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CS60319 - 60203 Compiegne Cedex

Abstract—In this paper a navigation control for a platoon
composed by a ground and an aerial vehicle is proposed. While
the first one (a mobile robot, equipped with a LiDAR) visit desired
points avoiding obstacles, the second one (a cheap quadrotor
equipped with a vertical camera pointing to the floor) follows
it both in position and orientation. The problem is related to
the perception layer, autonomous visual control of the drone and
autonomous control of the ground robotic vehicle. To control the
quadrotor, we propose in this paper an aerial visual-servoing
methodology based on an Image Based Visual Servoing (IBVS)
algorithm applied to the image given by onboarded camera. A
new variant of the Dynamic Window Approach methodology
was developed in order to control the motions of the ground
robotic vehicle. Preliminary experimental results presented show
the efficacy of our aerial-ground platooning methodology.

Index Terms—Quadcopter, UGY, Visual servoing, Obstacle
avoidance

I. INTRODUCTION

In the last years the research on autonomous robotic fleets
has gained more and more attention. In fact, the ability of
multiple agents to move and complete tasks without human
intervention allows to achieve more robust, precise and diffi-
cult functions. Between all the possible fleets, heterogeneous
systems are very popular since they can exploit the advantages
of different robots.

In particular, driving of aerial vehicles has seen great
developments thanks to their relative low costs, efficiency
and agility. The ability to hovering, as well as vertical take
off and landing have made the quadrotors one of the most
used vehicles in the fields of inspections, surveillance, search-
and-rescue and disaster response. On the other hand, ground
vehicles are very popular because of their ability to carry heavy
loads, cope with different weather conditions and drive for
longer periods and distances.

The aim of this work is to define a platooning system that
exploits the advantages of both types of robot: while the aerial
drone is faster and is not constrained to the floor, the ground
robot can be equipped with heavier and more powerful sensors.
The objective is to define sensor based control for both aerial
and ground agents. In particular, the leader of the platoon
is the ground vehicle, which navigates in the environment
using LiDAR and odometry sensor, while the follower is a
quadrotor UAYV, that is controlled with an IBVS (image-based
visual servoing) methodology based on the visual perception
of ground robot and its environment provided by a vertical

onboarded camera. Cooperation between aerial and ground
vehicle was used to map a 3D environment [1] and identify
threats [2]. Moreover, it was used for navigation purposes
in different scenarios, both in indoor [3] and outdoor [4]
environments.

In literature many studies relies on GPS sensor, which
allows to estimate the position of the agent in a global frame.
However, this sensor is not always available (for example in
indoor environments), could be inaccurate (as it happens in
dense urban area where buildings could hide some satellites)
and does not fit well tracking applications (not providing
the relative distance to the target, the target’s GPS position
should be continuously sent to the follower). Because of their
reliability, cheap cost and the possibility to be used in both
indoor and outdoor environments, camera sensors are more
and more used in this research field and images are used in
the control of autonomous vehicle.

Fig. 1: Overall scheme of the scenario addressed in this work.
The ground vehicle moves from the initial position to the
target one avoiding the obstacle. The aerial vehicle follows
the ground one maintaining it in the field of view

Visual servoing approach was chosen to define control
references exploiting features in the drone camera image.
Within this class of algorithms, two different methods could be
identified: Position Based Visual Servoing and Image Based
Visual Servoing. The first one requires to compute the relative
pose between the camera and the object and it was used in [5]
where a ground vehicle was equipped with a camera to provide
to a UAV its relative pose. The relative pose was also used
in [6] and [7], but in those cases the camera was onboard the
drone. Since PBVS is sensitive to camera calibration errors and



shows a tendency for image features to leave the camera field
of view, the IBVS was preferred in this work. This algorithm
was used in [8] where it was applied on a UAV to achieve
a desired position with respect to a ground vehicle equipped
with a QR code target.

The ground vehicle must exploit the above cited sensors to
navigate its environment. The use of a local planner in the
UGV is necessary for the robot to safely plan the path to the
goal. We chose to use an approach inspired by the Dynamic
Window Approach (DWA) [9] because of the smoothness of
the motion and ease of implementation [10] [11].

In this work an original approach to the cooperative
navigation of ground and aerial vehicle is proposed. Indeed
the agents compose an autonomous platoon where the ground
vehicle is the leader and the drone follows and observe it
from above. While for the first agent a variation of the DWA
method is used, the quadcopter exploits velocity references
from IBVS with a non pan-tilting vertical camera.

The paper is organized as follows: in section II the problem
addressed in this work is presented. In section III and IV the
control strategies used on the aerial and the ground vehicle
are explained. In section V the experimental scenarios and the
obtained results are shown. Finally, conclusions about the work
are drawn and further developments are proposed in section
VI.

