
HAL Id: hal-03523445
https://hal.science/hal-03523445

Submitted on 13 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A logic for planning under partial observability (AAAI
2000)

Andreas Herzig, Jérôme Lang, Dominique Longin, Thomas Polacsek

To cite this version:
Andreas Herzig, Jérôme Lang, Dominique Longin, Thomas Polacsek. A logic for planning under
partial observability (AAAI 2000). 17th National Conference on Artificial Intelligence (AAAI 2000),
Association for the Advancement of Artificial Intelligence, Jul 2000, Austin, Texas, United States.
pp.768-773. �hal-03523445�

https://hal.science/hal-03523445
https://hal.archives-ouvertes.fr

A logic for planning under partial observability

A. Herzig, J. Lang, D. Longin and T. Polacsek
IRIT-UPS, F-31062 Toulouse Cedex 04, France

{herzig, lang, longin, polacsek}@irit.fr
http://www.irit.fr/∼Andreas.Herzig

Abstract

We propose an epistemic dynamic logic EDL able to repre-
sent the interactions between action and knowledge that are
fundamental to planning under partial observability. EDL en-
ables us to represent incomplete knowledge, nondeterministic
actions, observations, sensing actions and conditional plans;
it also enables a logical expression of several frequently made
assumptions about the nature of the domain, such as deter-
minism, full observability, unobservability, or pure sensing.
Plan verification corresponds to checking the validity of a
given EDL formula. The allowed plans are conditional, and a
key point of our framework is that a plan is meaningful if and
only if the branching conditions bear on the knowledge of the
agent only, and not on the real world (to which that agent may
not have access); this leads us to consider “plans that reason”
which may contain branching conditions referring to implicit
knowledge to be evaluated at execution time.

Introduction
A large amount of work has been done recently about plan-
ning under incomplete information. By incomplete infor-
mation, we mean (as usual) that the initial state of the world
is not fully known and/or the actions are not deterministic.
The gap between planning under complete and incomplete
information relies on the role of knowledge in the latter and
especially the interactions between knowledge and action.
These interactions work in both ways:

• the choice of an action to perform is guided by the knowl-
edge the agent has on the actual state of the world, and
especially by the observations made after performing pre-
vious actions. As soon as performance of an action al-
lows gathering knowledge by a susbsequent observation,
the choice of the following action will be generally con-
ditioned by this observation.

• performing an action may bring some more knowledge
(and help the agent acting in a better way, as explained just
above) by means of consecutive observations; this has led
many researchers to focus and formalize sensing actions,
which do not change the state of the world but only the
agent’s beliefs.

On the other hand, the planning community has recently
paid a lot of attention to the role of logic in representing and
solving planning problems. This includes both (1) the SAT-
PLAN framework (Kautz & Selman 1996) and its very recent
extensions to planning under incomplete knowledge (Rinta-
nen 1999) and (2) the action description languages and their
recent application to planning under incomplete knowledge
(Lobo, Mendez, & Taylor 1997) (Baral, Kreinovich, & Trejo
1999). The former (1) led to powerful resolution algorithms
which benefit from the theoretical and experimental results
on satisfiability. The latter (2) gave birth to very expres-
sive languages that enable reasoning with nondeterminism,
minimal change, ramifications, concurrent actions, and more
recently interactions between action and knowledge. But so
far these approaches did not lead yet to the practical devel-
opment of planning algorithms based on automated proof
procedures.

The question now consists of identifying the “simplest”
logic containing the notions of incomplete knowledge, non-
deterministic actions, observations, conditional plan and
sensing actions. Two of these words evoque two well-known
families of logics:

• dynamic logic aims at reasoning with complex combina-
tions of actions (including sequential and conditional ac-
tions). Decidability and complexity results, as well as au-
tomated proof procedures for the standard propositional
dynamic logic and its variants are a familiar part of the
logical landscape. Still, surprisingly, dynamic logic has
not been much considered for planning.

• epistemic logics aim at reasoning with explicit knowledge
of an agent. Some simple epistemic logics are computa-
tionally not harder than classical logic.

What is missing to propositional dynamic logic (PDL) so
as to render it suitable for planning under incomplete infor-
mation is (1) the possibility for actions to have epistemic
effects and (2) the possibility to branch on epistemic con-
ditions. This second point needs some comments: indeed,
PDL enables expressing some kinds of conditional actions,
but these conditional actions are not suitable for expressing
conditional plans, because while a program can be supposed
to know at any instant the value of any variable, this is gen-
erally not the case for an agent acting in an incomplete envi-
ronment, for whom some parts of the world are hidden (see

e.g. (Levesque 1996)).

