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APPROXIMATION OF THE ELASTIC DIRICHLET-TO-NEUMANN MAP

GEORGI VODEV

ABSTRACT. We study the Dirichlet-to-Neumann map for the stationary linear equation of elas-
ticity in a bounded domain in R%, d > 2, with smooth boundary. We show that it can be
approximated by a pseudodifferential operator on the boundary with a matrix-valued symbol
and we compute the principal symbol modulo conjugation by unitary matrices.

Key words: linear equation of elasticity, Dirichlet-to-Neumann map.

1. INTRODUCTION

Let © € R%, d > 2, be a bounded, connected domain with a C> smooth boundary T' = 912,
and consider the stationary isotropic linear equation of elasticity

(1.1) (Axpy+7n(z))u=0 in €,
u=f on T,
where 7 € C, ReT > 0, |7| > 1, u = (uy,...,uq), f = (f1,..., fa), and A, , denotes the elastic

Laplacian defined by

d
(Axpu); = Zaxj (0s(w), i=1,...d,
j=1
where
. Oou; Ou;
oij(u) = Adivud;; + p ((%Jj + ax]2>

is the stress tensor, &;; = 1 if i = 4, §;; = 0 if i # j. Here A\, u € C>(Q) are scalar real-valued
functions called Lamé parameters supposed to satisfy the condition

(1.2) w(x) >0, Az)+p() >0, Vrel.

The scalar function n € C*°(Q2) in (1.1) is the density and is supposed to be strictly positive. It
is easy to see that the elastic Laplacian can be written in the form

Ay pu = pAu+ (A +p)V(V-u)

modulo a first-order matrix-valued differential operator, where A and V denote the Euclidean
Laplacian and gradient, respectively.
The natural Neumann boundary condition for the elastic equation is By ,u = 0, where

d
(B,\,ﬂu)i = Zaij(u)yja 1= 1, ...,d7
j=1

v = (v1,...,v4) being the Euclidean unit normal to I'. We define the elastic Dirichlet-to-Neumann
map
N(r): HY(I';C%) — LA(I';C)
1
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by
N(r)f = BML“‘F
where u and f satisfy the equation (1.1).
The equation (1.1) describes the propagation of elastic waves in Q with a frequency 7. It is
well-known that the elastic waves are superpositions of two waves, called S and P waves, mooving

2u+A
n

with speeds \/g and , respectively. From purely mathematical point of view, this is

explained by the fact that the principal symbol, P, of the operator —A) , can be decomposed
as

P(.%', §) - cs(x)Hs(g) + Cp(x)Hp(f)
where ¢s = p1, ¢, = 2u+ A, Hg(€) +101,(€) = €214, I being the identity d x d matrix, and IT,(£) =
¢ ® €. Throughout this paper, given two vectors & = (£1,...,&;) € C% n = (n1,...,nq) € C¢, we
will denote by & ® i the matrix defined by

E@n)g=(gm, gecC

Hereafter, (€, g) == 101 + .. + Eaga and €2 == (£, £).
Note that the existance of two different speeds implies that the boundary value problem (1.1)
has two disjoint glancing regions ¥, and X, defined by

Y= {(w',{') € TT : cso(a)ro(a, &) — no(a’) = O} ,

Sp = {(2,€) € T'T : cpo(a)ro(a’,€') —no(z') = 0},
where ¢5 0 = ¢s|r, ¢p0 = ¢p|r, o = n|r, and 9 > 0 is the principal symbol of the operator —Ar.
Here Ar denotes the negative Laplace-Beltrami operator on I" with Riemannian metric induced
by the Euclidean one. Set h = (Re7)~! if Re7 > [Im7| and h = [Im7|~! if [Im7| > Rer,
z=hr and 0 = |Im z| < 1. Clearly, in the first case we have z = 1+ i6, while in the second case
we have § = 1. When 6 > 0 we introduce the functions

ps(xla 5/7 Z) = \/—7”0(1'/, 5/) + 2277‘0(1./)/0870('%',)7 Im Ps > 07

pp(a', &, 2) = \/—ro(x/,f’) + 22ng(x) /cpo(x’), Imp, > 0.
Our goal in the present paper is to approximate the operator
N(z,h) :== —ihN(z/h)

by a matrix-valued h — DO similarly to the Dirichlet-to-Neumann operator associated to the
Helmholtz equation (see [6], [7]) or that one associated to the Maxwell equation (see [8]). We
also compute the principal symbol in terms of the functions ps, p, (see Lemma 5.5). Denote by
My the 2 x 2 matrix with entries M;; given by

2 2
2°nops 2“nopp
My = =5 My = = 0P

To +p3pp, 7o ‘|'Pspp’

2
Z°No+/T0o

—Msy = Mo = —2po/ro + ————,
To + PsPp

where po = plr = ¢50. When d > 3 we set

My = My + pops(Ig — I).
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Throughout this paper, given a 2 x 2 matrix M with entries M;;, we denote by M the d x d
matrix with entries ]\Zj =M;;if1<i,j <2, Z\Ajij = 0 otherwise. Given a partition of the unity
ke €C®(T*T'\0),0< k<1, ¢=1,..,L, ZZL:1 k¢ = 1, introduce the function

L
(1.3) mqg = Z I{ngMdJ[1

(=1
where Jy(2/,&") € C°°(T*T \ 0) are matrix-valued functions, homogeneous of order zero in ¢,
and such that J, 1— J}. Our main result is the following

Theorem 1.1. Let 0 > h?/5~€ and 0 < h < 1, where 0 < € < 1 is arbitrary. Then for every
f € H3(T;C?%) we have the estimate

(1.4) N (z,h)f — Oph(md)fHLQ(F;(Cd) S ho~> (1 +(d — 2)9_1/2) HfHH,B;(F;Cd)

where mg € C°(T*T) is of the form (1.3) with a suitable partition of the unity kg and matrix-
valued functions Jy independent of A\, u and n. When d = 2 the functions Jy do not depend on
the variable &'.

