.);
emmanuel.lochin@enac.fr (E.L.)
* Correspondence: ruohao.zhang@enac.fr

Abstract: The rapid development of Internet of Things (IoT) technology, together with mobile
network technology, has created a never-before-seen world of interconnection, evoking research on
how to make it vaster, faster, and safer. To support the ongoing fight against the malicious misuse
of networks, in this paper we propose a novel algorithm called AMDES (unmanned aerial system
multifractal analysis intrusion detection system) for spoofing attack detection. This novel algorithm
is based on both wavelet leader multifractal analysis (WLM) and machine learning (ML) principles.
In earlier research on unmanned aerial systems (UAS), intrusion detection systems (IDS) based on
multifractal (MF) spectral analysis have been used to provide accurate MF spectrum estimations of
network traffic. Such an estimation is then used to detect and characterize flooding anomalies that
can be observed in an unmanned aerial vehicle (UAV) network. However, the previous contributions
have lacked the consideration of other types of network intrusions commonly observed in UAS
networks, such as the man in the middle attack (MITM). In this work, this promising methodology
has been accommodated to detect a spoofing attack within a UAS. This methodology highlights a
robust approach in terms of false positive performance in detecting intrusions in a UAS location
reporting system.

Keywords: network intrusion detection system; wavelet leader multifractal analysis; spoofing;
machine learning; long-short term memory

1. Introduction

The "information age" has provided infinite possibilities of interconnecting various
devices. Nowadays, networks have extended to every corner of our lives, thanks to their
accessibility and versatility. Network technologies that used to be mission-specific and
platform-restricted are now becoming more open and free of charge for general, day-to-day
applications. However, the rapid growth of networks also creates bubbles, especially from
the Internet of Everything (IoE) perspective. By adopting off-the-shelf components and
off-the-git software, the development of IoE has greatly accelerated, with network security
continuing to be a critical factor. Securing a network is considered just as challenging as
constructing the network itself. Network attacks with similar characteristics can be targeted
to various networks of markedly different physical entities. Among the different kinds of
network attacks, the denial of service (DoS) flooding attacks and MITM/spoofing attacks
are both commonly found in network systems, such as UAS and RADAR systems. These
attacks have brought various challenges to the network developer and administrators.
Recently, studies on UAS IDS dedicated to flooding anomalies [1] have been conducted.
This type of attack severely disrupts the normal operation of a network by injecting an
enormous amount of traffic into the network, paralyzing the entire system. While it has
been demonstrated that an accurate model-based IDS dedicated to DoS attacks can perform
adequately, such attacks are detectable by MF analysis [2,3] with better performance.
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Spoofing is another more elaborate form of attack that targets specific data packets within
specific system communications. This malicious intrusion aims to disrupt the normal
operation of a system by altering crucial information transmitted between subsystems. In a
complex system such as a UAS, once the network security is compromised, the condition
in which to generate either type of attack is reached.

Additionally, in recent years, the number and diversity of applications involving UAS
have grown rapidly. Swarms of UAVs are gaining popularity in commercial applications,
such as drone light shows. Despite their magnificent and striking appearance, the related
security issues are concerning. In critical situations where a cyber-attack is introduced into
a wireless drone network, the physical UAS can be threatened, which can cause the whole
swarm to crash. This concern has led to increased interest from the network community to
design anomaly detection systems (ADS) or IDS for this specific situation. Furthermore,
operations within an agglomeration, fully autonomous operations, and out-of-sight UAV
operations are currently subject to strict regulations such as [4] for the European Union (EU)
and [5] in the United States. In addition, there is the General Data Protection Regulation
(GDPR) in the EU [6]. Further regulations exist for UAV categorization, certification,
and integration into civil airspaces, such as the road maps in the EU [7] and the relevant
regulations reviewed in [8]. We can conclude that there is a clear need for a reliable
communication network for UAS with robust measures implemented to counter network
intrusions and better protect the physical system of the UAS and the confidentiality of
the data being transmitted through the UAANET. Thus, it is imperative to ensure the
safe and healthy development of the future UAS, in compliance with the current and
prospective regulations.