Example 1 There are d doors. Behind exactly t of the
doors, there is a tiger (t < d). Behind one (and only one) of
the doors, there is a princess and no tiger. The agent has no
prior knowledge about what is behind each of the doors (he
only knows the values of d and t). The available actions are
listening to what happens behind a given door, which results
in hearing the tiger roaring if and only if there is one be-
hind the door, and opening a given door, which may result in
marrying the princess or being eaten by the tiger or nothing,
depending on what is behind the door. The goal of the agent
is to stay alive and marry the princess.

The propositional variables p(i) and t(i) mean respec-
tively that there is a princess (a tiger) behind door i. Con-
sider the following plan
π1: if p(1) then open(1)

else if p(2) then open(2) (...)

Clearly, π1 is not executable by the agent, because in general
he does not know whether p(i) holds or not, and therefore
he is unable to branch on such a condition. The solution is to
allow for epistemic conditions only. Suppose therefore that
our language contains a modal operator K. A plan such as
π2: if Kp(1) then open(1)

else if Kp(2) then open(2) else (...)

can then be formulated. However, except when d = 1, it
misses the goals, because the agent ignores whether p(i) is
true or not, therefore he will not open any door.

Thus, agents branch on epistemic conditions only, be-
cause they are able to decide whether they know a given
formula or not, whereas they are not always able to decide
whether this formula is true in the actual world.

This brings us to the following specificity of our logic: it
enables the expression of plans that explicitely involve a rea-
soning task. For Example 1, the shortest succeeding plan (in
terms of the average number of actions, given uniform prob-
abilities for princess and tigers locations) can be expressed
informally by: repeat (listen to a door and open if there is no
tiger) until either the princess is delivered or the two tigers
have been found; in this second case, open all remaining
doors until the princess is discovered. For d = 4 and t = 2
this gives
π3:listen(1);

if t(1)
then listen(2);

if t(2)
then open(3); if ¬p(3) then open(4) endif
else open(2);

if ¬p(2)
then listen(3); if t(3) then open(4)

else open(3) endif
else open(1); if ¬p(1) then listen(2); (...)

Such a plan succeeds, but it explicits all branches and it is
thus space-consuming: when d and t vary, the size of a valid
plan increases exponentially1. Now, the branching condi-

1This is because the evaluation of the condition “the d tigers
have been found” after having listened to k doors needs counting
the tigers heard so far, which needs explicitly listing the (

k
t) corre-

sponding cases.

tions of such plans are only conjunctions of elementary ob-
servations (those elementary observations are t(i) or ¬t(i) –
one of these is observed after listen(i) is performed), which
means that, at any step of the execution, (i) the agent decides
in unit time what is the next action to follow and (ii) he is
not asked to reason (only to obey, to follow a fully explicited
plan).

Let us now consider a plan π4 where epistemic
branching conditions are allowed. We use the
following abbreviations: KnowWherePrincess =
Kp(1) ∨ Kp(2) ∨ . . . ∨ Kp(d) and KnowWhereT igers =
(Kt(1) ∨K¬t(1)) ∧ . . . ∧ (Kt(d) ∨K¬t(d)) and we define the
procedures:
OpenIfKnowWherePrincess:
if Kp(1) then open(1) else if Kp(2) then
open(2)...

OpenIfKnowWhereT igers:
if K¬t(1) then open(1);
if ¬Kmarried ∧ K¬t(2) then open(2); ...

π4:listen(1); listen(2);
if ¬KnowWherePrincess ∧ ¬KnowWhereT igers
then listen(3);
if KnowWherePrincess
then OpenIfKnowWherePrincess
else OpenIfKnowWhereT igers

It can be checked that π4 reaches the goals. Interestingly,
if d and t vary, there is a plan in the style of π4 (using
epistemic branching conditions) whose size is linear in d
while any valid plan in the style of π3 (with no epistemic
branching conditions) has an exponential size. It is impor-
tant to notice that this gain in size is counterbalanced by a
loss of execution time: indeed, although π1-like plans have
a size in O(2d), their execution time (assuming that actions
are performed in unit time) takes only O(d). Contrastedly,
for π4-like plans whose size is in O(d), their execution re-
quires a linear number of calls to a NP-complete oracle (to
compute “KnowWherePrincess” and “KnowWhereTiger”).
Therefore, a plan with epistemic branching conditions is all
the more interesting as the ratio between cost of space and
cost of expensive on-line execution time is high.