II. PROBLEM STATEMENT

The purpose of this work is to address the problem of
autonomous platooning of a ground and an aerial vehicle. In
particular, the ground vehicle was wanted to autonomously
move to reach some target points while avoiding ground
obstacles. Odometry sensors were used to estimate the ground
vehicle position, while LiDAR sensor was used to identify and
avoid obstacles.

At the same time, the aerial vehicle exploited a sensor
based control to hover and track the ground vehicle during the
displacement. In this case, the vertical camera of the drone,
as well as ultrasounds and Altitude and Heading Reference
System (AHRS) sensors were used to track the ground vehicle
maintaining a constant relative altitude.

In Fig. 1 the scenario studied in this work is presented. At
the beginning, the ground vehicle is assumed in the field of
view of the aerial one. When a desired target position is sent
to the ground vehicle, the latter starts moving to achieve it.
At the same time, the aerial vehicle follows the UGV both
on the position and the orientation. If some obstacles are put
in the trajectory of the ground vehicle, it detects them with
the LiDAR and change its path to avoid them. The motion
control methodologies applied to these heterogeneous aerial-
ground robotic system two are described in the next sections.

III. AERIAL VEHICLE CONTROL

The aerial vehicle control is based on the inner/outer control
scheme, as shown in Fig. 2. While the outer loop (colored in

blue) defines some references with a low rate, the inner loop
(in color red) works at high frequency to follow the references.
The IBVS method [12] was used to compute velocity control
inputs to the drone, in X, y and yaw dimensions. These
control inputs are computed each outer loop step based on
the minimization of target features in the image plane of the
onboarded vertical camera.

Desired

Inner loop
target Velocity Control
Drone

position Error | IBVS references, Controller input
& algorithm
B AHRS

:;“r;gf Ultrasound
position e
Kalman

Filter —
Candidate Detector
target

Outer loop points

Camera image

Fig. 2: Inner/outer loop scheme and sensor used for the
navigation of the aerial drone

Due to image acquisition and processing, this loop operates
about 60Hz. In order to simplify the detection of the ground
vehicle in the camera image, a predefined target was applied
on it. The proposed target was defined as a white plane with
four black points placed at the corners of a fictive square.

Within the outer loop, a Shi-Tomasi corner detector [13]
was applied to the image to identify the four points. To
improve the identification, a Kalman Filter which takes into
account the known shape of the target was used. The filter
is initialised using the four points that better fits the shape
of the target. Moreover, the ultrasounds sensor was used to
estimate the expected dimension of the target from the current
altitude. Once the filter was initialised, it was updated with the
measurements from the following images, using the detected
corners enough close to the points estimated within the filter. If
it was not possible to identify the four points for a predefined
number of following images, the filter was reinitialised as the
first time.

IBVS algorithm was applied to the points given by the
Kalman filter to define the reference velocities along x, y and
yaw. It was decided to not use the reference along z since
a relation between this reference and the relative orientation
was observed. Indeed, from the same relative position different
references along z were obtained changing the relative orien-
tation between the agents. Computing the reference v, along
z it was found:

omre (0 )
a

where ) is the IBVS convergence parameter, z* is the desired
altitude, a is the desired dimension of the target, p, and py
are the dimension and the orientation of the current target in
the image plane.

A position control was considered exploiting ultrasounds
sensor to estimate the altitude of the drone but, because of
the different objects considered in the work (ground vehicle,
obstacles and ground), poor performances were observed.



Because of these reasons, in this work it was chosen to control
the altitude with the position given by the laboratory camera
system.

On the other hand, both the x and y position and the
yaw orientation were controlled with the sensor based scheme
proposed in this work. Once the reference from IBVS was
computed, it was passed to the inner control loop (which runs
about 200Hz).

Here, the error between the yaw angular velocity given by
AHRS sensor and the reference from IBVS was minimized
to align the aerial and ground vehicle orientations. Since it
was not possible to precisely measure the z and y velocities,
a different approach was used along these two axes: it was
observed that the x and y IBVS references were related with
the relative position error. Analyzing the equation of the ref-
erences it was shown that those references were proportional
to the relative position error:

where ‘p, and p, are the coordinates of point i along = and
y respectively.

These formulas confirmed that when the ground vehicle was
ahead along x, the IBVS reference and the relative position
error along this axis were positive, while they were zero if the
two agents had exactly the same coordinate. In order to avoid
oscillations and ensure good tracking performances, both the
IBVS reference and its derivative were used in the control for
both x and y.

A backstepping control was applied that minimizes the
error between the current and the desired angular velocity, the
position error along z and the references (hence the relative
position error) for z and y. Experimental validations, shown
in section V, demonstrate the efficacy of the proposed IBVS
control method.

IV. GROUND VEHICLE NAVIGATION

The ground vehicle must travel to certain positions defined
before the experiment and the robot is in a location with
obstacles.