Hereafter the Sobolev spaces are equipped with the h-semiclassical norm. Note that much
better estimates for the Dirichlet-to-Neumann operator associated to the Helmholtz equation are
proved in [6], [7]. This is due to the fact that one can construct a much better parametrix near
the boundary for the Helmholtz equation than that one for the equation (1.1) we construct in the
present paper. Indeed, such a parametrix is built in [6], [7] in the form of an oscilatory integral
with a complex-valued phase function and an amplitude satisfying the eikonal and transport
equations mod O(xd), respectively, where N > 1 is arbitrary and 0 < z; < 1 denotes the
normal variable near the boundary, that is, the distance to I'. Thus the parametrix satisfies
the Helmholtz equation modulo an error term which is given by an oscilatory integral with
amplitude of the form O(z)+O(RY). In the case of the equation (1.1), however, it is very hard
to solve the transport equations, especially when the boundary data f is microlocally supported
in a neighbourhood of the glancing regions. That is why we build in the present paper a less
accurate parametrix for the equation (1.1) which does not require to solve transport equations.
In this case the parametrix is a sum of two oscilatory integrals with two complex-valued phase
functions corresponding to the two speeds of propagation of the elastic waves. Each of these
phase functions satisfies the same eikonal equation as in the case of the Helmholtz equation
solved in [6]. The parametrix satisfies the equation (1.1) modulo an error term which is given
by a sum of two oscilatory integrals with amplitudes of the form O(x)+ O(h). To estimate the
difference between the exact solution to equation (1.1) and its parametrix we use the a priori
estimate (4.2). Most probably, the estimate (1.4) is not optimal and could be improved if one
manages to build a better parametrix. In particular, for some applications it is better to have
the L? norm in the right-hand side of (1.4) instead of the H} one. To do so, one needs to
construct a better parametrix in the deep elliptic region, only, that is, in {ro > 1}. Recall that
the approximation of the Dirichlet-to-Neumann map is usually used to get parabolic regions free
of transmission eigenvalues (see [6], [7], [8]).

Note that microlocal parametrices have been recently constructed in [2], [3], [9] for the wave
elastic equation in the case d = 3. All these parametrices, however, are very different from the
parametrix we construct in the present paper. In particular, they are not valid near the glancing
regions. In contrast, our parametrix remains valid even when the boundary data is microlocally
supported near ¥, and X, provided 6 > h?/5=¢. In [9] the principal symbol of the DN map has
been computed explicitly still in the context of the wave elastic equation and d = 3. Note that
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the formula in [9] agrees with that one we get in the present paper modulo a conjugation by a
unitary matrix and after making a suitable change in the notations. In [4] a full parametrix was
constructed for the stationary elastic equation in the exterior of a strictly convex body when
d = 3 and the Lamé parameters being constants. In this case the parametrix for the elastic
equation can be expressed in terms of the parametrix for the Helmholtz equation, which in turn
is well-known. Similarly, one can construct a parametrix in the elliptic region for the stationary
elastic equation in the exterior of an arbitrary compact body (see [5]).

2. PRELIMINARIES

Throuhout this paper we will denote by ey, es, ..., eq € R? the vectors (1,0, ...,0), (0,1,...,0),
., (0,0,...,1), respectively. Given & = (£1,&9, ...,&4) € C?, introduce the d x d matrix

d

Uo(€) = &ila+ Y &ilej @er —e1 @ ej).

j=2
Set ¢2 = 2?21 532 and |¢|? = 2?21 &%, In this section we will prove the next two lemmas.
Lemma 2.1. The matriz Uy satisfies
(2.1) Up(£)€ = E2er.
Moreover, the matrices e; @ ey and Zy(€) := Up(€)UL(E) commute.
Proof. We have

d
Uo(€)€ = 616+ &i((ej, E)er — (e1,€)ej)

Jj=2

d
= Z 15]6] + Zgj 5]61 516] 25]2‘61
— - j=1

U

which proves (2.1). Set € = (0, &, ...,&4). Then UL(€) = —Up(€) and hence

Zo(&) = &11a — Up(€)*.
On the other hand, it is easy to see that

UO(g) 61®€1 Zgjel(g’e]a

(e1 @ e1)Up (€ Z§]€] ® ey.

Thus we get
(e1® e1)Up(€)* = —E%e1 ® e1 = Up(€)*(e1 ® e1),

and hence Zy(&) and e; ® e; commute. O

Given a matrix A with entries A;;, define its norm by ||A|| = max;; |A;;].
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Lemma 2.2. Given any n1 € C we have the formula

(2.2) det(Up(€) +mer @ e1) = (6% + &m )i 2.
When d > 3 suppose that &, € C, & #0, and & € R, k = 2,...,d. Then, if €2 + & # 0, we
have the estimate

(2.3) [(Uo(&) +mer @ en) || S (€] + [mDIE* + &m| ™ + (d — 2)[& "

Proof. Denote the matrix Uy (§) + nie1 ® e by My(&1,...,€4,m). The lemma is very easy to
prove when d = 2. Indeed, in this case we have

Ma(&1,62,m) = < Stm & )

=& &
and hence det My = €2 + &1 Moreover, if €2 + &1 # 0, we have

N g & &
ML (e E0my) = (€2 1
5 (&1,8,m) = (& +&m) (52 ftm )

and (2.3) in this case is obvious. When d > 3 the formula (2.2) can be proved by induction.
Indeed, we have

deth(gla ) gd’ 771) = gldeth—l(gla ) gd—l, 771) + (_1)d£ddetpd—1(£1’ ceey éd),
where Py_1 denotes the (d—1)x (d—1) matrix with lines (&2, ...,&q), (0,&1,0, ...,0), ..., (0,...,&1,0).
Hence

detPy_1(61,&, .., &a) = &7 2detPy1(1, &, ., &4)

= &/7%detPy_1(1,0,...,0,&q) = (—1)%¢a&{ 2.
Thus we get
detMg(&1, ..y €aym) = Erdet Mgy (€1, .oy Eqm1,m1) + E36972.

It is clear now that if (2.2) holds for detM,_1, it holds for det My, as well. Thus we conclude
that (2.2) holds for all d.

The proof of (2.3) when d > 3 is more delicate. Set €= (0,&") € R, where ¢ = (&,...,&9) €
R41 and suppose that there exists a d x d matrix O(¢’), homogeneous of order zero, such
that ©(¢)e; = ey, O()E = |¢|eg, O() = O(¢) and ||O(£')|| < C with a constant C' > 0
independent of ¢. Then, given any g € C?, we have

Uo(£)O'(€)g = (B(€)E, gher — (O(E))e1, g)€ = |€'|(e2, g)er — {e1, g)E.