An epistemic dynamic logic
Language of EDL
The language of epistemic dynamic logic EDL is con-
structed from a set of atomic formulas VAR, a set of atomic
actions ACT0, the classical logic operators →,∧,∨,¬, the
epistemic operator K, the dynamic operator [.], and the ac-
tion operators λ and ;. The formula [α]q is read “after the
execution of the action α, q is true”. Note that we allow
for nested epistemic and dynamic operators. λ is the ac-
tion “do nothing”. The complex action α;β is read “exe-
cute α and then β”. 〈α〉A is an abbreviation of ¬([α]¬A),
and [if A then α else β]C is an abbreviation of (A→
[α]C) ∧ (¬A→ [β]C).

An EDL formula is

• objective iff it does not contain any modality;

• static iff it does not contain any dynamic modality;

• an epistemic atom iff it is of the form KA, where A is any
EDL formula;

• an epistemic formula iff it is formed from epistemic atoms
and the connectives of classical logic.

For instance, a∨ (b∧ c) is objective; K(a∨¬K(a→ [α]b))
is an epistemic atom; K(a∨¬K(a→ [α]b))∨¬K[β]c is an
epistemic formula; a∨¬K(b∧Kc) is static but not epistemic;
Ka ∨ ¬K(b ∧Kc) is both static and epistemic.

Semantics of EDL
The semantics of EDL is in terms of possible worlds (states).
We interpret the knowledge of the agent at a possible world
w by a set of worlds associated to w. Actions are interpreted
as transition relations on worlds.

We define a model for EDL as a quadruple M =
〈W,RK, {Rα : α ∈ ACT0}, V 〉 where W is a set of pos-
sible worlds, RK ⊆ W ×W and every Rα ⊆ W ×W is
an accessibility relation2, and V associates to each world an
interpretation. We require

• RK to be an equivalence relation on W ,

• Rλ{w} = {w},
• Rα;β = Rα ◦Rβ ,

• Rα ◦RK ⊆ RK ◦Rα.

The truth conditions are defined as usual, in particular:

• |=M,w KA if |=M,v A for every state v ∈ RK(w)

• |=M,w [α]A if |=M,w′ A for every state w′ ∈ Rα(w)

Logical consequence (with global axioms) is noted |=.

Axiomatization of EDL
Our axiomatisation of EDL contains that of classical logic
together with modal logics S5 for knowledge and K for ac-
tions.

N(K) A
KA

N([α]) A
[α]A

K(K) (KA ∧K(A→ C))→ KC
T(K) KA→ A

5(K) ¬KA→ K¬KA
Def(λ) [λ]A ↔ A

Def(α;β) [α;β]A ↔ [α][β]A

K([α]) ([α]A ∧ [α](A→ C))→ [α]C

Acq([α], K) K[α]C → K[α]KC

All the axioms are standard, except Acq([α], K) which
means that if the agent knows what will be true after an
action then he does not loose this knowledge after the ac-
tion. Note that Acq([α], K) could be replaced by K[α]C →
[α]KC to which it is equivalent given the other axioms.

2We shall sometimes identifyRK andRα with mappingsRK :

W −→ 2W and Rα : W −→ 2W .

Action and information
Our language is sufficiently expressive to distinguish explic-
itly between the ontic and the epistemic effects of actions,
where ontic (respectively epistemic) effects are meant to be
effects on the physical world only (resp. on the epistemic
state of the agent only). Two particular classes of actions
are uninformative actions whose effects are purely ontic and
purely informative actions whose effects are purely epis-
temic. Intuitively, uninformative actions cannot bring any
new knowledge, which means that everything that is known
after the action is performed could be predicted before it
was performed. The other way round, purely informative ac-
tions do not change the world. In our example, the actions
listen(i) are purely informative, while the actions open(i)
are not.

A key hypothesis of our logic is that any action α can be
decomposed into two actions, namely α = αe ◦ αo, where
αe is purely informative and αo uninformative. open(i) can
be written as open(i)e ◦ open(i)o, where its uninformative
component open(i)o has the effect of making the agent mar-
ried, eaten, or none of both, without him being aware, and its
informative component open(i)e has the effect to make the
agent learn whether he gets married, eaten or none of both.