The robot implements a variant of the Dynamic Window
Approach (DWA) [9]. The DWA is an online avoidance
obstacle, capable of achieving a goal by avoiding obstacles
around it. This new approach implements the same concepts
as the original proposal but the way of defining the optimal
solution is different. This version replaces the brute force
method with a convergence method to reduce the complexity
and therefore the execution time.

A. Objective function to Loss function

This implementation requires changing the objective func-
tion (Eq 1) into a convex loss function. The initial approach

is composed of sub-functions, each allowing to quantify a
velocity.

G(v,w) =a.heading(v, w)
+ B.dist(v,w) (1)
+ v.velocity (v, w)

The function heading quantifies whether the robot will be
close to the goal or not, the function dist quantifies whether
the robot will be far from obstacles or not and the function
velocity quantifies whether the robot is close to the desired
speed.

The selected velocity is the velocity in the search space
(IV-B) that maximizes the objective function. But this ap-
proach requires evaluating each velocity in the search space.
This approach is costly in complexity.

In our approach, we replace the objective function with a
loss function. This loss function is constructed using the same
approach as the objective function, and each subfunction is a
convex loss function. Then we can apply this following convex
property:

if wy,...,w, >0 and fy,..., f,, are all convex, then

so wi f1 + ... + wy fn 1S convex.
This the final function is convex and is defined as Eq 2.

L(v,w) =a.headingoss (v, w)
+ B-diStloss (’U,’LU) (2)
+ v.velocitypss (v, w)

With this new definition, we can apply a gradient descent
on the loss function and select the best velocity.

B. Search Space Limitation

The initial DWA approach limits the search space velocity.
This space defines all attainable velocities of the robot for a
time £. A velocity is defined as attainable if the acceleration
or deceleration of the robot is sufficient and if the robot does
not collide with an obstacle.

It is important to keep this concept in our approach. Our
idea is to apply gradient descent until the velocity is in the
search space. Once the gradient descent is out of this space,
we select the previous value. The following Figure 3 shows
how gradient descent engages and stops.

V. EXPERIMENTAL RESULTS

Experiments were conducted to show the behaviour of the
system composed by the two agents. The ground vehicle is
the leader of the platoon and displace itself to visit some
specified set-points avoiding obstacles. At the same time, the
aerial vehicle follows it observing the space and exploiting the
proposed sensor-based control.

During experimental tests, a Turtlebot 3 equipped with
Odometric sensor and LiDAR was used. In order to identify
the vehicle in the aerial drone camera image, an additional
layer was put over the Turtlebot. On top of it, a target
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Fig. 3: Gradient descent limitation

composed by four points was placed. The robot is shown in
Fig. 4.

(a) Vehicle front view (b) Vehicle bird view

Fig. 4: Ground vehicle used during experimental tests. The
vehicle was equipped with an extra layer on which a four
points target was placed to facilitate vehicle recognition

For the aerial drone it was chosen to use the Parrot
AR.Drone 2.0 shown in Fig. 5. This drone is equipped with
a vertical camera running at 60 fps with 320x240 pixels
resolution. Moreover, this drone was already equipped with
Ultrasounds and AHRS sensors.

Fig. 5: Aerial drone used during experimental tests. Some
reflective markers were put on the drone to be recognised by
the OptiTrack camera system

In Fig. 6 is shown the scene perceived by the drone during
flight and the target identified in the image. The blue crosses
represent the corners identified through Shi-Tomasi detector,
while the light blue square represents the four points chosen
as belonging to the target.

To analyze and plot the behaviour of the robots during the
experiments, OptiTrack camera system of the laboratory was
used to obtain the position of the agents and the obstacles. For

‘i
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T

Fig. 6: Image taken from the drone in which the perception
of the target is highlighted

this reason, high reflective marker balls were placed over the
drone and the target.

Two different test scenarios were analysed: in the first one
the main focus was about the ability of the two agents to han-
dle different obstacle configurations, while in the second one
more attention was put in respecting a predefined trajectory.

A. Different obstacle configurations

During the first test the target points were placed to suggest
a triangular movement of the agents. During the first edge,
one obstacle was placed between the initial position and the
first target position to observe how the system surrounded
obstacles. In the second edge two obstacles were placed to
check if the agents were able to pass in the middle of them
while during the third edge no obstacles were placed, to study
how the system behaves in open field.

In Fig. 7 the test scenario is shown. In color red the aerial
vehicle and in color blue the turtlebot are shown at their initial
positions. In color green the three obstacles are shown and in
color yellow the target position are drawn.

In Fig. 8 the trajectories of the aerial and ground vehicle
with respect to the target points and the obstacles are shown.
In particular, it is interesting to note how the ground vehicle
changed its trajectory (colored in blue) to avoid the obstacles
while achieving the desired points. At the same time, the
trajectory of the drone is shown in color red.

