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We study the Dirichlet-to-Neumann map for the stationary linear equation of elasticity in a bounded domain in R d , d ≥ 2, with smooth boundary. We show that it can be approximated by a pseudodifferential operator on the boundary with a matrix-valued symbol and we compute the principal symbol modulo conjugation by unitary matrices.

Introduction

Let Ω ⊂ R d , d ≥ 2, be a bounded, connected domain with a C ∞ smooth boundary Γ = ∂Ω, and consider the stationary isotropic linear equation of elasticity Hereafter, ξ, g := ξ 1 g 1 + ... + ξ d g d and ξ 2 := ξ, ξ . Note that the existance of two different speeds implies that the boundary value problem (1.1) has two disjoint glancing regions Σ s and Σ p defined by Σ s = (x ′ , ξ ′ ) ∈ T * Γ : c s,0 (x ′ )r 0 (x ′ , ξ ′ )n 0 (x ′ ) = 0 , Σ p = (x ′ , ξ ′ ) ∈ T * Γ : c p,0 (x ′ )r 0 (x ′ , ξ ′ )n 0 (x ′ ) = 0 , where c s,0 = c s | Γ , c p,0 = c p | Γ , n 0 = n| Γ , and r 0 ≥ 0 is the principal symbol of the operator -∆ Γ . Here ∆ Γ denotes the negative Laplace-Beltrami operator on Γ with Riemannian metric induced by the Euclidean one. Set h = (Re τ ) -1 if Re τ ≥ |Im τ | and h = |Im τ | -1 if |Im τ | ≥ Re τ , z = hτ and θ = |Im z| ≤ 1. Clearly, in the first case we have z = 1 + iθ, while in the second case we have θ = 1. When θ > 0 we introduce the functions ρ s (x ′ , ξ ′ , z) = -r 0 (x ′ , ξ ′ ) + z 2 n 0 (x ′ )/c s,0 (x ′ ), Im ρ s > 0, ρ p (x ′ , ξ ′ , z) = -r 0 (x ′ , ξ ′ ) + z 2 n 0 (x ′ )/c p,0 (x ′ ), Im ρ p > 0.

Our goal in the present paper is to approximate the operator N (z, h) := -ihN (z/h) by a matrix-valued h -ΨDO similarly to the Dirichlet-to-Neumann operator associated to the Helmholtz equation (see [START_REF] Vodev | Transmision eigenvalue-free regions[END_REF], [START_REF] Vodev | Parabolic transmision eigenvalue-free regions in the degenerate isotropic case[END_REF]) or that one associated to the Maxwell equation (see [START_REF] Vodev | Semiclassical parametrix for the Maxwell equation and applications to the electromagnetic transmision eigenvalues[END_REF]). We also compute the principal symbol in terms of the functions ρ s , ρ p (see Lemma 5.5). Denote by M 2 the 2 × 2 matrix with entries M ij given by

M 11 = z 2 n 0 ρ s r 0 + ρ s ρ p , M 22 = z 2 n 0 ρ p r 0 + ρ s ρ p , -M 21 = M 12 = -2µ 0 √ r 0 + z 2 n 0 √ r 0 r 0 + ρ s ρ p ,
where µ 0 = µ| Γ = c s,0 . When d ≥ 3 we set

M d = M 2 + µ 0 ρ s (I d -I 2 ).
Throughout this paper, given a 2 × 2 matrix M with entries M ij , we denote by M the d × d matrix with entries

M ij = M ij if 1 ≤ i, j ≤ 2, M ij = 0 otherwise. Given a partition of the unity κ ℓ ∈ C ∞ (T * Γ \ 0), 0 ≤ κ ℓ ≤ 1, ℓ = 1, ..., L, L ℓ=1 κ ℓ = 1, introduce the function (1.3) m d = L ℓ=1 κ ℓ J ℓ M d J -1 ℓ where J ℓ (x ′ , ξ ′ ) ∈ C ∞ (T * Γ \ 0)
are matrix-valued functions, homogeneous of order zero in ξ ′ , and such that J -1 ℓ = J t ℓ . Our main result is the following Theorem 1.1. Let θ ≥ h 2/5-ǫ and 0 < h ≪ 1, where 0 < ǫ ≪ 1 is arbitrary. Then for every f ∈ H 3 (Γ; C d ) we have the estimate

(1.4) N (z, h)f -Op h (m d )f L 2 (Γ;C d ) hθ -2 1 + (d -2)θ -1/2 f H 3 h (Γ;C d )
where

m d ∈ C ∞ (T * Γ) is of the form (1.
3) with a suitable partition of the unity κ ℓ and matrixvalued functions J ℓ independent of λ, µ and n. When d = 2 the functions J ℓ do not depend on the variable ξ ′ .

Hereafter the Sobolev spaces are equipped with the h-semiclassical norm. Note that much better estimates for the Dirichlet-to-Neumann operator associated to the Helmholtz equation are proved in [START_REF] Vodev | Transmision eigenvalue-free regions[END_REF], [START_REF] Vodev | Parabolic transmision eigenvalue-free regions in the degenerate isotropic case[END_REF]. This is due to the fact that one can construct a much better parametrix near the boundary for the Helmholtz equation than that one for the equation (1.1) we construct in the present paper. Indeed, such a parametrix is built in [START_REF] Vodev | Transmision eigenvalue-free regions[END_REF], [START_REF] Vodev | Parabolic transmision eigenvalue-free regions in the degenerate isotropic case[END_REF] in the form of an oscilatory integral with a complex-valued phase function and an amplitude satisfying the eikonal and transport equations mod O(x N 1 ), respectively, where N ≫ 1 is arbitrary and 0 < x 1 ≪ 1 denotes the normal variable near the boundary, that is, the distance to Γ. Thus the parametrix satisfies the Helmholtz equation modulo an error term which is given by an oscilatory integral with amplitude of the form O(x N 1 )+ O(h N ). In the case of the equation (1.1), however, it is very hard to solve the transport equations, especially when the boundary data f is microlocally supported in a neighbourhood of the glancing regions. That is why we build in the present paper a less accurate parametrix for the equation (1.1) which does not require to solve transport equations. In this case the parametrix is a sum of two oscilatory integrals with two complex-valued phase functions corresponding to the two speeds of propagation of the elastic waves. Each of these phase functions satisfies the same eikonal equation as in the case of the Helmholtz equation solved in [START_REF] Vodev | Transmision eigenvalue-free regions[END_REF]. The parametrix satisfies the equation (1.1) modulo an error term which is given by a sum of two oscilatory integrals with amplitudes of the form O(x N 1 ) + O(h). To estimate the difference between the exact solution to equation (1.1) and its parametrix we use the a priori estimate (4.2). Most probably, the estimate (1.4) is not optimal and could be improved if one manages to build a better parametrix. In particular, for some applications it is better to have the L 2 norm in the right-hand side of (1.4) instead of the H 3 h one. To do so, one needs to construct a better parametrix in the deep elliptic region, only, that is, in {r 0 ≫ 1}. Recall that the approximation of the Dirichlet-to-Neumann map is usually used to get parabolic regions free of transmission eigenvalues (see [START_REF] Vodev | Transmision eigenvalue-free regions[END_REF], [START_REF] Vodev | Parabolic transmision eigenvalue-free regions in the degenerate isotropic case[END_REF], [START_REF] Vodev | Semiclassical parametrix for the Maxwell equation and applications to the electromagnetic transmision eigenvalues[END_REF]).