Hence

O Un(€)O'()g = [€'|(e2,9)O(E )er — (e1,9)O(€)E
= [€'[{e2, g)er — €' [{er, g)e2 = Up([¢'le2)g,
which implies
Uo(€) = ©'(&")Uo(&re1 + 1€ [e2)O(E).
Since ©Y(¢')(e1 ® €1)O(&') = (e1 ® €1), we obtain
(2.4) (Uo(&) + me1 ® 61)_1 = @(f/) (U0(5161 + ’flfeg) +me; ® 61)71 @t(f/).
This implies

(2.5) H(Uo(f) +mer ® 61)_1H < H (Uo(flel +|€]e2) + me1 ® 61)*1” .
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On the other hand,

_ d
(2.6) (Uo(&rer + [€'lea) +mer @er) ™ = My (&, 1 m) + &7 D e; @ ey
=3

It follows from (2.6) that

(2.7) H (Uo(&re1 + [€'|e2) + mer © 61)71H < MG 1E L m) || + 1€l

Clearly, in this case (2.3) follows from (2.5) and (2.7).
It remains to see that such a matrix O(¢’) exists. When d = 3 it is easy to see that the matrix

10 0
O =10 &/¢ &€
0 —=&/1E' &/I¢]

has the desired properties. When d > 4, however, it is hard (and probably impossible) to find
only one global matrix ©(¢’) with these properties. Such a matrix, however, exists locally.
Indeed, let 4 C S?2 be a small open domain in the unit sphere of dimension d — 2. Then there
exists a smooth (d — 1) x (d — 1) matrix-valued function V(w), w € U, depending on U, such
that V—1(w) = Vi(w) and V(w)w = €; = (1,0,...,0) € R, Then we define the matrix ©(¢')

for £'/|¢'| € U by
1 0
o) = .
) (o v<£'/|£'|>)

It is easy to see that ©(¢’) has the desired properties as long as &'/[¢/| € U. Thus we can cover
S%2 by a finite number of open sets Uy, k = 1,..., K, so that to each U; we can associate a
matrix-valued function ©(¢’) having the desired properties for £'/|¢'| € Ug. Then the identity
(2.4) remains valid with ©(¢’) replaced by O (¢’) as long as &'/|€’| € Uy. This implies the bounds
(2.5) and (2.7) for &'/|¢'| € Uy, k = 1,..., K, and hence for all £'/|¢'| € S—2. O

3. SOME PROPERTIES OF THE h — YDOs

We will first introduce the spaces of symbols which will play an important role in our analysis
and will recall some basic properties of the h — ¥VDOs. Given k € R, §1,02 > 0, we denote by
th 5, the space of all functions a € C* (T*T"), which may depend on the semiclassical parameter
h, satisfying

200 a(e!, € h)| < Copl€)orlel=521%

for all multi-indices a and 3, with constants C, g independent of h. More generally, given a
function w > 0 on T"T", we denote by S(’;l 5,(w) the space of all functions a € C°°(T"T"), which
may depend on the semiclassical parameter h, satisfying

0 00a(x', €', 1)| < C gt DIel=021

for all multi-indices o and 3, with constants C, g independent of A and w. Thus S§1752 =
S§1,52(<£’>). Given a matrix-valued symbol a, we will say that a € S§1,52 if all entries of a
belong to S§1,52. Also, given k € R, 0 < 6 < 1/2, we denote by Sf the space of all functions
a € C*°(T"*T"), which may depend on the semiclassical parameter h, satisfying

205 a(a €, h)| < Co gh 1A (/yh17]
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for all multi-indices o and 3, with constants C, g independent of h. Again, given a matrix-
valued symbol a, we will say that a € S(é“ if all entries of a belong to Sg“. The h — ¥DO with a
symbol a is defined by

(Opn(a)f) (&) = (2wh) =4+ / / R ol & )y )dEdy.

Ifa € SO 1, then the operator Opj,(a) : HF(I') — L*(T') is bounded uniformly in h, where

gy = [OpatiE) ],

It is also well-known (e.g. see Section 7 of [1]) that, if a € 8§, 0 < § < 1/2, then Opy(a) :
H;(T') = H;(T') is bounded uniformly in h. More generally, we have the following

Proposition 3.1. Let hl/2—e < g < 1, £ >0, and let
aESl_f(@)—i-SOl C@ 681/2 e

Then we have

(3.1) 10pR (@)l i ()= L2(r) S 0"

Let n € C°(T*T") be such that n = 1 for 1o < Cp, n = 0 for r9 > 2Cy, where Cy > 0 does
not depend on h. Let p denote either p, or p,. It is easy to see (e.g. see Lemma 3.1 of [6]) that
taking Cy big enough we can arrange

C10"2 < |p| < Cy, Imp > C3l6]|p|™" > Cylf)]

for (2/,¢") € suppn, and

lpl = Imp > Cs[¢|
for («/,¢') € supp (1—mn) with some constants C; > 0. We will say that a function a € C*°(T"T")
belongs to 551 5, (W1) + 553 5, (we) if ma € 551 5,(w1) and (1 —n)a € S§;754(w2). It is shown in
Section 3 of [6 ] (see Lemma 3.2 of [6]) that

(32) oM lol* € SEallol) + 551 (1o)) € Si1/2(0) + Sy C 07F2SN 4 sk, o7H2SE,

as long as 6 > h'/?2=¢_uniformly in 6 and h, where k=0if k> 0, k=-kifk<0and N>>1
is arbitrary.

4. A PRIORI ESTIMATES
In this section we will prove a priori estimates for the solution to the equation
(R*A\, + 2*n)u=hv in Q,
(4.1) ’
u=0 on I.