Given that α = αe ◦ αo, what is the relation be-
tween αo and αe? Ideally, all changes brought about
by αo are perceived through αe. We call actions of this
kind (i.e., actions informing the agent about all changes
they cause) fully informant. Formally, α is fully in-
formant iff for any objective formula A, we have that

A→ [α](¬A→ K¬A)
holds. Purely informative actions α are fully informant be-
cause the ontic part is empty, i.e. αo = λ. In our example
open(i) is fully informant because it makes the agent aware
of the change of truth value of eaten or married when it
occurs.

Noticeably, these properties (purely informative, uninfor-
mative, fully informant) are about individual actions. Never-
theless, global properties of environments (domain descrip-
tions) can be captured from local properties of actions. An
environment Σ consists of a nonlogical theory T describing
the general laws of the world and what is known about the
effects of actions, together with the description of what is
known about the initial state ΣInit. An environment Σ is
fully observable iff (i) each α ∈ ACT0 is fully informant,
and (ii) ΣInit is epistemically complete3. Σ is unobservable
iff each α ∈ ACT0 is uninformative. Σ is purely informative
iff each α ∈ ACT0 is purely informative. Σ is deterministic
iff each α ∈ ACT0 is deterministic.

Uninformative actions
We characterize uninformative actions by two axioms.
DetEpi([α],K) 〈α〉KA→ [α]KA
Con([α],K) [α]KC → ([α]⊥ ∨K[α]C)

The first expresses that uninformative actions are epistemi-
cally deterministic, in the sense that if there is a way of exe-
cuting α such that A is known afterwards, then A should be

3i.e. if ΣInit |= KA ∨K¬A for all objective A

known after every possible execution of α. This is natural,
given that α does not bring any new knowledge (in partic-
ular about the way it has been executed). The second says
that the epistemic effects of α are known before hand. Se-
mantically, the axioms correspond to the conditions
• If w′, w′′ ∈ Rα(w) then RK(w′) = RK(w′′)

• If Rα(w) 6= ∅ and w1RK ◦Rαw2 then w1Rα ◦RKw2

It can be proved that these two axioms together are equiv-
alent to the more compact criterion of uninformativeness
¬K[α]A → [α]¬KA. It says that the agent cannot ob-
serve anything after α is performed: indeed, for any formula
A, if he cannot predict before α is performed that A will
hold after α, then he will not know A after α is performed.
Acq([α], K) together with Con([α],K) gives us the equiva-
lence [α]KC ≡ ([α]⊥ ∨K[α]C).

Purely informative actions
Purely informative actions do not change the world but only
the knowledge; they are characterized by the axiom

Pres([α]) A→ [α]A if A is an objective formula.

Semantically, this corresponds to the condition
• if w1Rαw2 then Vw1

= Vw2

It follows from Acq([α], K) and standard modal principles
that purely informative actions do not diminish the knowl-
edge of an agent.
Proposition 1 Let A be an objective formula and α a purely
informative action. Then

Pres([α], K) KA→ [α]KA
is provable from EDL.

If A is subjective then this does not necessarily hold, in
particular if A expresses ignorance. For example K¬KA→
[α]K¬KA cannot be accepted, given that K¬KA ↔ ¬KA
is valid in our logic of knowledge S5.

A solution to the Frame Problem
We must solve the Frame Problem in order to put to work
our logic. Basically, we could integrate any solution into
our framework, given that we have analysed the epistemic
effects of an action in terms of its ontic effects on possible
worlds. Scherl and Levesque e.g. used Reiter’s solution to
the Frame Problem, and applied regression as a reasoning
method (Scherl & Levesque 1993). We adopt the solution
in (Castilho, Gasquet, & Herzig 1999) based on dependence
relations, which can be taken over without modifications and
which we briefly recall here.

We associate to every atomic action α the set of atomic
formulas it influences. Formally, we suppose given a depen-
dency function DEP : ACT0 −→ VAR. p ∈ DEP (α)
means that α may change the truth value of the atom p. The
other way round, if p 6∈ DEP (α) then α does not change
the truth value of p. In other words, DEP represents frame
axioms in an economic way. This is expressed by the generic
frame axiom
PresDEP ([α]) if p 6∈DEP (α) then p→[α]p and¬p→[α]¬p

Semantically, the axiom corresponds to the condition

• For all w,w′ ∈ W and p ∈ VAR, if w′ ∈ Rα(w) and
p 6∈ DEP (α) then |=M,w p iff |=M,w′ p.