Note that microlocal parametrices have been recently constructed in [START_REF] De Hoop | Semiclassical analysis of elastic surface waves[END_REF], [START_REF] Stefanov | The transmission problem in linear isotropic elasticity[END_REF], [START_REF] Zhang | Rayleigh and Stoneley waves in linear elasticity[END_REF] for the wave elastic equation in the case d = 3. All these parametrices, however, are very different from the parametrix we construct in the present paper. In particular, they are not valid near the glancing regions. In contrast, our parametrix remains valid even when the boundary data is microlocally supported near Σ s and Σ p , provided θ ≥ h 2/5-ǫ . In [START_REF] Zhang | Rayleigh and Stoneley waves in linear elasticity[END_REF] the principal symbol of the DN map has been computed explicitly still in the context of the wave elastic equation and d = 3. Note that the formula in [START_REF] Zhang | Rayleigh and Stoneley waves in linear elasticity[END_REF] agrees with that one we get in the present paper modulo a conjugation by a unitary matrix and after making a suitable change in the notations. In [START_REF] Stefanov | Distribution of resonances for the Neumann problem in linear elasticity outside a strictly convex body[END_REF] a full parametrix was constructed for the stationary elastic equation in the exterior of a strictly convex body when d = 3 and the Lamé parameters being constants. In this case the parametrix for the elastic equation can be expressed in terms of the parametrix for the Helmholtz equation, which in turn is well-known. Similarly, one can construct a parametrix in the elliptic region for the stationary elastic equation in the exterior of an arbitrary compact body (see [START_REF] Stefanov | Neumann resonances in linear elasticity for an arbitrary body[END_REF]).

Preliminaries

Throuhout this paper we will denote by e 1 , e 2 , ..., e d ∈ R d the vectors (1, 0, ..., 0), (0, 1, ..., 0), ..., (0, 0, ..., 1), respectively. Given ξ = (ξ 1 , ξ 2 , ..., ξ d ) ∈ C d , introduce the d × d matrix

U 0 (ξ) = ξ 1 I d + d j=2 ξ j (e j ⊗ e 1 -e 1 ⊗ e j ). Set ξ 2 = d j=1 ξ 2 j and |ξ| 2 = d j=1 |ξ j | 2 .
In this section we will prove the next two lemmas.

Lemma 2.1. The matrix U 0 satisfies

(2.1) U 0 (ξ)ξ = ξ 2 e 1 .
Moreover, the matrices e 1 ⊗ e 1 and Z 0 (ξ) := U 0 (ξ)U t 0 (ξ) commute.

Proof. We have which proves (2.1). Set ξ = (0, ξ 2 , ..., ξ d ). Then U t 0 ( ξ) = -U 0 ( ξ) and hence

U 0 (ξ)ξ = ξ 1 ξ + d j=2 ξ j ( e j ,
Z 0 (ξ) = ξ 2 1 I d -U 0 ( ξ) 2 .
On the other hand, it is easy to see that

U 0 ( ξ)(e 1 ⊗ e 1 ) = - d j=2 ξ j e 1 ⊗ e j , (e 1 ⊗ e 1 )U 0 ( ξ) = d j=2 ξ j e j ⊗ e 1 .
Thus we get (e 1 ⊗ e 1 )U 0 ( ξ) 2 =ξ 2 e 1 ⊗ e 1 = U 0 ( ξ) 2 (e 1 ⊗ e 1 ), and hence Z 0 (ξ) and e 1 ⊗ e 1 commute. ✷ Given a matrix A with entries A ij , define its norm by

A = max ij |A ij |.
Lemma 2.2. Given any η 1 ∈ C we have the formula

(2.2) det(U 0 (ξ) + η 1 e 1 ⊗ e 1 ) = (ξ 2 + ξ 1 η 1 )ξ d-2 1 .
When d ≥ 3 suppose that ξ 1 ∈ C, ξ 1 = 0, and ξ k ∈ R, k = 2, ..., d. Then, if ξ 2 + ξ 1 η 1 = 0, we have the estimate

(2.3) (U 0 (ξ) + η 1 e 1 ⊗ e 1 ) -1 (|ξ| + |η 1 |)|ξ 2 + ξ 1 η 1 | -1 + (d -2)|ξ 1 | -1 .
Proof. Denote the matrix U 0 (ξ) + η 1 e 1 ⊗ e 1 by M d (ξ 1 , ..., ξ d , η 1 ). The lemma is very easy to prove when d = 2. Indeed, in this case we have 

M 2 (ξ 1 , ξ 2 , η 1 ) = ξ 1 + η 1 ξ 2 -ξ 2 ξ 1 and hence detM 2 = ξ 2 + ξ 1 η 1 . Moreover, if ξ 2 + ξ 1 η 1 = 0, we have M -1 2 (ξ 1 , ξ 2 , η 1 ) = (ξ 2 + ξ 1 η 1 ) -1 ξ 1 -ξ 2 ξ 2 ξ 1 +
) = ξ d-2 1 detP d-1 (1, ξ 2 , ..., ξ d ) = ξ d-2 1 detP d-1 (1, 0, ..., 0, ξ d ) = (-1) d ξ d ξ d-2 1 .