Motivated by the practical problems encountered with UAS network security, we
aimed to further develop the potential of the IDS methodology that we proposed in [1],
a methodology that takes advantage of the randomly varying nature of network statistics
to detect network intrusions, by accomplishing it with a ML classification algorithm. In
this article, we propose using the improved methodology to detect spoofing attacks for
UAS location reporting systems. Guided by both WLM and ML principles, this new algo-
rithm theoretically has a robust approach in terms of false positives in order to determine
intrusions in a location reporting system.

As a preliminary result of this paper, the newly designed algorithm has been success-
fully applied to some relevant practical problems, such as a low intensity MITM attack
in RADAR traces. Results are provided to illustrate the performance and potential of
this algorithm.

The rest of the paper is structured as follows. The presentation in Section II of the
methodology explains the general framework of the proposed IDS system. In addition,
the theoretical background involved is clarified. Section III examines the application and
simulation of the proposed methodology, detailing the specific simulation environment,
data treatment and dataset generation from realistic RADAR traces obtained from a real
Air Traffic Management (ATM) RADAR network system. In Section IV, we present the
results and discuss the performance of this methodology based on the results. In Section V,
we present a state-of-the-art summary of current research prior to the Conclusion, to allow
the reader to better evaluate our proposal against existing works; and finally, in Section VI,
we conclude and present proposals for the future development of the project.

2. The Proposed Intrusion Detection Methodology
2.1. IDS Framework

To take into account a modern type of intrusion which is particularly covert, such as
an MITM attack within a location report and control packets, the research efforts have been
shifted from network statistics to the payloads of network packets (e.g., the geo-position
packets). The IDS methodology is based on a two-step process (as shown in Figure 1).
In general, the IDS framework works starting by collecting information from the network
by means of network sensors that are running capturing devices (either distributed or
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centralized sensors depending on the topology of the network). The collected data are then
properly treated within the pre-treatment step to better expose the features of interest. This
stage of processing is unique to each problem. In the demonstration shown in Section 3,
the particular pre-treatment step was achieved by a moving sample window and an
algorithm used to calculate the moving Euclidean distance of each aircraft. Then the first
stage of IDS (step 1) is dedicated to traffic characterization. Its objective is to obtain a
specific signature of the signal we seek to analyze. The next stage (step 2) is the automatic
classification of the signatures via a neural network model, the objective being to provide
a binary trigger to either alert the administrator or start countering mechanisms, such as
an IPS.

Figure 1. General framework of the proposed IDS system.

2.2. Wavelet Leader Multifractal Analysis

In our previous research, the WLM analysis for a UAV network was introduced [1].
Here we demonstrate the advantageous capability of the tool at capturing different density
levels of singularities of the signal at different time scales and statistical moments of analysis.
We show that this method can be efficient against flooding attacks within the UAS wireless
network. Network signals of the same system, during different times of day and time
scales, should share similar MF characteristics; for example, when zooming in and out of
different time scales, in a time series, the distribution of local Höder exponent h should
exhibit similar patterns.

MF analysis is essentially a mathematical term used for measuring or estimating the
function of MF spectrum D(h) of a certain time series. Instead of trying to describe the
process by one constant scaling exponent (Fractal dimension D), the intention of the MF
analysis is to provide a way to describe the distribution of the local Höder exponents.