More precisely, we will prove the following

Theorem 4.1. Let § > h and 0 < h < 1. Let u € H?(Q;C?) satisfy equation (4.1). Then the
function g = hB) ,ulr satisfies the estimate

(4.2) g/l 2 r.cay S V20720 20 ca-
Proof. We will first prove the following
Lemma 4.2. We have the estimate

(4.3) [ull 1y ey S 7OVl L2 (scey-
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Proof. The analog of the Green formula for the elastic Laplacian applied to the solution u of
(4.1) takes the form

(4.4) (=Bt w) 20 :/QE(U)
where
O, | ou;  Ouj|’
- )\Z Oz, 2 Z Ox;j * Oz;
J 1<ig<d'
d 2
ou; (9ul ou;
=(A+2m)) | —] + 5
j=1 ‘
oui  Ouy|?
> Cq Z : X
1<i,j<d O

with some constant C; > 0. On the other hand, since u = 0 on I', by Korn’s inequality we have

/ Buz e / Ou; — Ou;
0 0

31‘j 31‘2
with some constant Cy > 0. Combining the above inequalities with (4.4) we obtain the coercive
estimate

1<i _7<d 1<i4,5<d

2
Gui

(4.5) (A pu, u>L2(ch >C

Q 1<2]<d

with some constant C' > 0. The Green formula (4.4) also gives the identity

2
Im(z?) Hnl/Qu‘
L2(0;C4)

= Im (hv,u) 12(,ca) ;
which implies
(4.6) ullz2(0.cay S MO 0]l 12 ca)-
On the other hand, we have
(—h*Ay u, u>L2(Q;Cd) = Re(2?) (nu, ) r2(0.cay — Re (hv,u) 2.0

S lullz2quca) + P2 101172 g0

which combinned with (4.5) leads to the estimate

(4.7) /Q 3w au’

| S lullfe (@cd) T 1ol (Q:C4)"
1<i,j<d i

Clearly, (4.3) follows from (4.6) and (4.7). O

Let V C R? be a small open domain such that V0 := VNT # (). Let (z1,2') € VI :=VNQ,
0< 21 <1, 2" = (29,...,24) € V°, be the local normal geodesic coordinates near the boundary.
Recall (e.g. see Section 2 of [8]) that the Euclidean gradient V can be written in the coordinates
x = (x1,2') as

V=7(x)V, = axl + Z’y x)ep— 83:
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where « is a smooth matrix-valued function such that vy(x)e; = v(z'), v(z)ey, satisfy
(4.8) (v(@),y(x)er) =0, k=2, ...4d.

Let £ = (£1,¢') be the dual variable of 2z = (x1,2’). Then the symbol of the operator —iV in
the coordinates (z, &) takes the form &v(2’) + B(x, &), where

d
B, &) = &Gy(x)ex.
k=2

Note that (4.8) implies the identity

(49) (@), Bz €) =0 forall (z,€).
Thus we get that the principal symbol of —A is equal to 247 (z,£’), where r = (B, 8). Therefore,
the principal symbol of the positive Laplace-Beltrami operator on I' is equal to ro(2',&') =
r(0,2',&") = (Bo, fo), where By = B|z,=0. Clearly, there exist constants C1,Cs > 0 such that
C1lg']? <o < Col¢'P.

Let Vi C V be a small open domain such that V{ := VNI’ # ). Choose a function ¢ € C§°(V),
0 <1 <1, such that ¢» = 1 on V;. Then the function u’ := ¢u satisfies the equation
{ (R2Ay, + 220’ =’ in Q,

4.10
( ) w=0 on T,

where v* = v + h[A) ,, Y]u satisfies

b
(4.11) 107l 2scay S vl L2ucay + lull a2 o)

We will now write the elastic Laplacian in the coordinates = (x1,2’). To this end, we will
write the principal symbol of —A, , in the coordinates (z,£). We have

P(z,&) = p(v€) Iy + (A + 1) (7€) ® (7€)
= u(& +r(@, NI+ A+ p)y(E® Y
= g%QO(x) + ngl(x’gl) + Q2($7£/)a

where
Qo = cslls(e1) + cpll,(er),
Q=A+py(a®+f®e)",
Q2 = pur(z, &) g+ (A + p)y(€ @ €)'
are symmetric matrices. Denote ij = —ih@xj. We can write
(4.12) —h*Ay, = Qo(z)D2, + Q1 Dy, + Q2 + hR(z, D),

where R is a first-order matrix-valued differential operator, and
1 . )
Q; = 5 (Q(x. D) + Q3. Dar)") = @y, Dur) + hR 12, D), §=1,2,

are self-adjoint operators on L?(T';C%). Here Q* denotes the adjoint of @ with respect to the
scalar product, (-, -)o, in L?(I'; C%), and Rj—1is a j — 1-order matrix-valued differential operator.
Introduce the function

F(z) = <Q0(x1, -)Dxlub,Dxlub>o — <Q2($1, -,Dm/)ub,ub>0 + Re(zQ) <n(x1, -)ub,ub>0.

Clearly,

2
(4.13) F(0) = <Q0(0, -)Dxlu"|m:0,Dmub|ml:0>0 >C HD““”“:OHO
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with some constant C' > 0, where || - || denotes the norm in L?(T'; C?). On the other hand,

é
(4.14) F(0) = —/0 F'(z1)dry

for some constant § > 0, where F’ denotes the first derivative with respect to z1. We will now
use (4.14) to bound F(0) from above. To this end we will compute F”(z;) using that u’ satisfies
(4.10) together with (4.12). We have

F'(z1) = —2Re <(Q0D§1 + Q — Re(z%)n)u’, a"”1ub>o
N <Q6Dmub,px1ub>o _ <(Q2/ _ Re(zQ)n/)u",ub>0
o <(h2A,\,M n Re(zQ)n)ub,Dmub>0 +2h 'Im <(Qle1 + hR)ub”Dmub>0
N <Q6D$1ub’pxlub>o _ <(sz - Re(zQ)n,)ub,ub>o
= 2lm (0" — i~ Im(=)ne’), Doy’ )+ 2Im (Ra’, Dy’ ),

+ <Q6Dx1ub,Dxlub>o - <(Q2’ — Re(z2)n ), ul’>0.