Thus we get detM

d (ξ 1 , ..., ξ d , η 1 ) = ξ 1 detM d-1 (ξ 1 , ..., ξ d-1 , η 1 ) + ξ 2 d ξ d-2 1 .
It is clear now that if (2.2) holds for detM d-1 , it holds for detM d , as well. Thus we conclude that (2.2) holds for all d.

The proof of (2.3) when d ≥ 3 is more delicate. Set ξ = (0, ξ ′ ) ∈ R d , where ξ ′ = (ξ 2 , ..., ξ d ) ∈ R d-1 , and suppose that there exists a d × d matrix Θ(ξ ′ ), homogeneous of order zero, such that Θ(ξ

′ )e 1 = e 1 , Θ(ξ ′ ) ξ = |ξ ′ |e 2 , Θ(ξ ′ ) -1 = Θ t (ξ ′ ) and Θ(ξ ′ ) ≤ C with a constant C > 0 independent of ξ ′ . Then, given any g ∈ C d , we have U 0 ( ξ)Θ t (ξ ′ )g = Θ(ξ ′ ) ξ, g e 1 -Θ(ξ ′ )e 1 , g ξ = |ξ ′ | e 2 , g e 1 -e 1 , g ξ. Hence Θ(ξ ′ )U 0 ( ξ)Θ t (ξ ′ )g = |ξ ′ | e 2 , g Θ(ξ ′ )e 1 -e 1 , g Θ(ξ ′ ) ξ = |ξ ′ | e 2 , g e 1 -|ξ ′ | e 1 , g e 2 = U 0 (|ξ ′ |e 2 )g, which implies U 0 (ξ) = Θ t (ξ ′ )U 0 (ξ 1 e 1 + |ξ ′ |e 2 )Θ(ξ ′ ). Since Θ t (ξ ′ )(e 1 ⊗ e 1 )Θ(ξ ′ ) = (e 1 ⊗ e 1 ), we obtain (2.4) (U 0 (ξ) + η 1 e 1 ⊗ e 1 ) -1 = Θ(ξ ′ ) U 0 (ξ 1 e 1 + |ξ ′ |e 2 ) + η 1 e 1 ⊗ e 1 -1 Θ t (ξ ′ ).
This implies

(2.5) (U 0 (ξ) + η 1 e 1 ⊗ e 1 ) -1 U 0 (ξ 1 e 1 + |ξ ′ |e 2 ) + η 1 e 1 ⊗ e 1 -1 .
On the other hand,

(2.6) U 0 (ξ 1 e 1 + |ξ ′ |e 2 ) + η 1 e 1 ⊗ e 1 -1 = M -1 2 (ξ 1 , |ξ ′ |, η 1 ) + ξ -1 1 d j=3 e j ⊗ e j .
It follows from (2.6) that

(2.7) U 0 (ξ 1 e 1 + |ξ ′ |e 2 ) + η 1 e 1 ⊗ e 1 -1 ≤ M -1 2 (ξ 1 , |ξ ′ |, η 1 ) + |ξ 1 | -1 .
Clearly, in this case (2.3) follows from (2.5) and (2.7).

It remains to see that such a matrix Θ(ξ ′ ) exists. When d = 3 it is easy to see that the matrix

Θ(ξ ′ ) =    1 0 0 0 ξ 2 /|ξ ′ | ξ 3 /|ξ ′ | 0 -ξ 3 /|ξ ′ | ξ 2 /|ξ ′ |   
has the desired properties. When d ≥ 4, however, it is hard (and probably impossible) to find only one global matrix Θ(ξ ′ ) with these properties. Such a matrix, however, exists locally. Indeed, let U ⊂ S d-2 be a small open domain in the unit sphere of dimension d -2. Then there exists a smooth (d -1)

× (d -1) matrix-valued function V (w), w ∈ U , depending on U , such that V -1 (w) = V t (w) and V (w)w = e 1 = (1, 0, ..., 0) ∈ R d-1 . Then we define the matrix Θ(ξ ′ ) for ξ ′ /|ξ ′ | ∈ U by Θ(ξ ′ ) = 1 0 0 V (ξ ′ /|ξ ′ |) .
It is easy to see that Θ(ξ ′ ) has the desired properties as long as

ξ ′ /|ξ ′ | ∈ U . Thus we can cover S d-2 by a finite number of open sets U k , k = 1, ..., K, so that to each U k we can associate a matrix-valued function Θ k (ξ ′ ) having the desired properties for ξ ′ /|ξ ′ | ∈ U k . Then the identity (2.4) remains valid with Θ(ξ ′ ) replaced by Θ k (ξ ′ ) as long as ξ ′ /|ξ ′ | ∈ U k . This implies the bounds (2.5) and (2.7) for ξ ′ /|ξ ′ | ∈ U k , k = 1, ..., K, and hence for all ξ ′ /|ξ ′ | ∈ S d-2 . ✷

Some properties of the h -ΨDOs

We will first introduce the spaces of symbols which will play an important role in our analysis and will recall some basic properties of the h -ΨDOs. Given k ∈ R, δ 1 , δ 2 ≥ 0, we denote by S k δ 1 ,δ 2 the space of all functions a ∈ C ∞ (T * Γ), which may depend on the semiclassical parameter h, satisfying

∂ α x ′ ∂ β ξ ′ a(x ′ , ξ ′ , h) ≤ C α,β ξ ′ k-δ 1 |α|-δ 2 |β|
for all multi-indices α and β, with constants C α,β independent of h. More generally, given a function ω > 0 on T * Γ, we denote by S k δ 1 ,δ 2 (ω) the space of all functions a ∈ C ∞ (T * Γ), which may depend on the semiclassical parameter h, satisfying

∂ α x ′ ∂ β ξ ′ a(x ′ , ξ ′ , h) ≤ C α,β ω k-δ 1 |α|-δ 2 |β|
for all multi-indices α and β, with constants C α,β independent of h and ω.