Given a dependence relation DEP , |=DEP is the corre-
sponding extension of theEDL consequence relation.

As a particular case, purely informative actions verify
DEP (α) = ∅. Thus, we have for instance the frame ax-
ioms t(1) → [listen(1)]t(1) and p(2) → [listen(1)]p(2).
Combining all these atomic frame axioms by principles of
classical logic, we obtain the following.

Proposition 2 Let A be objective, and let atm(A) be the set
of atoms of A. If atm(A) ∩DEP (α) = ∅ then:

• |=DEP A→ [α]A;
• |=DEP KA→ [α]KA.

Plan verification in EDL
The set of meaningful plans is the smallest set such that

• α is a meaningful plan for every α ∈ ACT0 ∪ {λ};
• if π and π′ are meaningful plans and A is an epistemic

formula then π;π′ and if A then π else π′ are mean-
ingful plans.

Intuitively, a meaningful plan is a plan whose branching con-
ditions are “epistemically interpretable”, which means that
the agent can decide whether the branching condition holds
or not (which would not necessarily be the case if the for-
mula were not epistemic, cf. example).

A plan verification problem V is defined by a 5-tuple
〈T,ΣInit, DEP,G, π〉 where

• T = 〈S,E,X〉 is an EDL theory composed of a set of
state axioms S expressing static laws of the domain, laws
about the effects of actions E, and executability laws X .
Static laws are static formulas; effect laws are formulas of
the form A→ [α]C with A objective and C an epistemic
formula; executability laws are formulas of the formA↔
〈α〉> with A objective.

• ΣInit is an epistemic atom;

• DEP is a dependency function;

• G is a static formula (the goal);

• π is an meaningful plan.

Given a plan verification problem V , π is said to be

• executable for V iff T |=DEP ΣInit → 〈π〉> holds.

• valid for V iff T |=DEP ΣInit → [π]G holds.

The validity problem in EDL is PSPACE-hard, and the
consequence problem is EXPTIME-hard. The reason is
that EDL extends modal logic K, where these problems are
PSPACE- and EXPTIME-complete, respectively. Never-
theless, the complexity of the much more specific plan veri-
fication problem in EDL is much lower:

Proposition 3 (complexity of plan verification)
PLAN VERIFICATION in EDL is Πp

2-complete.

Note that if branching conditions were restricted to ele-
mentary conjunctions of observations instead of any epis-
temic conditions then the problem would be “only” coNP-
complete.

It is worth investigating what plan validation becomes
when some specific assumptions are made about observabil-
ity.

Unobservable environments When the environment is
unobservable, we can show by induction that uninformative-
ness extends to any meaningful plan: for any meaningful
plan π and any objective formula A,

¬K[π]A→ [π]¬KA
holds, which leads to the following intuitive result: if there
is a meaningful valid plan π for V = 〈T,ΣInit, DEP,G〉
then there is a nonbranching (i.e., without tests) meaningful
valid plan for V .

Fully observable environments When the environment
is fully observable, we can show by induction that for any
meaningful plan π and any objective formula A, we have
[π](KA ∨ K¬A) holds, and that the epistemic operator is
needless, which is expressed intuitively by the following re-
sult: if there is a meaningful valid plan π for V then there is
an epistemic-free (e.g., without any occurrence of K) mean-
ingful valid plan for V . Thus, a fragment of PDL is sufficient
for capturing plan verification in fully observable environ-
ments.

Purely epistemic environments When the environment is
fully epistemic, all actions are commutative and knowledge
preserving. This leads to the following result: if there is a
meaningful valid plan π for P then α1;α2; ...;αn is a valid
plan for P , where ACT0 = {α1, ..., αn}.

We end up the section with some considerations on plan
existence. Informally, the plan existence problem reads:
given P = 〈T,ΣInit, DEP,G〉, is there a plan π for P?
Similar to verification problems, we check whether there is
a proof of T,¬G |=DEP ¬ΣInit. If this is the case, then we
can associate a meaningful executable plan π to P . π can
then be checked for validity (which will not always be the
case, in particular when actions are nondeterministic). π is
certainly only a first step towards a plan. We leave this issue
to further research.