Hence
1
|F'(x1)| S B0 P15+ 0n " D IIDE @5+ > ID5 |5
=0 || <1

Using this estimate together with (4.11), (4.14) and Lemma 4.2 we obtain

20
F(0) < /0 [F (@n)lday < 08 ol2agycn + L+ 65 )lull o

(4.15) < (071 4 1267 o) e S 10 ]2 00
Observe now that
Dr1ub|x1=0 = T;ZJO’Dzlu|zl=Oa Dx’u|x1=0 =0,

where 1y = 1|,,—o is supported in V° and such that 19 = 1 on V. Therefore, by (4.13) and
(4.15),

140Dz, tt]zy=ollg S B0 2(|v]| 12 00y
which clearly implies
(4.16) [%oglly S h20712]v]| 12 0uca)-

Since I' is compact, there exist a finite number of smooth functions ¢;, 0 < ¢; <1,i=1,...,1,
such that 1 = Zle 1; and (4.16) holds with 1y replaced by each ;. Therefore, the estimate
(4.2) is obtained by summing up all such estimates (4.16). O
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5. PARAMETRIX CONSTRUCTION

We keep the notations from the previous sections and will suppose that 6 > h2/57€, 0 < e < 1.
It suffices to build the parametrix locally since the global parametrix can be obtained by using
a suitable partition of the unity and summing up the corresponding local parametrices. Let the
function ¢y € C§°(R) be such that ¢g(c) = 1 for |o| < 1, ¢o(c) = 0 for |o| > 2. Let (z1,2') € VT
be the local normal geodesic coordinates near the boundary. Take a function xy € C*°(T*T),
0 < x < 1, such that 7, (supp x) C V°, where 7, : T*I' — T denotes the projection (2, &) — 2.
Moreover, we require that either x is of compact support or xy € 5871 with supp x C supp(l —n).
When y is of compact support we require that suppy has common points with at most one
glancing region. Let f € H3(T';C%). We will be looking for a parametrix of the solution to
equation (1.1) in the form

ﬂ::<2”hJ_d+1J[J[6%(@“§”+@*$f“”>@<x,sﬁfhxx,gcz)x«ﬂ,gvf<yvds%h/

+(27h) d+1// F((y' &) +eop(x (x{) (,fl,Z)X(x/,Sl)f(y')dgdy',
where
W = go(21(6)7/8)60 (21/ p:*8) 0 (w1/ Ipsl*8) . 0 <e <1,

0 < § < 1 being a parameter independent of h and € to be fixed in Lemma 5.1. We require that
u satisfies the boundary condition @ = Opy,(x)f on x1 = 0. The phase functions are of the form

le@ska QDSO—_< £> Ps,1 = Ps,

N-1

¥p = Z xllc(ppylﬁ $p,0 = —<.%',,§,>7 Pp,1 = Pp>
k=0

N > 1 being an arbitrary integer, and satisfy the eikonal equations mod O(xd'):

(@) (1Vaipy)? — 22n(x) = 2l B,
ep(2)(VVaipp)® — 2n(z) = 2] @),
where @, ®, are smooth functions up to the boundary x; = 0. Omne can solve the eikonal

equations above in the same way as in [6]. The functions ¢k, @pr, £ > 2, are determined
uniquely, independent of z1, and have the following properties (see Section 4 of [6]).

(5.1)

Lemma 5.1. For 0 < x1 < 25min{1, |ps|3} with § > 0 small enough, we have

(5.2) s, € S33°" (Ipsl) + 851, k=1,
(5.3) 05, @5 € S5 N (Ips)) + 54, k>0,
(5.4) Im ¢, > z1Im pg/2,

(5.5) |02, 05| > |ps /2,

and similarly for ¢,.

Set ©s = s — Y50, Pp = ©p — Ppo- The next lemma is proved in Section 4 of [8].
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Lemma 5.2. There exists a constant C > 0 such that we have the estimates

o0 (e#/m)] <{ Capt 1 1le=C010/hon suppn,

5.6 ) < /
(5.6) O Cos|€|Ple=C=IENR on supp(1 — 1),

for 0 < zy <26 min{1, |ps3} and all multi-indices o and B with constants Cy 5 > 0 independent
of x1, 0, z and h. Similar bounds hold for ¢, as well.

The amplitudes As and A, are matrix-valued functions which will be chosen so that on supp x
we have

(5.7) As+A,=1; on =0,
and
(58) Hp(fyvxgps)AS - 07 HS(’YVZ‘QOP)AP = 0

If V0 is small enough, there exists a matrix-valued function A(z") € C*°(V°) such that A(z")v(2) =
e; and A* = A~1 in V0. Set
U(€) = A 'Up(A9A,

where U is the matrix introduced in Section 2. It follows from (2.2) that U(&) is invertible if
(€,v) # 0. Clearly, U(v) = I;. Moreover, by Lemma 2.1 we have U(¢)¢ = £2v. Therefore,

(5.9)  U@ILEU' () =U©E@ U () = (U @ (UE)E) = v @ v =", (1v).
Moreover, we have
Z(§) = U©U'(€) = A Zo(AA,  TIp(v) = A~ TIp(e1)A.
Hence the matrices Z(§) and II,(v) commute. Set
As = Ut(7v$@s)HS(V)T7 Ap = Ut(7v$@p)HP(V)T7

where T is a matrix-valued function independent of x1 to be defined below in such a way that
(5.7) holds. Let us see that As and A, satisfy (5.8). In view of (5.5) we have

<7v1908’ V> = 611 Ps 7& Oa <’7v190pa V> = 8331901) 7£ 0.

Hence the matrices U'(yV ;) and U'(7V,¢p,) are invertible, and by (5.9), we have
I, (YVaps)As = Hp(’vaSps)Ut(’vaQDS)HS(V)T
= ('vaSDS)AlUil(VVmSDS)Hp(V)HS(V)T =0,
Ay = U (WVapp) Z(WVapp) ()T = U™ (7 Vapp) Ty () Z(VWaiop) T
= (VVatpp) " p(YVaop) Z(YVaipp)T,

which imply (5.8). We will now find the matrix 7' so that WT' = I; with

W = U'(YVupsla=0)ILs (V) + U (YV oy =0) ().
Observe that

'vaSDval:O = psV — BOa 7vx¢p|$1=0 = PpV — 180'
Therefore,

W = pILs(v) + pplLy(v) — U (Bo).-

We will derive from Lemma 2.2 the following
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Lemma 5.3. The matriz W is invertible with an inverse T = W1 satisfying the bounds
=t on suppn,