Thus S k δ 1 ,δ 2 = S k δ 1 ,δ 2 ( ξ ′
). Given a matrix-valued symbol a, we will say that a ∈ S k δ 1 ,δ 2 if all entries of a belong to S k δ 1 ,δ 2 . Also, given k ∈ R, 0 ≤ δ < 1/2, we denote by S k δ the space of all functions a ∈ C ∞ (T * Γ), which may depend on the semiclassical parameter h, satisfying

∂ α x ′ ∂ β ξ ′ a(x ′ , ξ ′ , h) ≤ C α,β h -δ(|α|+|β|) ξ ′ k-|β|
for all multi-indices α and β, with constants C α,β independent of h. Again, given a matrixvalued symbol a, we will say that a ∈ S k δ if all entries of a belong to S k δ . The h -ΨDO with a symbol a is defined by

(Op h (a)f ) (x ′ ) = (2πh) -d+1 e -i h x ′ -y ′ ,ξ ′ a(x ′ , ξ ′ , h)f (y ′ )dξ ′ dy ′ .
If a ∈ S k 0,1 , then the operator Op h (a) :

H k h (Γ) → L 2 (Γ) is bounded uniformly in h, where u H k h (Γ) := Op h ( ξ ′ k )u L 2 (Γ)
.

It is also well-known (e.g. see Section 7 of [START_REF] Dimassi | Spectral Asymptotics in Semi-classical Limit[END_REF]) that, if a ∈ S 0 δ , 0 ≤ δ < 1/2, then Op h (a) :

H s h (Γ) → H s h (Γ) is bounded uniformly in h.
More generally, we have the following Proposition 3.1. Let h 1/2-ǫ ≤ θ ≤ 1, ℓ ≥ 0, and let

a ∈ S -ℓ 1,1 (θ) + S k 0,1 ⊂ θ -ℓ S k 1/2-ǫ . Then we have (3.1) Op h (a) H k h (Γ)→L 2 (Γ) θ -ℓ .
Let η ∈ C ∞ (T * Γ) be such that η = 1 for r 0 ≤ C 0 , η = 0 for r 0 ≥ 2C 0 , where C 0 > 0 does not depend on h. Let ρ denote either ρ s or ρ p . It is easy to see (e.g. see Lemma 3.1 of [START_REF] Vodev | Transmision eigenvalue-free regions[END_REF]) that taking C 0 big enough we can arrange

C 1 θ 1/2 ≤ |ρ| ≤ C 2 , Im ρ ≥ C 3 |θ||ρ| -1 ≥ C 4 |θ| for (x ′ , ξ ′ ) ∈ supp η, and |ρ| ≥ Im ρ ≥ C 5 |ξ ′ | for (x ′ , ξ ′ ) ∈ supp (1 -η) with some constants C j > 0. We will say that a function a ∈ C ∞ (T * Γ) belongs to S k 1 δ 1 ,δ 2 (ω 1 ) + S k 2 δ 3 ,δ 4 (ω 2 ) if ηa ∈ S k 1 δ 1 ,δ 2 (ω 1 ) and (1 -η)a ∈ S k 2 δ 3 ,δ 4 (ω 2 ). It is shown in Section 3 of [6] (see Lemma 3.2 of [6]) that (3.2) ρ k , |ρ| k ∈ S k 2,2 (|ρ|) + S k 0,1 (|ρ|) ⊂ S -k/2 1,1 (θ) + S k 0,1 ⊂ θ -k/2 S -N 1/2-ǫ + S k 0,1 ⊂ θ -k/2 S k 1/2-ǫ
as long as θ ≥ h 1/2-ǫ , uniformly in θ and h, where k = 0 if k ≥ 0, k = -k if k ≤ 0 and N ≫ 1 is arbitrary.

A priori estimates

In this section we will prove a priori estimates for the solution to the equation

(4.1) (h 2 ∆ λ,µ + z 2 n)u = hv in Ω, u = 0 on Γ.
More precisely, we will prove the following

Theorem 4.1. Let θ ≥ h and 0 < h ≪ 1. Let u ∈ H 2 (Ω; C d ) satisfy equation (4.1)
. Then the function g = hB λ,µ u| Γ satisfies the estimate

(4.2) g L 2 (Γ;C d ) h 1/2 θ -1/2 v L 2 (Ω;C d ) .
Proof. We will first prove the following Lemma 4.2. We have the estimate

(4.3) u H 1 h (Ω;C d ) hθ -1 v L 2 (Ω;C d ) .
Proof. The analog of the Green formula for the elastic Laplacian applied to the solution u of (4.1) takes the form

(4.4) -∆ λ,µ u, u L 2 (Ω;C d ) = Ω E(u)
where

E(u) = λ d j=1 ∂u j ∂x j 2 + µ 2 1≤i,j≤d ∂u i ∂x j + ∂u j ∂x i 2 = (λ + 2µ) d j=1 ∂u j ∂x j 2 + µ 2 i =j ∂u i ∂x j + ∂u j ∂x i 2 ≥ C 1 1≤i,j≤d ∂u i ∂x j + ∂u j ∂x i 2
with some constant C 1 > 0. On the other hand, since u = 0 on Γ, by Korn's inequality we have

Ω 1≤i,j≤d ∂u i ∂x j 2 ≤ C 2 Ω 1≤i,j≤d ∂u i ∂x j + ∂u j ∂x i 2
with some constant C 2 > 0. Combining the above inequalities with (4.4) we obtain the coercive estimate

(4.5) -∆ λ,µ u, u L 2 (Ω;C d ) ≥ C Ω 1≤i,j≤d ∂u i ∂x j 2
with some constant C > 0. The Green formula (4.4) also gives the identity

Im(z 2 ) n 1/2 u 2 L 2 (Ω;C d ) = Im hv, u L 2 (Ω;C d ) , which implies (4.6) u L 2 (Ω;C d ) hθ -1 v L 2 (Ω;C d ) .
On the other hand, we have

-h 2 ∆ λ,µ u, u L 2 (Ω;C d ) = Re(z 2 ) nu, u L 2 (Ω;C d ) -Re hv, u L 2 (Ω;C d ) u 2 L 2 (Ω;C d ) + h 2 v 2 L 2 (Ω;C d )
which combinned with (4.5) leads to the estimate (4.7)

Ω 1≤i,j≤d h 2 ∂u i ∂x j 2 u 2 L 2 (Ω;C d ) + h 2 v 2 L 2 (Ω;C d ) .
Clearly, (4.3) follows from (4.6) and (4.7). ✷

Let V ⊂ R d be a small open domain such that V 0 := V ∩ Γ = ∅. Let (x 1 , x ′ ) ∈ V + := V ∩ Ω, 0 < x 1 ≪ 1, x ′ = (x 2 , ..., x d ) ∈ V 0 ,
be the local normal geodesic coordinates near the boundary. Recall (e.g. see Section 2 of [START_REF] Vodev | Semiclassical parametrix for the Maxwell equation and applications to the electromagnetic transmision eigenvalues[END_REF]) that the Euclidean gradient ∇ can be written in the coordinates x = (x 1 , x ′ ) as

∇ = γ(x)∇ x = ν(x ′ ) ∂ ∂x 1 + d k=2 γ(x)e k ∂ ∂x k ,
where γ is a smooth matrix-valued function such that γ(x)e 1 = ν(x ′ ), γ(x)e k satisfy (4.8) ν(x ′ ), γ(x)e k = 0, k = 2, ..., d.