Example
How we can handle our running example in our logic? For
the sake of readability, suppose d = 2 and t = 1. A mean-
ingful valid plan is
π2,1 = listen(1);if Kt(1) then open(2) else open(1)
Proving the validity of π2,1 amounts to proving that the for-
mula T |=DEP ΣInit → [π2,1](married∧ alive) is a theo-
rem, where the initial situation ΣInit is
ΣInit = alive ∧ ((t(1) ∧ ¬t(2) ∧ p(2))∨ (t(2) ∧ ¬t(1) ∧ p(1)))
and T is the nonlogical theory of the domain, consisting of
the following set T of effect axioms:
T = { t(i)→ [listen(i)]Kt(i), ¬t(i)→ [listen(i)]K¬t(i),

p(i)→ [open(i)]married, t(i)→ [open(i)]¬alive,
(¬p(i) ∧ ¬married)→ [open(i)]¬married,
(¬t(i) ∧ alive)→ [open(i)]alive,

〈listen(i)>〉, 〈open(i)>〉}.

(where we suppose i ∈ {1, 2}).
Moreover, let DEP (listen(i)) = ∅ and DEP (open(i))

= {married, alive}. (The dependence-based solution to
the Frame Problem requires the last two conditional frame
axioms of T .) We establish that T |=DEP ΣInit →
[π2,1](married ∧ alive) by proving T |=DEP (t(1) ∧ ¬t(2) ∧
p(2) ∧ alive) → [π2,1](married ∧ alive) and T |=DEP

(t(2) ∧ ¬t(1) ∧ p(1) ∧ alive) → [π2,1](married ∧ alive).
Then the disjunction of the respective antecedens is nothing
but ΣInit, and since (Kt(1) ∧[open(2)](alive ∧ married))∨
(K¬t(1) ∧ [open(1)](alive ∧married)) is equivalent to
[listen(1);if Kt(1) then open(2) else open(1)](alive∧
married), putting things together we obtain what we
wanted.

Related work and conclusion
There is a significant amount of related work about the in-
teractions between action and knowledge, both in the KR
and the planning communities. Combining knowledge and
action in a logical framework comes back to the work
of (Moore 1985) who provided a theory of action includ-
ing knowledge-producing actions. Building on this theory,
(Scherl & Levesque 1993) represent knowledge-producing
actions in the situation calculus by means of an explicit ac-
cessibility relation between situations, treated as an ordi-
nary fluent, that corresponds to our epistemic accessibility
relation. (Levesque 1996) then uses this knowledge flu-
ents to represent complex plans involving, like ours, non-
determinism, observations and branching (and also loops,
that we did not consider). He points out that the exe-
cutability of a plan requires that the agent needs to know
how to execute it, which implies that branching condi-
tions must involve knowledge and not objective facts whose
truth may not be accessible to the agent. On the one
hand, in our logic, consisting of a fragment of proposi-
tional PDL extended with epistemic modalities to represent
the effects of actions, the interactions between dynamic and
epistemic modalities enable a simple representation of var-
ious observability assumptions; on the other hand, by us-
ing the situation calculus, Levesque handles more easily
than us value tests returning the value of a variable (for
instance, he is able to represent in a simple way a plan
such as search Mary’s phone number in the
phonebook and then dial it whereas we cannot
do it unless we write down a finite but unreasonable amount
of propositional formulas). This approach was extended in
(Lakemeyer & Levesque 1998) so as to introduce the only
knowing modality. (Bacchus & Petrick 1998) point out the
practical impossibility to generate explicit conditional plans,
because they get too large, and thus advocate for the need
of reasoning about knowledge during plan execution, which
is one of the key points of our logic. Their representation
model makes use of an epistemic modality. Our approach
could be thought of as being complementary to theirs, be-
cause we provide a simple way to represent various kinds of
interactions between knowledge and action while they focus
on the practical computation of the effects of a plan contain-

ing sensing actions and knowledge preconditions. (Geffner
& Wainer 1998) provide a general language enabling rep-
resenting nondeterministic actions, sensing actions, obser-
vations and conditional plans. Their notion of executable
policy is very similar to our notion of meaningful plan,
though it is not expressed the same way technically speak-
ing: to avoid generating unreasonably large policies (which
happens whenever all accessible belief states are explicitely
considered), they express policies on states rather than on
belief states; a policy is then said to be executable in a be-
lief state Bel if, roughly speaking, it assigns equivalent ac-
tions to all states considered possible in Bel. We choose
another way to escape representing explicitly conditional
plans, namely by calling for reasoning tasks during execu-
tion. (Lobo, Mendez, & Taylor 1997) extend Gelfond and
Lifschitz’ language A for reasoning about action so as to
represent knowledge effects. An interesting notion in their
approach is knowledge removing actions that may affect the
knowledge the agent has on a fluent. These knowledge re-
moving actions (such as toss) can be easily handled in
EDL.