(5.10) (RIS
Vro+1 on supp(l—n),

where £ =0 if d=2, £ =1/2 ifd > 3. More generally, we have

(5.11) T € S71(0) + S0,

Proof. Set ((z/,¢) = —A(2')Bo(2',¢&). Clearly, (2 = 33 = ro. In view of (4.9) we have
(¢,e1) = 0 and hence ¢ = (0,(s,...,(g). Then the matrix Wy := AWA~! can be written in the
form

Wy = Ué(() + psls(er) + ppllp(er)

= Ué(psel +¢) + (Pp - Ps)el ®eq.
By (2.2) we get

(5.12) detWy = (19 + pspp)p? 2.
We need now the following

Lemma 5.4. There exists a constant C > 0 such that

(5.13) [ro + papyl > C.
More generally, we have
(5.14) (ro + popp) ™ € S01(6) + 59,

Proof. Recall that p? = —rg + 2%k;, pzz, = —7rg+ z2l<:p with some functions ks, k, € C*(I),
ks >k, > 0. Then we have the identity

ps(p2 _pg) 2/€ Ps +ksp
(519 Perr T et ps + pp
Hence
kplm ps + ksIm pp >C Im ps 4+ Im pp
> 01

|ps| + |pp Vo +1
with some constant C'; > 0. On the other hand, there is a constant C> > 0 such that Im pgs >
Co+/ro + 1 on supp(1—n), Im ps > C26 on suppn, and similarly for p, (see Section 3). Therefore,
(5.13) follows from (5.16) when either (z/,¢’) € supp(1l —n) or (2/,¢) € suppn and 6 > 6y > 0.
Thus, it remains to prove (5.13) when (2/,¢’) € suppn and 6 < 1. In this case we have that |ps|
and |p,| are uniformly bounded from above by a constant and 22 = 1+ O(#). We will make use
of the identity

(5.17) (kpps = kspp)(kpps + kspp) = (ks — kp) ((ks + kp)ro — Zkakp) :
If

(5.16) IT0 + pspp| >

|(ks + kp)ro — 2°kskp| > € > 0,
it follows from (5.17) that
|kpps + kspp| = Cse
with some constant Cs > 0. Thus in this case (5.13) follows from (5.15). Let now

|(ks + kp)ro — 2%ksky| < e
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with 0 < e < 1. Then

kgro kpro kskp
s = 9 — 3 = 9 .
po= [T H OO, =[O0, o=+ 0() +0()

Clearly, there exists a constant Cy > 0 such that |k,ps + kspp| > Cy, provided € and 6 are taken
small enough, which again implies (5.13).
To prove (5.14) note first that, in view of (3.2), we have

(5.18) ps + Pps kpps + kspp € 5?71(9) + Sé,l-
Therefore, in view of (5.15), to prove (5.14) it suffices to show that
(5.19) (kpps + kspp) ™" € SY1(0) + Sg 1

In other words, we must show that given any multi-indices o and § we have the estimates
Ca,BH_‘O‘HB' on suppm,
Caslé/|7P1 on supp(1 —n).

Clearly, for & = = 0 the bounds in (5.20) follow from the analysis above. To prove them for
all @ and (3, we will proceed by induction in |a| + |3|. Suppose that (5.20) holds for all o and
g such that |a| + || < K —1, K > 1. Let us see that (5.20) holds for all & and 3 such that
la| + |8] = K. To this end, we will use the identity

0= 0%0;, ((kpps + kspp) (kpps + kspp) ™)
= (kpps + kopp)05 0, ((kpps + kopp) )

Y 000 ((kpps + kepp) ™) 0570 (pps + Kopp)
la/[+]B'[<K-1

(5.20)

005, ((kpps + hepp) )| < {

Thus, in view of (5.18), we obtain

020 ((kpps + hipy) )|

< Y [0al (Unps + kep) )|
lo/|+]B'|[<K—1

|k3pps + k?spp|

0% 0" (pps + kiopy)

< g—lol=18l on suppn,

TP on supp(l - 7).
Since || +1 S |kpps + kspp|, we conclude from the above bounds that (5.20) holds for all a and
B such that |o| + |B] = K, as desired. O

It follows from (5.12) and (5.13) that the matrix W} is invertible, and hence so is W. Moreover,
by (2.3) its inverse satisfies the bound

1T S W I S 1C+ Los| + Lopl + (d = 2)1ps] 7!

< 1+(d—2)0""2 on suppn,
Vro+1 on supp(l—mn),
which implies (5.10). To prove (5.11) we need to show that the estimates
Capt™ 71771 on suppa,

5.21
(521 ‘ Capl¢']™"1P1 on  supp(1 —1n).

a‘;/af,TH < {
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hold for all multi-indices o and 3. Note that in view of (3.2) we have

(5.22) W e S 1(0) + S
Now (5.21) can be derived from (5.10) and (5.22) by induction in |a| + |8] in the same way as
above. O

To get a parametrix for the elastic DN map we need the following
Lemma 5.5. There exist matriz-valued functions mq,q € C(T*T") such that
(5.23) —ihB) |z, =0 = Opy(max + hax)f.
Proof. Given a scalar-valued function ¢ and a vector-valued function a, we have the identity
—ihe_i‘p/hBAM <ew/ha> = A yVaep,a)v + p(v,a)yVep + n(v,7Vaep)a

—ih)\(*yva;, ayv z'h,u(u YVa) — ihu{v,vV)a.
Set as = Agxf, ap = Apr, al = onf, a = Xf, where A? = A,|.,—o, A = Ap|y, =0 satisfy
AY + AV = I. Set also a} = Aixf, a) = Ale, where Al = 0,, A, \xl,o, 5 = 0z Aplai—o.
Applymg the above 1dent1ty to s, ag and ©p, ap leads to

—ihe_i‘ps/hB,\,ﬂ <ei‘ps/has) |y =0 — z'he_w"/hBA,ﬂ <ei‘pp/hap) |y =0

= Mpsv = Po, aQ)v + v, a?) (psv — Bo) + v, psv — Bo)a
+Xppv — Bo, aphv + (v, ap) (ppv — Bo) + v, ppr — fo)a
—ih(A + p) (v, af + ay)v — ihp(ay + ap)
= (A4 ) (v, psal + ppag)v — XBo, f)v — ulv, )Bo + p(psal + ppaj)
—ih(A + p){v,a} + all,>y —ihp(al + a;)
= (mq + hq)x f,