Let ξ = (ξ 1 , ξ ′ ) be the dual variable of x = (x 1 , x ′ ). Then the symbol of the operator -i∇ in the coordinates (x, ξ) takes the form ξ 1 ν(x ′ ) + β(x, ξ ′ ), where

β(x, ξ ′ ) = d k=2 ξ k γ(x)e k .
Note that (4.8) implies the identity (4.9) ν(x ′ ), β(x, ξ ′ ) = 0 for all (x, ξ ′ ).

Thus we get that the principal symbol of -∆ is equal to ξ 2 1 +r(x, ξ ′ ), where r = β, β . Therefore, the principal symbol of the positive Laplace-Beltrami operator on Γ is equal to r 0 (x ′ , ξ ′ ) = r(0, x ′ , ξ ′ ) = β 0 , β 0 , where

β 0 = β| x 1 =0 . Clearly, there exist constants C 1 , C 2 > 0 such that C 1 |ξ ′ | 2 ≤ r 0 ≤ C 2 |ξ ′ | 2 . Let V 1 ⊂ V be a small open domain such that V 0 1 := V 1 ∩Γ = ∅. Choose a function ψ ∈ C ∞ 0 (V), 0 ≤ ψ ≤ 1, such that ψ = 1 on V 1 .
Then the function u ♭ := ψu satisfies the equation

(4.10) (h 2 ∆ λ,µ + z 2 n)u ♭ = hv ♭ in Ω, u ♭ = 0 on Γ, where v ♭ = ψv + h[∆ λ,µ , ψ]u satisfies (4.11) v ♭ L 2 (Ω;C d ) v L 2 (Ω;C d ) + u H 1 h (Ω;C d ) .
We will now write the elastic Laplacian in the coordinates x = (x 1 , x ′ ). To this end, we will write the principal symbol of -∆ λ,µ in the coordinates (x, ξ). We have

P (x, ξ) = µ(γξ) 2 I d + (λ + µ)(γξ) ⊗ (γξ) = µ(ξ 2 1 + r(x, ξ ′ ))I d + (λ + µ)γ(ξ ⊗ ξ)γ t = ξ 2 1 Q 0 (x) + ξ 1 Q 1 (x, ξ ′ ) + Q 2 (x, ξ ′ ), where Q 0 = c s Π s (e 1 ) + c p Π p (e 1 ), Q 1 = (λ + µ)γ e 1 ⊗ ξ ′ + ξ ′ ⊗ e 1 γ t , Q 2 = µr(x, ξ ′ )I d + (λ + µ)γ(ξ ′ ⊗ ξ ′ )γ t are symmetric matrices. Denote D x j = -ih∂ x j . We can write (4.12) -h 2 ∆ λ,µ = Q 0 (x)D 2 x 1 + Q 1 D x 1 + Q 2 + hR(x, D x )
, where R is a first-order matrix-valued differential operator, and

Q j = 1 2 (Q j (x, D x ′ ) + Q j (x, D x ′ ) * ) = Q j (x, D x ′ ) + hR j-1 (x, D x ′ ), j = 1, 2, are self-adjoint operators on L 2 (Γ; C d ).
Here Q * denotes the adjoint of Q with respect to the scalar product, •, • 0 , in L 2 (Γ; C d ), and R j-1 is a j -1-order matrix-valued differential operator.

Introduce the function

F (x 1 ) = Q 0 (x 1 , •)D x 1 u ♭ , D x 1 u ♭ 0 -Q 2 (x 1 , •, D x ′ )u ♭ , u ♭ 0 + Re(z 2 ) n(x 1 , •)u ♭ , u ♭ 0 .
Clearly, (4.13)

F (0) = Q 0 (0, •)D x 1 u ♭ | x 1 =0 , D x 1 u ♭ | x 1 =0 0 ≥ C D x 1 u ♭ | x 1 =0 2 0
with some constant C > 0, where • 0 denotes the norm in L 2 (Γ; C d ). On the other hand, (4.14)

F (0) = - δ 0 F ′ (x 1 )dx 1
for some constant δ > 0, where F ′ denotes the first derivative with respect to x 1 . We will now use (4.14) to bound F (0) from above. To this end we will compute F ′ (x 1 ) using that u ♭ satisfies (4.10) together with (4.12). We have

F ′ (x 1 ) = -2Re (Q 0 D 2 x 1 + Q 2 -Re(z 2 )n)u ♭ , ∂ x 1 u ♭ 0 + Q ′ 0 D x 1 u ♭ , D x 1 u ♭ 0 -(Q 2 ′ -Re(z 2 )n ′ )u ♭ , u ♭ 0 = 2h -1 Im (h 2 ∆ λ,µ + Re(z 2 )n)u ♭ , D x 1 u ♭ 0 + 2h -1 Im (Q 1 D x 1 + hR)u ♭ , D x 1 u ♭ 0 + Q ′ 0 D x 1 u ♭ , D x 1 u ♭ 0 -(Q 2 ′ -Re(z 2 )n ′ )u ♭ , u ♭ 0 = 2Im (v ♭ -ih -1 Im(z 2 )nu ♭ ), D x 1 u ♭ 0 + 2Im Ru ♭ , D x 1 u ♭ 0 + Q ′ 0 D x 1 u ♭ , D x 1 u ♭ 0 -(Q 2 ′ -Re(z 2 )n ′ )u ♭ , u ♭ 0 . Hence |F ′ (x 1 )| hθ -1 v ♭ 2 0 + θh -1 1 ℓ=0 D ℓ x 1 u ♭ 2 0 + |α|≤1 D α x u ♭ 2 0 .
Using this estimate together with (4.11), (4.14) and Lemma 4.2 we obtain

F (0) ≤ 2δ 0 |F ′ (x 1 )|dx 1 hθ -1 v 2 L 2 (Ω;C d ) + (1 + θh -1 ) u 2 H 1 h (Ω;C d ) (4.15) (hθ -1 + h 2 θ -2 ) v 2 L 2 (Ω;C d ) hθ -1 v 2 L 2 (Ω;C d ) .
Observe now that