In Fig. 9 the position of the agents along x and y axes
are shown. Even if in Fig. 8 the position of the drone could
seem quite far from the one of the turtlebot, Fig. 9 shows,
in a qualitative way, that the drone well followed the ground
vehicle.

In Fig. 10 the yaw orientation of the two agents is shown.
From this image it is possible to see that the sensor based
algorithm made the aerial vehicle achieve good performances
not only for the = and y coordinates, but also for the yaw
orientation. Moreover, it is possible to observe some spikes
in the orientation of the turtlebot. Since this behavior was
not seen in real time, those inaccuracies were probably due
to imprecise identification of the target from OptiTrack. For
completeness of analysis, also the altitude of the aerial vehicle
and the target placed over the turtlebot are shown.



video

(a) Snapshot of experimental test

recording

X Drone
Vehicle

[J Obstacles|
% Target

4 axis [ua]

3 2 x axis [m]

y axis [m]
(b) 3D reconstruction of experiment scenario

Fig. 7: Experimental scenario in which it was studied how the
system handle different obstacle situations
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Fig. 8: Experimental trajectories of the agents dealing with
different obstacle configurations
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Fig. 9: Trajectory of aerial and ground vehicle along = and y
axes

B. Desired trajectory

During the second experiment, more target points were used
to suggest a desired trajectory for the agents. In this case, the
obstacles were not placed within the trajectory on purpose, but
were used in a more natural way: while the turtlebot moves
accordingly to the desired target points, it should also avoid
collision with some obstacles in the space. In Fig. 11 the

Yaw orientation
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5

o 20 a0 60 80 100 120 140
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Zposition

Drone
Tutlebot

0 20 a0 60 8 100 120 140
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Fig. 10: Orientation and altitude of aerial vehicle and ground
vehicle target along time

obstacles and target points are shown.

/

(a) Snapshot of experimental test video record-
ing

X Drone
QO Vehicle
[J Obstacles
X Target

X axis [m]
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(b) 3D reconstruction of experiment scenario

Fig. 11: Experimental scenario. The initial position of aerial
and ground vehicle are shown, as well as target points belong-
ing to the desired trajectory and obstacle positions

In Fig. 12 the trajectories of the ground and aerial vehicle
are shown. As it is possible to see, the ground vehicle passed
close to all the target points and modified its path to avoid
obstacles. This behaviour is clear to see when the ground robot
moves from set-point 6 (in position [0,-1]) to set-point 7 (in
position [-2,1]). At the beginning the robot moved directly to
set-point 7, than it had to turn to avoid the obstacle placed
between them.

In Fig. 13 the coordinates of the two agents along = and y
axes are shown. Comparing the two trajectories, it is possible
to notice that the aerial vehicle well followed the path of
the turtlebot. Some inaccuracies are present, but the overall
behaviour is reasonable with the goal of the work.

In Fig. 14 the orientation of the two agents is shown. Also
in this case, the performance of the following control works
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Fig. 12: Agents trajectories with respect to target points and
obstacle positions
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Fig. 13: Aerial and ground vehicles positions along = and y
axes during the experiment

well making the drone turn as the ground vehicle. As for the
previous experiment, the altitude of the agents is shown for
completeness of analysis.
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Fig. 14: Orientation and altitude of the agents during the
experiment

VI. CONCLUSIONS AND PERSPECTIVES

The platooning system showed good performances in all the
tested scenarios. This experimentation was an opportunity to
implement our new version of DWA on a real robot and to
test the IBVS control applied to the UAV.

As expected, the robot avoids obstacles and passes through
the given positions. During the experiment, the robot performs
about 5 iterations per calculation showing its performance.
Furthermore, while the ground vehicle visited the specified set
points, the drone followed the other agent well by exploiting
the sensor-based control.

Experimental results using real robots were performed,
which show that the IBVS control made the drone well follow
the ground vehicle even if moving along different trajectories

and with different velocities. Not only the references were
correctly computed, but they were also properly exploited
for the navigation purpose. However, the behaviour of the
drone along z was controlled through the position obtained via
OptiTrack cameras. A further study will focus on this axis to
maintain the drone at a desired altitude. This way, the system
will be able to work also in spaces not provided with specific
equipment.

The natural improvement of the work will be to develop
cooperation between the agents to exploit the employment of
two different robots. In fact, it would be possible to use the
bird view of the aerial vehicle to analyze the space around the
ground vehicle. Processing the image of the drone’s camera
could result in position set-points for the ground vehicle if the
same ground vehicle control was used. Otherwise, heading and
velocity references could be computed and sent by the drone
to the other robot. This way, the cooperation would be used
for ground vehicle navigation aid.
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