For a random process f (t), at each point ti, its local Höder exponent can be given as
h f (ti). Then its iso-Höder set with respect to different values of h can be expressed as:

I f (h) = {ti|h f (ti) = h}. (1)

Thus, the MF spectrum of such process can be defined as the Hausdorff (or fractal)
dimension of the iso-Höder set:

D f (h) = dimH I f (h). (2)

The direct numerical determination by computing the MF spectrum is impractical
because it requires the calculation of the local Höder exponent at each point. Hence, the MF
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formalism is introduced, and describes the MF spectrum by the Hurst dimension H(q)
when analyzing the signal at different scales q. The MF spectrum D(h) is related to the
Hurst dimension H(q) through a Legendre transformation, as described in [9]:

D f (h) = min
q 6=0

(d + qh− H(q)), (3)

where d is the dimension of the signal.
The wavelet leader (WL) coefficient is one of many multi-resolution quantities that can

be used to estimate the MF spectrum D f (h). This is achieved thanks to the multi-resolution
properties of the structure function ζL(q) of the WL coefficient. This allows the accurate
approximation of D f (h) by replacing H(q) with ζL(q). The MF spectrum estimated by the
WL structure function provides a tight upper bound of the actual MF spectrum:

D f (h) ≤ DL(h) = min
q 6=0

(d + qh− ζL(q)). (4)

For simplicity, throughout the rest of the paper, the estimated MF spectrum DL(h) is
denoted as D(h) as the MF spectrum signature of the signal.

WLM analysis is frequently used to quantify the variability of any time series we
wish to characterize: we focus here on the geo-position information of aerial vehicles.
This method was first introduced by Dr. Herwig Wendt to analyze dynamical turbulence
data (see [3,9–12] for details), and has the advantage of capturing the complexity of traffic
for different time scales and different moments of analysis. This analysis then returns a
numerical signature used to find the difference between legitimate traffic and traffic that
contains an attack. Comparing this to the more traditional discrete wavelet method, this
method not only shares the same advantageous performance boost, because they both rely
on orthogonal wavelet decomposition and benefit from fast decomposition algorithms, but
it also correctly estimates the MF spectrum at negative moments.

However, it is noted that when defining a fractal or self-similar system, it is neces-
sary to verify the existence of the most significant scale which dominates the random
process. Instead, for other types of random systems which only exhibit fractal behaviors
in some individual ranges, the multifractal spectrum is a powerful tool for analyzing and
characterizing the processes.

In this case, it is important to verify the similarity and patterns that emerge from
the collected test samples of normal and abnormal data, as shown in Figure 5. It is quite
apparent that even though it is not strictly proven that the moving traces acquired in this
chapter are multifractal, the MF signature is still capable of distinguishing the differences.

The WLM (currently revised as the wavelet p-leader and bootstrap based multifractal
analysis (PLBMF)) MATLAB toolbox, designed by Wendt et al., provides a simple and
straightforward solution for estimating the MF spectrum by calculating the scaling function
with the wavelet leader coefficient at given moments and then estimating the MF spectrum.
It returns multiple attributes, which show different aspects of the multifractality of the ana-
lyzed signal, such as the set of structure functions S, the scaling exponent ζL(q), the scope
of local Höder exponents, and the estimated MF spectrum DL(h).

2.3. Machine Learning Signature Classification

The next step after signature acquisition is to compare the signatures of the normal
traffic to that of the traffic containing malicious intrusion, and then to observe the patterns
that emerge from the different intensities of attack.

When considering the applicable methods, we first investigated the possibility of
applying analytical methods, such as the curve matching algorithm proposed in [13], which
is similar to our previous approach [1]. However, this was found to be inefficient. Such a
method can be effectively applied to detecting a DoS attack due to the fact that this attack
can significantly deviate the signature of the signal from that of the normal ones, thereby
making it apparent in the similarity score. In addition, in the literature [14–19], we found
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that machine learning classification outperforms the analytical method. More sophisticated
neural networks have also been proposed to directly address the IDS problem as a whole,
such as the one proposed in [20].