D x 1 u ♭ | x 1 =0 = ψ 0 D x 1 u| x 1 =0 , D x ′ u| x 1 =0 = 0,
where ψ 0 = ψ| x 1 =0 is supported in V 0 and such that ψ 0 = 1 on V 0 1 . Therefore, by (4.13) and (4.15),

ψ 0 D x 1 u| x 1 =0 0 h 1/2 θ -1/2 v L 2 (Ω;C d ) , which clearly implies (4.16) ψ 0 g 0 h 1/2 θ -1/2 v L 2 (Ω;C d ) .
Since Γ is compact, there exist a finite number of smooth functions ψ i , 0 ≤ ψ i ≤ 1, i = 1, ..., I, such that 1 = I i=1 ψ i and (4.16) holds with ψ 0 replaced by each ψ i . Therefore, the estimate (4.2) is obtained by summing up all such estimates (4.16). ✷

Parametrix construction

We keep the notations from the previous sections and will suppose that θ ≥ h 2/5-ǫ , 0 < ǫ ≪ 1. It suffices to build the parametrix locally since the global parametrix can be obtained by using a suitable partition of the unity and summing up the corresponding local parametrices. Let the function φ 0 ∈ C ∞ 0 (R) be such that φ 0 (σ) = 1 for |σ| ≤ 1, φ 0 (σ) = 0 for |σ| ≥ 2. Let (x 1 , x ′ ) ∈ V + be the local normal geodesic coordinates near the boundary. Take a function χ ∈ C ∞ (T * Γ), 0 ≤ χ ≤ 1, such that π x ′ (supp χ) ⊂ V 0 , where π x ′ : T * Γ → Γ denotes the projection (x ′ , ξ ′ ) → x ′ . Moreover, we require that either χ is of compact support or χ ∈ S 0 0,1 with supp χ ⊂ supp(1η). When χ is of compact support we require that supp χ has common points with at most one glancing region. Let f ∈ H 3 (Γ; C d ). We will be looking for a parametrix of the solution to equation (1.1) in the form

u = (2πh) -d+1 e i h ( y ′ ,ξ ′ +ϕs(x,ξ ′ ,z)) Ψ(x, ξ ′ )A s (x, ξ ′ , z)χ(x ′ , ξ ′ )f (y ′ )dξ ′ dy ′ +(2πh) -d+1 e i h ( y ′ ,ξ ′ +ϕp(x,ξ ′ ,z)) Ψ(x, ξ ′ )A p (x, ξ ′ , z)χ(x ′ , ξ ′ )f (y ′ )dξ ′ dy ′ , where Ψ = φ 0 (x 1 ξ ′ ε /δ)φ 0 x 1 / |ρ s | 3 δ φ 0 x 1 / |ρ p | 3 δ , 0 < ε ≪ 1,
0 < δ ≪ 1 being a parameter independent of h and θ to be fixed in Lemma 5.1. We require that u satisfies the boundary condition u = Op h (χ)f on x 1 = 0. The phase functions are of the form

ϕ s = N -1 k=0 x k 1 ϕ s,k , ϕ s,0 = -x ′ , ξ ′ , ϕ s,1 = ρ s , ϕ p = N -1 k=0 x k 1 ϕ p,k , ϕ p,0 = -x ′ , ξ ′ , ϕ p,1 = ρ p ,
N ≫ 1 being an arbitrary integer, and satisfy the eikonal equations mod O(x N 1 ):

(5.1)

c s (x)(γ∇ x ϕ s ) 2 -z 2 n(x) = x N 1 Φ s , c p (x)(γ∇ x ϕ p ) 2 -z 2 n(x) = x N
1 Φ p , where Φ s , Φ p are smooth functions up to the boundary x 1 = 0. One can solve the eikonal equations above in the same way as in [START_REF] Vodev | Transmision eigenvalue-free regions[END_REF]. The functions ϕ s,k , ϕ p,k , k ≥ 2, are determined uniquely, independent of x 1 , and have the following properties (see Section 4 of [START_REF] Vodev | Transmision eigenvalue-free regions[END_REF]). Lemma 5.1. For 0 ≤ x 1 ≤ 2δ min{1, |ρ s | 3 } with δ > 0 small enough, we have

(5.2) ϕ s,k ∈ S 4-3k 2,2 (|ρ s |) + S 1 0,1 , k ≥ 1, (5.3) ∂ k x 1 Φ s ∈ S 2-3N -3k 2,2 (|ρ s |) + S 2 0,1 , k ≥ 0, (5.4) Im ϕ s ≥ x 1 Im ρ s /2, (5.5) |∂ x 1 ϕ s | ≥ |ρ s | /2,
and similarly for ϕ p .

Set ϕ s = ϕ sϕ s,0 , ϕ p = ϕ pϕ p,0 . The next lemma is proved in Section 4 of [START_REF] Vodev | Semiclassical parametrix for the Maxwell equation and applications to the electromagnetic transmision eigenvalues[END_REF].

Lemma 5.2. There exists a constant C > 0 such that we have the estimates

(5.6) ∂ α x ′ ∂ β ξ ′ e i ϕs/h ≤ C α,β θ -|α|-|β| e -Cx 1 θ/h on supp η, C α,β |ξ ′ | -|β| e -Cx 1 |ξ ′ |/h on supp(1 -η),
for 0 ≤ x 1 ≤ 2δ min{1, |ρ s | 3 } and all multi-indices α and β with constants C α,β > 0 independent of x 1 , θ, z and h. Similar bounds hold for ϕ p as well.