These approaches focus on representing actions and con-
ditional plans involving knowledge preconditions and ef-
fects, and checking whether a given plan reaches the goal.
Up to know, little has been done in order to generate plans
having knowledge preconditions. (Rintanen 1999) extends
the planning as satisfiability framework to planning under
incomplete knowledge by means of Quantified Boolean For-
mulae. (Boutilier & Poole 1996) provide a propositional-
like representation and resolution framework for POMDPs.
None of these works makes use of epistemic nor dynamic
modalities.

Lastly, a few authors developed logical systems integrat-
ing dynamic and epistemic modalities, but not from a plan-
ning perspective. (Del Val, Maynard-Reid II, & Shoham
1997) study from a logical perspective the relations between
what the agent perceive and what they believe; this is much
related to our logical expressions of observability assump-
tions in EDL. (Fagin et al. 1995) have a language with
temporal ‘next’ and ‘always’ operators instead of action op-
erators. They have axioms of perfect recall similar to our
Acq([α], K) (axioms KT1, KT2). They do not integrate a
solution to the Frame Problem into their approach. Also
slightly related to our work is (Meyer, van der Hoek, & van
der Linder 1994) who consider tests as epistemic updates.

Apart from the handling of plan existence, further work
includes the study of the complexity of validity for the full
logic EDL (so far we only have a complexity result for plan
verification in EDL) and next, the complexity of plan exis-
tence with epistemic preconditions, which would complete
the panorama of complexity results for planning under in-
complete knowledge (Littman 1997; Baral, Kreinovich, &
Trejo 1999).

References
Bacchus, F., and Petrick, R. 1998. Modeling an agent’s
incomplete knowledge during planning and execution. In
Proc. KR’98, 423–443.

Baral, C.; Kreinovich, V.; and Trejo, R. 1999. Compu-
tational complexity of planning and approximate planning
in the presence of incompleteness. In Proc. of IJCAI’99,
948–953.
Boutilier, C., and Poole, D. 1996. Computing optimal poli-
cies for partially observable decision processes using com-
pact representations. In Proceedings of AAAI’96, 1168–
1175.
Castilho, M. A.; Gasquet, O.; and Herzig, A. 1999. For-
malizing action and change in modal logic I: the frame
problem. J. of Logic and Computation 9(5).
Del Val, A.; Maynard-Reid II, P.; and Shoham, Y. 1997.
Qualitative reasoning about perception and belief. In Proc.
IJCAI’97, 508–513.
Fagin, R.; Halpern, J.; Moses, Y.; and Vardi, M. 1995.
Reasoning about knowledge. MIT Press.
Geffner, H., and Wainer, J. 1998. Modeling action, knowl-
edge and control. In Proc. ECAI’98, 532–536.
Kautz, H., and Selman, B. 1996. Planning as satisfiability.
In Proc. AAAI’96, 1139–1146.
Lakemeyer, G., and Levesque, H. 1998. AOL: a logic
of acting, sensing, knowing, and only knowing. In Proc.
KR’98, 316–327.
Levesque, H. J. 1996. What is planning in the presence of
sensing? In Proc. AAAI’96, 1139–1146.
Littman, M. 1997. Probabilistic planning: representation
and complexity. In Proc. of AAAI’97, 748–754.
Lobo, J.; Mendez, G.; and Taylor, S. R. 1997. Adding
knowledge to the action description language a. In Proc.
AAAI’97, 454–459.
Meyer, J.-J.; van der Hoek, W.; and van der Linder, B.
1994. Test as epistemic updates. In Proc. ECAI’94.
Moore, R. 1985. A formal theory of knowledge and action.
In Formal Theories of the Commensense World. Norwood.
319–358.
Rintanen, J. 1999. Constructing plans by a theorem prover.
JAIR 10:323–352.
Scherl, R., and Levesque, H. 1993. The frame problem and
knowledge-producing actions. In Proc. AAAI’93, 689–695.