For the purpose of this research—to demonstrate the possibility of achieving an
automatic alert when an intrusion is detected within the system—we first considered
supervised learning, such that a binary trigger can be obtained from the classification. We
selected the long short term memory (LSTM) network as the classification method, as it
is simple and relatively easy to implement with good results for time series classification.
Nevertheless, it is also possible to apply other classification methods, such as the support
vector machine (SVM) or the convolution neural network (CNN) and treat the signatures
as 2D images.

LSTM is a modified recurrent neural network (RNN), frequently used for time series,
voice, and text classification. In comparison to the more conventional feed-forward neural
network structures, such as CNN, RNN allows the modification of its internal states based
on the output of the previous state, thereby forming a feedback structure. Classic RNN
structures suffer from a gradient vanishing problem. To solve this, recent research has
widely suggested using LSTM cells, as they can retain memory for an arbitrary duration
and potentially solve this problem.

As shown in Figure 2, a typical LSTM neural unit consists of a cell, an input gate,
an output gate, and a forget gate. This structure allows the network to preserve information
from the previous state (past) with a weight. The cell state (c) is constantly updated by
the gates according to the input state (X) and the hidden state (h). First, the forget gate (F)
decides to what extent the information in the cell state will be preserved. Next, the input
gate (I) decides which individual values in the cell state are to be updated, along with the
levels of modification. Finally, the output gate (O) makes a filtered copy of the cell state to
pass to the next state.

Figure 2. A simplified LSTM unit.

The particular LSTM network we made has a bidirectional LSTM (BiLSTM) network
structure, typically used for sequence and time series classification. A BiLSTM basically
duplicates and stacks an additional LSTM layer alongside the original LSTM layer and
makes it run in the opposite direction (backward), which allows the network to preserve
information from the next state, as shown in Figure 3. This method of implementation
increases the network’s ability to understand the context of the signal. A BiLSTM will
generally outperform a regular unidirectional LSTM of similar complexity in tasks such as
classification and forecasting, as illustrated in [21–24]. Our proposed model consists of a
1D sequence input layer, a BiLSTM layer of 500 hidden units, a fully connected layer, and a
softmax layer.



Drones 2022, 6, 21 6 of 15

Figure 3. Typical architecture of a Bi-LSTM.

3. Application to Experimental Data
3.1. UAS Mobility Simulation

To demonstrate the feasibility of such a methodology, in the absence of a physically
operating UAS, we have designed a test bench based on pre-recorded RADAR network
recordings. Instead of applying random walk mobility models that have been employed
in other research, we considered the mission profiles and mobility patterns of modern
aircraft to be more suitable representations of a complex UAS. Thus, we considered that
the RADAR recordings are viable representations of what a UAS ground control station
would observe in a UAS network for the following reasons:

• Payload Each UAV would report its geographical position at a certain time period
either for displaying or back-feeding purposes to allow its back-end control and
path planning.

• Mobility The individual UAVs can join and leave the network at random times.
The RADAR traces capture this behavior approximately by observing aircraft entering
and exiting the scope of the RADAR.

• Infrastructure A UAS, like any other modern complex system, relies heavily on mod-
ern infrastructures, such as ports, stations, and check points, which closely resemble
what is available in an existing civil aviation system.

• Mobile patterns The movement patterns of planes are similar to those of a drone
system in an operational condition.

3.2. Pre-Treatment Euclidean Distance

Before the actual test, the individual recordings were processed to calculate the Eu-
clidean distance: The output array consists of the moving distance that each UAV has
traveled between each consecutive recording. Within the original recordings, each UAV
position is defined using polar coordinates, such as:

[θi,t, ρi,t] where(
i ∈ R+ , “The aircraft’ identification number TN”

t ∈ R+ , “Time of Day index ToD”.

)
(5)
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We then define a function Feucd : R→ R+ is detailed thereafter:

Feucd([θi,t, ρi,t], [θi,t+tINT , ρi,t+tINT ]) =

√
ρ2

i,t + ρ2
i,t+tINT

− 2ρi,tρi,t+tINT cos(θi,t − θi,t+tINT )

(6)

where tINT ∈ R+ is the reporting interval of each individual UAV.
The pseudo-code of Euclidean distance array calculation from UAV positions is de-

tailed in Algorithm 1.