The amplitudes A s and A p are matrix-valued functions which will be chosen so that on supp χ we have (5.7)

A s + A p = I d on x 1 = 0, and

(5.8) Π p (γ∇ x ϕ s )A s = 0, Π s (γ∇ x ϕ p )A p = 0.
If V 0 is small enough, there exists a matrix-valued function Λ

(x ′ ) ∈ C ∞ (V 0 ) such that Λ(x ′ )ν(x ′ ) = e 1 and Λ t = Λ -1 in V 0 . Set U (ξ) = Λ -1 U 0 (Λξ)Λ,
where U 0 is the matrix introduced in Section 2. It follows from (2.2) that U (ξ) is invertible if ξ, ν = 0. Clearly, U (ν) = I d . Moreover, by Lemma 2.1 we have U (ξ)ξ = ξ 2 ν. Therefore, (5.9)

U (ξ)Π p (ξ)U t (ξ) = U (ξ)(ξ ⊗ ξ)U t (ξ) = (U (ξ)ξ) ⊗ (U (ξ)ξ) = ξ 4 ν ⊗ ν = ξ 4 Π p (ν).
Moreover, we have

Z(ξ) := U (ξ)U t (ξ) = Λ -1 Z 0 (Λξ)Λ, Π p (ν) = Λ -1 Π p (e 1 )Λ.
Hence the matrices Z(ξ) and Π p (ν) commute. Set

A s = U t (γ∇ x ϕ s )Π s (ν)T, A p = U t (γ∇ x ϕ p )Π p (ν)T,
where T is a matrix-valued function independent of x 1 to be defined below in such a way that (5.7) holds. Let us see that A s and A p satisfy (5.8). In view of (5.5) we have

γ∇ x ϕ s , ν = ∂ x 1 ϕ s = 0, γ∇ x ϕ p , ν = ∂ x 1 ϕ p = 0.
Hence the matrices U t (γ∇ x ϕ s ) and U t (γ∇ x ϕ p ) are invertible, and by (5.9), we have

Π p (γ∇ x ϕ s )A s = Π p (γ∇ x ϕ s )U t (γ∇ x ϕ s )Π s (ν)T = (γ∇ x ϕ s ) 4 U -1 (γ∇ x ϕ s )Π p (ν)Π s (ν)T = 0, A p = U -1 (γ∇ x ϕ p )Z(γ∇ x ϕ p )Π p (ν)T = U -1 (γ∇ x ϕ p )Π p (ν)Z(γ∇ x ϕ p )T = (γ∇ x ϕ p ) -4 Π p (γ∇ x ϕ p )Z(γ∇ x ϕ p )T,
which imply (5.8). We will now find the matrix T so that W T = I d with

W = U t (γ∇ x ϕ s | x 1 =0 )Π s (ν) + U t (γ∇ x ϕ p | x 1 =0 )Π p (ν).
Observe that

γ∇ x ϕ s | x 1 =0 = ρ s ν -β 0 , γ∇ x ϕ p | x 1 =0 = ρ p ν -β 0 . Therefore, W = ρ s Π s (ν) + ρ p Π p (ν) -U t (β 0 ).
We will derive from Lemma 2.2 the following Lemma 5.3. The matrix W is invertible with an inverse T = W -1 satisfying the bounds

(5.10) T θ -ℓ on supp η, √ r 0 + 1 on supp(1 -η), where ℓ = 0 if d = 2, ℓ = 1/2 if d ≥ 3.
More generally, we have

(5.11) T ∈ S -ℓ 1,1 (θ) + S 1 0,1 . Proof. Set ζ(x ′ , ξ ′ ) = -Λ(x ′ )β 0 (x ′ , ξ ′ ). Clearly, ζ 2 = β 2 0 = r 0 .
In view of (4.9) we have ζ, e 1 = 0 and hence ζ = (0, ζ 2 , ..., ζ d ). Then the matrix W 0 := ΛW Λ -1 can be written in the form

W 0 = U t 0 (ζ) + ρ s Π s (e 1 ) + ρ p Π p (e 1 ) = U t 0 (ρ s e 1 + ζ) + (ρ p -ρ s )e 1 ⊗ e 1 .

By (2.2) we get

(5.12) detW 0 = (r 0 + ρ s ρ p )ρ d-2 s . We need now the following Lemma 5.4. There exists a constant C > 0 such that (5.13)

|r 0 + ρ s ρ p | ≥ C.
More generally, we have

(5.14) (r 0 + ρ s ρ p ) -1 ∈ S 0 1,1 (θ) + S 0 0,1 . Proof. Recall that ρ 2 s = -r 0 + z 2 k s , ρ 2 p = -r 0 + z 2 k p with some functions k s , k p ∈ C ∞ (Γ), k s > k p > 0.
Then we have the identity (5.15)

r 0 + ρ s ρ p = r 0 + ρ 2 s + ρ s (ρ 2 p -ρ 2 s ) ρ s + ρ p = z 2 k p ρ s + k s ρ p ρ s + ρ p .

Hence

(5.16)

|r 0 + ρ s ρ p | ≥ k p Im ρ s + k s Im ρ p |ρ s | + |ρ p | ≥ C 1 Im ρ s + Im ρ p √ r 0 + 1
with some constant C 1 > 0. On the other hand, there is a constant C 2 > 0 such that Im ρ s ≥ C 2 √ r 0 + 1 on supp(1-η), Im ρ s ≥ C 2 θ on suppη, and similarly for ρ p (see Section 3). Therefore, (5.13) follows from (5.16) when either (x ′ , ξ ′ ) ∈ supp(1η) or (x ′ , ξ ′ ) ∈ supp η and θ ≥ θ 0 > 0. Thus, it remains to prove (5.13) when (x ′ , ξ ′ ) ∈ supp η and θ ≪ 1. In this case we have that |ρ s | and |ρ p | are uniformly bounded from above by a constant and z 2 = 1 + O(θ). We will make use of the identity (5.17)

(k p ρ s -k s ρ p )(k p ρ s + k s ρ p ) = (k s -k p ) (k s + k p )r 0 -z 2 k s k p . If (k s + k p )r 0 -z 2 k s k p ≥ ε > 0, it follows from (5.17) that |k p ρ s + k s ρ p | ≥ C 3 ε
with some constant C 3 > 0. Thus in this case (5.13) follows from (5.15). Let now

(k s + k p )r 0 -z 2 k s k p ≤ ε with 0 < ε ≪ 1. Then ρ s = k s r 0 k p + O(ε), ρ p = k p r 0 k s + O(ε), r 0 = k s k p k s + k p + O(ε) + O(θ).
Clearly, there exists a constant C 4 > 0 such that |k p ρ s + k s ρ p | ≥ C 4 , provided ε and θ are taken small enough, which again implies (5.13).