0
ag
0
ap

where

4= i (e, (v) + 6T (v) (41 + A1)
) = i (eTL ) + 1) U (o — o) T ()T,
where V,» = (0, V,/), and
1 = (1, (0) + T (0)) (9542 + ppA%) = Ao @ b — s @ i
= =A@V — pv @ By
+ (eIl (v) + cpllp(v)) (PsUt(PsV — Bo)ILs(v) + ppU" (ppv — BO)Hp(V)) T
= Mo @v — @ By + (cspiTls(v) + CpP;Q;Hp(V)) T

— (ess(v) + cpllp(v)) Ut(BO) (psIls(v) + ppllp(v)) T.
Hence
mg(¢) = AmgA~" = M ® e1 + per © ¢+ (espills(er) + cppplly(er)) Ty

(5.24) + (e (61) + cplly(€1)) Ug(€) (psls(er) + ppllp(en)) Ta,
where Ty(¢) :== ATA™! = W;'. We will first compute mY when d = 2. We have

t _ 0 _CQ
wo-(2 )
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Wy = < pp —C2 )
G2 Ps

T2(<2) = (TO + ,Ospp)_l < pe G2 ) .
—C2 pp

0 AG
>\C®€1+M€1®C—<M<2 0 >,

(csp?s(er) + cppplly(er)) T

2
1 opy O ps G2

= (ro+pspp) | 7
o 0 Cspg _C2 Pp

2 2
_ CpPpPs  C2Cpp

= (TO+Pst) ! Pep 32 Z P )
_CQCSPS CsPsPp

(csIls(e1) + pllp(e1) Ug(C) (psIls(er) + pplly(er)) To

. —1 0 _CQCpPS ps G2
=0t Poty) < C2Cspp 0 ) < —G2 pp >

2 _
— (ro + Pst)_l (3 Cpps CQQCpPst .
C2CsPst Ga CsPp

Since in this case (3 = /70, an easy computation leads to the formula

2*nps —2p/To(ro + pspp) + 2°ny/To
2#\/%(740 + Pspp) - 2277‘\/% Zanp
Let now d > 3. Then, in view of (2.4) and (2.6), we have

and hence

Then we have

(5.25) m3 = (1o + pspp) " (

d
Ok(Q) ' TalQ)O(C) = Ta(v/io) + 45" D _ej @ e
=3
for (/|¢| € Uy. Using this and (5.24) one can easily obtain the formula
d

(5.26) OK(C) ' mY(OOKC) = MY+ cops 3¢5 ® ¢j = My
j=3

for C/|C| € Uy. Let ¢ € C®(S¥2),0< ¢ <1, k=1,.... K, Z?:l ¢r = 1, be a partition of the
unity such that supp ¢ C Ux. Then we conclude from (5.25) and (5.26) that

K
xma =y ér(C/ICXxTeMaTy!

k=1

where

Te(@', &) = A@') T OR(C (2, €)).
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In what follows we will bound the norm of the difference between the DN map and the
operator Opy,(mg). To this end, observe that u satisfies the equation

(h*Ax, + 2*n)u = h,

where the function v is of the form
v = (2nh) 4 / / eh (v =2 €) <ef¢s/th + ei%/th) f(y)de'dy'

= Op,, (ei‘zs/th + eigp/th) f
with some matrix-valued functions B, and B,. To find them we will use the identity
eI A+ 2n(a)) (69170) = (~Ple7 V) + 1) a+ BB Axa+ hL(p, A)F,

where a is a vector-valued function of the form a = A(z, &) x(2', &) f(y') and L is a matrix-valued
function of the form

L, A)= Y Lap()d800](xA),
ol +181<2, laf>1

L, g being smooth matrix-valued functions depending only on the variable z. Observe also that
Ay ua = G(A)f, where G(A) is a matrix-valued function of the form

GA) = Y Ga(@)07(xA).

1<|a]<2

We would like to apply the above identity to ¢s, as = Asxf and ¢p, ap = A,xf. In view of
(5.1) and (5.8), we have

(P(x, YV s) — zZn) as = (cs — zZn(7Vx¢s)_2) s (YVaps)as

= levq)s(WVm@s)_QHs(vaSﬁs)as-
By the above identities we get

Bs=h [AA,;M U] xAs — h_llevq/q)s(VVx‘Ps)_QHS('YVm(Ps)XAs

+UL(ps, Ag) + hUG(As)

and similarly for B,. Let u satisfy equation (1.1) with u|r = Opy(x)f. Then u — u satisfies
equation (4.1) with v replaced by v. Therefore, by (4.2) we get the estimate

(5.27) IV (2, B)OPR(X) f + ih B yilay=oll p2ricay S P20 28l 2 ey
Theorem 1.1 follows from (5.27) together with Lemma 5.5 and the following

Lemma 5.6. For N big enough depending on € and € we have the estimates

(5.28) 10pr (X0 fll L2 (rscay S 0_1/2_£HfHH}2L(F;(Cd)7

(5.29) 100l L20s00) S h1/29_3/2_€\|f\|1{g(r;<cd)-
Indeed, we have

(5.30) IV (2, h)Op () f = Opr(xma) fll 2 (rcay S PO~ N Fll sy

We can now take a partition of the unity x;, 7 = 1,...,J, 0 < x; < 1, ijl X; = 1, such
that (5.30) holds with x replaced by each x;. Moreover, to each x; we can associate a smooth
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matrix-valued function A;(z’) such that A;(z")v(2’) = e; and A;l(m') = Al(2") in 7y (supp x;)-
Thus, summing up all estimates (5.30) leads to (1.4) with

J J K
mq = Zijd = Z Zthﬁk,jjk,jMdjkfjl
j=1 j=1k=1
where
O (@',€) = o (=85 Bo(a’, €)/V/ro (@, €))
Tij(@',€) = Nj(2') 7 O(=A;(2")Bo(a”, €)).
6. PROOF OF LEMMA 5.6
In view of (3.2), we have
Varps € 553 (1p) + 551 € 5117 (0) + 53,4
and similarly for p,. Therefore, we have
U' (Vi (pp = p5)) € S11°(0) + 5,4
which together with (5.11) yield
(6.1) xa €S, 0) + 52,

Now (5.28) follows from (6.1) and Proposition 3.1. Furthermore, it is easy to see that (5.29) is
a consequence of the following

Lemma 6.1. For N big enough depending on ¢ and € we have the estimate

(6.2) HOph (eiﬁs/thﬂ < 4 g 1-te=Ca10/h

~

H}([;C4)— L2(I;C4)
and similarly for eﬁp/th, where C' > 0 is the same constant as in Lemma 5.2.