Algorithm 1 Euclidean distance from UAV position.

Require: Recording loaded as a table TBL
Output: New table containing an array of Euclidean distance

1: TNuniq = Find unique values in field TBL.TN
2: Create an empty table TBLnew
3: for ii = 1, . . . , Length of TNuniq do
4: rows of TBL to TBLtemp

where TBL.TN = LBuniq(ii)
5: for i3 = 1, . . . , Length of TBLtemp—1 do
6: Create an empty table TBLeu
7: TBLeu.Eucl = run Feucd at index i3
8: TBLeu.Tod = TBLtemp.Tod(i3)
9: end for

10: Parsing table TBLeu with tINT 6 10s
11: Append TBLnew with TBLeu
12: end for
13: Sort TBLnew with property TBLnew.Tod

As shown in Algorithm 1, each recording file was loaded as a table (TBL) with fields,
such as position in θ and ρ, packet destination (DST), flight number (TN), and time of day
(ToD). The purpose of Algorithm 1 is to obtain a new table to record the calculated travel
distance of each UAV. We achieved this by calculating the Euclidean distance of each UAV
between two consecutive records and saving this information in a field Eucl of a new table
TBLnew. The ToD of the latter record was used as the time stamp.

We iterated Feucd according to Algorithm 1 for each recording file, obtaining the ∆t—the
list of random aircrafts’ travel distances recorded at time t. This process better compresses
the data and better exposes the abnormal moving patterns induced by the intruders.

3.3. Test Environment

Instead of focusing on variations in the network traffic, in this study, we only partially
took into account the payload of the network, such as the coordinates and time. We
excluded the physical effects of the network, such as propagation delay, network congestion,
and packet loss, as considered in [1].

In this test, we considered the link between the drone and the GCS to be compromised
and the malicious user to be initiating an MITM attack by intercepting packets from UAVs,
changing the coordinates, and transmitting the forged packets to their original destination.
Such an attack is particularly interesting because it is silent and trivial. Network traffic is
not significantly modified, and the normal operation for the network itself remains mostly
unaltered. We needed to exploit the internal pattern within the payload of each packet
instead of the statistics of the network. The received packets on the receiver side were all
stored and processed in a.csv file, with each row containing one polar coordinate record of
a UAV’s position, time of scan, flight number, and frame number.
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In this test, we considered tINT ∈ R+ to be a random time variable close to the physical
period of the RADAR which indicates the time interval of the radar scanning through the
same aircraft twice.

Note that, in this particular case, only tINT 6 10 s was taken into account as one
trajectory: It is possible for the network to lose packets or for the aircraft to leave and re-join
the network at different times of day and at different points of exit and re-entry. There are
also cases where after an aircraft has left the network for a long period of time; the flight
number TN is reassigned to a new aircraft entering the scope. Hence, it is important to
filter the RADAR recordings to avoid taking into account the erroneous traces of aircraft
flashing from one point to another in the RADAR’s scope due to inaccurate recordings. The
10 s time window was selected to eliminate records that share the same TN but are actually
missing more than two frames.

3.4. Datasets

The simulation environment was constructed based on the RADAR records. In total,
31 RADAR records were processed, which corresponded to one month of data. Each
original recording contained around 800,000 samples. Each original recording was then
used to generate 36 versions of traces with different levels of attack. The simulated attacks
were conducted by randomly selecting a number of aircraft with the specific TN, then
altering the recorded trajectories by a random amount between 0 and 10%. Each original
or modified recording was then scanned by a moving window with a length of 100,000
samples, and the moving step was 10,000 samples. The process of dataset generation is
illustrated in Figure 4.

The windowed samples, which contained TNs belonging to the selected attack list,
were set to label 1, indicating that they were attacked records, and those that did not contain
such TNs were labeled as 0, accordingly, indicating that they no attack took place.

Figure 4. The process of dataset generation.

To avoid significantly out-weighting the normal set with the attacked set, a number
of traces with a miniature attack (1 A/C, 1–10%) were also generated for the training set
and considered as normal records. Due to the limited number of recordings available,
the number of samples for a normal recording was around 25,000. To finally balance the
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dataset, the normal samples were padded by duplicating the normal dataset by a factor
of 3, thereby creating a normal set of around 75,000 samples. The exact distribution of the
datasets is given in Table 1.

For verification purposes, the dataset generation process was replicated to generate a
performance verification set, excluding the consideration of balancing.

Table 1. Distribution of samples in the dataset.

Training Set Verification Set

Normal 76,263 25,420

Abnormal 88,195 88,196

4. Results
4.1. WLM Signatures

We show two sets of sample MF spectrum signatures D(h) obtained from the WLM
toolbox, as discussed in Section III. As shown in Figure 5, during our test, we found that the
signatures of the Euclidean distance records ∆t of attacked traffic deviated from the normal
ones. For the normal signal, the level of multifractality is relatively consistent, as shown by
the span of h, which mostly ranges between 0.6 and 1, as shown on the left-hand side of
Figure 5. The span of h is much wider, however, ranging between 0.3 and 1 in the sampled
abnormal signal, as shown on the right-hand side of Figure 5. The MF spectrum D(h)
also shows different trends, as the curves appear to be mirrored. Some twisting patterns
are also visible. Such twists are observed in the extreme cases where a high-intensity
attack with large modifications is present in the signal. This kind of attack will disrupt the
originally monotonic descending behavior of the Hurst dimension H(q), making it become
non-monotonic, thereby creating the twist in the estimated MF spectrum.

Figure 5. WLM D(h)signatures of: (left) normal traces, (right) abnormal traces.

The signatures, though containing visually distinguishable features, are extremely dif-
ficult to identify by applying the curve matching algorithm mentioned in [1,13], because it
is almost impossible to set a correct detection threshold without significantly sacrificing
the accuracy or the false positive rate, particularly in cases where the attack level is low
enough. In addition, the twisting behavior exhibited in the abnormal signatures is not
correctly taken into account by the curve matching algorithm, hence our motivation for
applying more advanced classification methods, such as the LSTM.
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4.2. Machine Learning Classification

To apply a machine learning classifier to our problem, we first had to train with
the training dataset. Since the training set was relatively balanced, it did not provide a
significantly biased classification result.

The performance of the methodology was firstly measured by the following evalua-
tion matrices:

• True positive (TP): attacked record that returned 1 from our IDS;
• True Negative (TN): non-attacked record that returned 0 from our IDS;
• False positive (FP): non-attacked record that returned 1 from our IDS;
• False Negative (FN): attacked record that returned 0 from our IDS;

The matrices are typically compiled as one matrix, called a confusion matrix. From
this, the detection accuracy (ACC) is defined:

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

The verification performance is shown in Figure 6.

Figure 6. Confusion matrix of the performance verification with LSTM.

The IDS performance was also measured against attacks with different intensities
(dictated by the number of A/C attacked). This is represented by an accuracy vs. inaccuracy
matrix in percentages, as shown in Figure 7.

As for Figure 6, the main confusion matrix is plotted in red vs. green boxes, where the
number of samples and overall probability of samples falling into particular categories are
shown. The additional performance indexes are provided in the corresponding gray boxes.