Indeed, we have
o
19132 0y S h2”fH§{}§(F;(Cd) i 92%”]0”%2@@)/0 e—2C210/h gy

< B8 f ey

Proof of Lemma 6.1. Observe first that by (3.2) we have
(6.3) do (x1/1ps]*6) do(21(€")*/8) € Sa(lpsl) + S51 € ST.1(8) + S04

uniformly in z;, and similarly with |p,| replaced by |pp|. In view of the choice of the function
X, it is easy to see that (6.3) implies

(6.4) X € SY1(6) + 50,
uniformly in x;. On the other hand, by Lemma 5.2,
(6.5) cOmb/hei@e/h ¢ 39 1(0) + 594

on supp ¥, uniformly in z;, and similarly with ¢, replaced by ¢,. By (6.4) and (6.5),
(6.6) cCiblhei@s /iy g €SP (0) + S5,
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uniformly in z;. Furthermore, it is easy to see that Lemma 5.1 yields
(6.7) Oprps € 58,2(’%’) + 53,1 - 59,1(9) + 53,17 1< o <2,

T

SY(0)+ S5, if k=1
6.8 Ok s € 8557 (Ipsl) + 8o, € 4 4! o ’
(6-8) (s € 5357 (Ips]) + 5,1 SO+ 8y, i k=2
on supp ¥, uniformly in z, and similarly with ¢, replaced by ¢,. By (6.8),
SO (0)+ 8L, if k=0
6.9 Ok U (VVaps), 05, U (7 Vaipp) € 3 11 v 7
(6.9) U (WVaps), 0, U (VWaipy) 5§}f3k>/2(9) +S5, if k>1,

on supp V¥, uniformly in z7. By (6.9) and (5.11),

{ STi)+ 83, if k=0,

6.10 o A, 0F A, €
( ) 1 P Sif+(1—3k)/2(6) +S§,1 i k>,

sy Uxq

on supp V¥, uniformly in 1. It is easy to see that (6.4), (6.8) and (6.10) imply

(6.11) WL(ps, As), WL(pp, Ap) € ST17(0) + 53,1,
(6.12) VG(A,), UG (Ay) € 57177 (0) + 52,
By (6.6), (6.11) and (6.12) we conclude
(6.13) OO/ eiP I (L( s, As) + hG(Ay)) € Sp17°(0) + S,
as long as 6 > h%/°=¢. Thus, by (6.13) and Proposition 3.1 we obtain
i@s/h < p—1—t_—Cx10/h
(6.14) |0y (771w (L, A) + hG(A,))) w50 .

E‘ul (}hel more, Sillce
_ _ _ / _
x{Ve C’xlﬁ/h S hNe N’ x{\f Cxl‘f ‘/h S hN‘S,‘ ]\f7

we deduce from Lemma 5.2 that

(6.15) hNaNe®/h e 57V (0) + 551

uniformly in 1 and h. By (6.15) and (5.3),

(6.16) WVl e e 517N (0) + SN

on supp ¥, uniformly in 27 and h. On the other hand, it follows from (6.7) and (6.8) that
(6.17) T, (vVatps) € S11(0) + 55,1

on supp V. Taking N big enough, depending on &, and § small enough, we can arrange
|2°n + 2 @, > C — 2l |®,| > C — O() > C/2

on supp V¥, with some constant C' > 0. Therefore, using the eikonal equation (5.1) we can write

_ -1
(7v$@s) 2= Cs (Z2TL + levq)s) .

In view of (5.3) we have

2n+ 2N, e S?,l(ﬂ) + 5871
on supp V. Thus we obtain
(6.18) (WVmSDs)_Q € S?,l(a) + 58,1
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on supp V. By (6.10), (6.16), (6.17) and (6.18) we conclude

(6.19) h*Nm{Ve@S/hfbs\I/(’vacps)ﬁﬂs(fvacps)xAs € Sl_jN/z(G) + 5871
provided N > 6. It follows from (6.19) and Proposition 3.1 that

|0y (7l e, W (1 Va0 2L, (7 V) As ) |

L2(I';C4)—L2(T;CY)
(6.20) < pN=19=ON/2 < pBeN/2-1 <

as long as 6 > h?/5~¢ and N > 4/5¢. Let x be of compact support and suppose that supp xNXs #
0, suppx N X, = 0. Then [Ay,, ¥]x = 0 for 1 < &1|ps|* for some constant §; > 0. Therefore,
on supp [Ay ,, U] x we have the bounds

e~ Cr16/h < o—Cd1lps|20/h < 67565/2/h < BNg—5N/2
Clearly, we have similar bounds when supp x N %, # 0, supp x N X = . When supp x N X = 0,
supp x N X, = 0, then [Ay ,, ¥]x = 0 for z; < d2 for some constant d, > 0. So, in this case

the above bounds still hold. Let now x € 5871 be such that supp x C supp(l — n). Then

[Ax U] x = 0 for 1 < 63(¢')° for some constant 63 > 0. Hence, on supp [Ay ,, U] x we have
the bounds N
e~ Cral€'|/h < 6—0\5’\1_5/h < hN|£/|—N(1—5).

Therefore, by Lemma 5.2 and (6.10) we get
(6.21) WV P AL L W] XA € Spy NP (0) 4 89,
for N big enough. It follows from (6.21) and Proposition 3.1 that

’Oph (hews/h (A, V] XAs) ‘

L2(I;C4)— L2 (T;C4)

(6.22) < pN+1g—t=1-5N/2 < p5eN/2+1—(+1)(2/5—€) < p,

as long as # > h*/°~¢ and N big enough. Now the estimate (6.2) follows from (6.14), (6.20) and

(6.22). <
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