• True positive rate (TPR), positive predictive value (PPV);
• False negative rate (FNR, false discovery rate (FDR);
• True negative rate (TNR), negative predictive value (NPV);
• False positive rate (FPR), false omission rate (FOR);

The overall accuracy was around 90.0%, whereas the relative FP and FN rates were
7.9% and 8.3%, respectively. Due to the way in which the modification levels are generated,
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600 aircraft of different TN were presented on average. The attack intensity is mostly
dependent on the number of A/C attacked. It is apparent in Figure 7 that with a higher
intensity of attack, it was extremely easy to distinguish the malicious recordings from
the normal ones. In the scenarios where only a small number of A/C were spoofed,
the proposed methodology struggled to provide a valid classification. When there were
zero A/C attacked, as shown on the far left of Figure 7 (which means the input samples
contained no TN which appeared on the attack list), the method was able to return a good
accuracy regarding true negatives.

Figure 7. Verification with LSTM at different intensities.

Aside from the LSTM classification mentioned above, to better establish a performance
baseline and demonstrate the advantages of LSTM, the experiment was replicated with
another commonly used ML classification algorithm: SVM.

The IDS performance was also measured against attacks with different intensities
(dictated by the number of A/C attacked). This is represented by an accuracy vs. inaccuracy
matrix in percentages, as shown in Figure 8.

Figure 8. Confusion matrix of the performance verification with SVM.

As shown in Figures 8 and 9, the performance demonstrated here with SVM was
slightly worse compared to the ones obtained with LSTM, although it should be noted that
the performance matrices are dependent on the design and optimization of the ML schemes.
With proper design, the performances of the two classification tools can be improved. Thus,
the purpose of bringing SVM classification into the picture was to provide a better empirical
perspective into the possible performance with an IDS of a similar methodology.
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Figure 9. Verification with SVM at different intensities.

5. Related Work

The surge in the growth of network attached devices has led to an urgent need for
IDS and IPS advancements. In recent years, IDS has become a hot topic in the network
community. Due to the complex nature of networks and their related security concerns,
various research fields, including statistics, cybernetics, optimization, and machine learning,
are all working to find ways to thwart intrusions from inside various networks. Here
we provide a comprehensive state-of-the-art summary of the different research recently
published on these related topics.

In [25], Asharf et al. provides a thorough and recent review of the state-of-the-art of
IoT-related IDS. The authors provide a comprehensive introduction to the structures of
current IoT systems. The challenges and corresponding IDS research are presented.

In [26], a global overview of multiple research areas and application domains regard-
ing general anomaly detection is presented by Chandola et al. The authors provide a
well categorized review of different anomaly detection technologies and their fields of
application. We note that the anomaly detection methods in the field of biology vastly
differ from those in the field of telecommunications, although the underlying principles
are interlinked and the template the authors provide is thought provoking. Among the
fundamental methods, deep learning and neural networks dedicated to intrusion detec-
tion received considerable attention in recent years in terms of the various models and
performance evaluations.

In [27], Aldweesh et al. reviewed the recent advancements in deep learning-based IDS.
The authors provide a clear overview of a variety of deep learning-based IDS of differing
taxonomies. Their article is an excellent guide for popular deep learning algorithms for IDS.

In [14], Shi et al. propose an interesting approach for network traffic classification.
The authors employ the traditional wavelet coefficients-based multifractal energy spectrum
teamed with a neural network based on a multi-layer perceptron neural network. This is
structurally similar to our approach but with a different target. They were able to confirm
the accurate classification of three networking application classes (Http, Streaming, P2P).

In [28], the authors demonstrate a powerful intrusion detection and prevention system
(IDPS) based on distributed sensors and a software-defined network (SDN), called BroFlow.
The proposed BroFlow system was simulated in a virtual network and showed excellent
performance against DoS attacks. The proposed methodology is of great interest to us, as
we plan to adopt a similar structure in our future research to achieve an automatic IPS
based on SDR driven by our IDS. Besides this, rich literature can be found regarding IDS
designs based purely on machine learning principles. For instance, in [15], Gwon et al.
provide a clear implementation of an LSTM-based IDS design with feature embedding.
The model was tested against the UNSW-NB15 dataset. A performance comparison against
other methods is provided.

In [16], Kasongo et al. proposes using a deep LSTM (DLSTM) network-based classifier
to solve classic IDS problems proposed in public datasets, such as the NSL-KDD intrusion
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detection dataset. The advantageous performance of a DLSTM in comparison with several
other traditional neural network models is presented.

In [19], X. Zhou et al. propose a novel approach to solving the industrial big data
anomaly detection problem by applying a variational LSTM (VLSTM) framework, which
incorporates an LSTM based encoder–decoder structure with a variational reparameter-
ization module and an estimation module. This is particularly interesting because the
purpose of the compression network is to extract interesting features from a raw data
input, and the hidden variables are used to fulfill the estimation and classification purposes.
The VLSTM framework allows for the extraction of a variety of features, and thus allows
for the detection of various types of anomalies.

Some propose to use another recurrent neural network model, such as the Gated
Recurrent Unit (GRU), to solve IDS problems, as they are easier to train and do not require
memory units.

In [17,18], the authors demonstrate a novel IDS based on a GRU recurrent neural net-
work and present its superior performance over the more traditionally used LSTM network.

In [29], Amouri et al. propose using distributed network sensors and supervised
learning methods to construct an IDS within a Wireless Sensor Network (WSN) and a
mobile ad-hoc network (Mannet), which has improved accuracy. Within the literature,
contributions were also found regarding rule-based IDS methods, which assisted us with
envisioning the overall structure of our IDS design.

In [30], the authors provide an insightful overview of IDS design in general and also
demonstrate an advanced pattern matching technique and its application in the Snort IDS
framework. It is also worth noting that a number of articles were found to be inspiring for
the future improvement of our IDS design.

In [31], Zhang et al. present an interesting implementation of two deep learning
networks consisting of a teacher–student network structure, which shows promising per-
spectives for implementation in a mobile environment. The proposed network is relatively
lightweight, allowing it to be integrated into a low-power platform, such as a UAV, while
being able to perform accurate traffic image classification.

In [32], Shafique et al. provide a new insight into a new type of network intrusion,
called ranking attack, which mostly targets the IoT devices employing IPv6. The authors
provide an in-depth discussion on the attack, along with a method of IDS with good accu-
racy.

In [20], A. Abdelkefi. propose a complete approach for network traffic anomaly
detection and root-cause analysis called SENATUS. SENATUS also takes advantage of
the traffic statistics which require the minimum amount of knowledge of the packets.
The method was successfully applied to practical problems such as DoS/DDoS attacks
with good accuracy.

To the best of our knowledge, our proposed method is unique in solving an MITM
problem in a wireless network that exhibits mobile proprieties. Our contribution differenti-
ates itself from the methods proposed in [16,18–20,31] and others reviewed in [25–27]. Our
method eliminates the use of a deep neural network, which is advantageous in terms of
scalability, interpretability, and computational overheads.

6. Conclusions and Perspectives

In this paper, we proposed an innovative approach to achieve network spoofing attack
detection. We proposed this new methodology with an improvement over our previously
designed IDS: incorporating neural network classification. We designed a test bench and
demonstrated the preliminary performance results, showing the effectiveness of this new
design. As shown in Section IV, this new design permits us to achieve high detection
accuracy while keeping a low false positive rate. Compared to the literature in Section
V, it is noted that our proposed method targets a very specific type of intrusion, which is
commonly observed in mobile networks, such as the UAS network. Our method’s positive
overall performance enables us to further investigate it and its implementation possibilities.
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As a next step, we are looking to achieve increased performance by fine-tuning the
WLM toolbox for better feature extraction and by applying different neural network models
to lower the computational costs further and achieve lower latency. In addition, we plan
to apply training and working performance comparisons between it and other existing
IDS. Beyond that, we propose to optimize the WLM toolbox for the mobile communication
network environment. Finally, we plan to implement this system within a working UAS, to
further investigate research possibilities of embedded IDS in a drone swarm.
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