To prove (5.14) note first that, in view of (3.2), we have

(5.18) ρ s + ρ p , k p ρ s + k s ρ p ∈ S 0 1,1 (θ) + S 1 0,1 .
Therefore, in view of (5.15), to prove (5.14) it suffices to show that

(5.19) (k p ρ s + k s ρ p ) -1 ∈ S 0 1,1 (θ) + S -1 0,1 .
In other words, we must show that given any multi-indices α and β we have the estimates

(5.20) ∂ α x ′ ∂ β ξ ′ (k p ρ s + k s ρ p ) -1 ≤ C α,β θ -|α|-|β| on supp η, C α,β |ξ ′ | -1-|β| on supp(1 -η).
Clearly, for α = β = 0 the bounds in (5.20) follow from the analysis above. To prove them for all α and β, we will proceed by induction in |α| + |β|. Suppose that (5.20) holds for all α and

β such that |α| + |β| ≤ K -1, K ≥ 1.
Let us see that (5.20) holds for all α and β such that |α| + |β| = K. To this end, we will use the identity

0 = ∂ α x ′ ∂ β ξ ′ (k p ρ s + k s ρ p )(k p ρ s + k s ρ p ) -1 = (k p ρ s + k s ρ p )∂ α x ′ ∂ β ξ ′ (k p ρ s + k s ρ p ) -1 + |α ′ |+|β ′ |≤K-1 ∂ α ′ x ′ ∂ β ′ ξ ′ (k p ρ s + k s ρ p ) -1 ∂ α-α ′ x ′ ∂ β-β ′ ξ ′ (k p ρ s + k s ρ p ) .
Thus, in view of (5.18), we obtain

|k p ρ s + k s ρ p | ∂ α x ′ ∂ β ξ ′ (k p ρ s + k s ρ p ) -1 ≤ |α ′ |+|β ′ |≤K-1 ∂ α ′ x ′ ∂ β ′ ξ ′ (k p ρ s + k s ρ p ) -1 ∂ α-α ′ x ′ ∂ β-β ′ ξ ′ (k p ρ s + k s ρ p ) θ -|α|-|β| on supp η, |ξ ′ | -|β| on supp(1 -η).
Since |ξ ′ | + 1 |k p ρ s + k s ρ p |, we conclude from the above bounds that (5.20) holds for all α and β such that |α| + |β| = K, as desired. ✷ It follows from (5.12) and (5.13) that the matrix W 0 is invertible, and hence so is W . Moreover, by (2.3) its inverse satisfies the bound

T W -1 0 |ζ| + |ρ s | + |ρ p | + (d -2)|ρ s | -1 1 + (d -2)θ -1/2 on supp η, √ r 0 + 1 on supp(1 -η),
which implies (5.10). To prove (5.11) we need to show that the estimates

(5.21) ∂ α x ′ ∂ β ξ ′ T ≤ C α,β θ -ℓ-|α|-|β| on supp η, C α,β |ξ ′ | 1-|β| on supp(1 -η).
hold for all multi-indices α and β. Note that in view of (3.2) we have (5.22) W ∈ S 0 1,1 (θ) + S 1 0,1 . Now (5.21) can be derived from (5.10) and (5.22) by induction in |α| + |β| in the same way as above.

✷

To get a parametrix for the elastic DN map we need the following Lemma 5.5. There exist matrix-valued functions m d , q ∈ C ∞ (T * Γ) such that

(5.23) -ihB λ,µ u| x 1 =0 = Op h (m d χ + hqχ)f.
Proof. Given a scalar-valued function ϕ and a vector-valued function a, we have the identity

-ihe -iϕ/h B λ,µ e iϕ/h a = λ γ∇ x ϕ, a ν + µ ν, a γ∇ x ϕ + µ ν, γ∇ x ϕ a -ihλ γ∇ x , a ν -ihµ ν, γ∇ x a -ihµ ν, γ∇ x a. Set a s = A s χf , a p = A p χf , a 0 s = A 0 s χf , a 0 p = A 0 p χf , where A 0 s = A s | x 1 =0 , A 0 p = A p | x 1 =0 satisfy A 0 s + A 0 p = I. Set also a 1 s = A 1 s χf , a 1 p = A 1 p χf , where A 1 s = ∂ x 1 A s | x 1 =0 , A 1 p = ∂ x 1 A p | x 1 =0
. Applying the above identity to ϕ s , a s and ϕ p , a p leads to

-ihe -iϕs/h B λ,µ e iϕs/h a s | x 1 =0 -ihe -iϕp/h B λ,µ e iϕp/h a p | x 1 =0 = λ ρ s ν -β 0 , a 0 s ν + µ ν, a 0 s (ρ s ν -β 0 ) + µ ν, ρ s ν -β 0 a 0 s +λ ρ p ν -β 0 , a 0 p ν + µ ν, a 0 p (ρ p ν -β 0 ) + µ ν, ρ p ν -β 0 a 0 p -ih(λ + µ) ν, a 1 s + a 1 p ν -ihµ(a 1 s + a 1 p ) = (λ + µ) ν, ρ s a 0 s + ρ p a 0 p ν -λ β 0 , f ν -µ ν, f β 0 + µ(ρ s a 0 s + ρ p a 0 p ) -ih(λ + µ) ν, a 1 s + a 1 p ν -ihµ(a 1 s + a 1 p ) = (m d + hq)χf, where q = -i (c s Π s (ν) + c p Π p (ν)) A 1 s + A 1 p = -i (c s Π s (ν) + c p Π p (ν)) U t (γ ∇ x ′ (ρ p -ρ s ))Π p (ν)T,
where ∇ x ′ = (0, ∇ x ′ ), and

m d = (c s Π s (ν) + c p Π p (ν)) ρ s A 0 s + ρ p A 0 p -λβ 0 ⊗ ν -µν ⊗ β 0 = -λβ 0 ⊗ ν -µν ⊗ β 0 + (c s Π s (ν) + c p Π p (ν)) ρ s U t (ρ s ν -β 0 )Π s (ν) + ρ p U t (ρ p ν -β 0 )Π p (ν) T = -λβ 0 ⊗ ν -µν ⊗ β 0 + c s ρ 2 s Π s (ν) + c p ρ 2 p Π p (ν) T -(c s Π s (ν) + c p Π p (ν)) U t (β 0 ) (ρ s Π s (ν) + ρ p Π p (ν)) T. Hence m 0 d (ζ) := Λm d Λ -1 = λζ ⊗ e 1 + µe 1 ⊗ ζ + c s ρ 2 s Π s (e 1 ) + c p ρ 2 p Π p (e 1 ) T d (5.24) + (c s Π s (e 1 ) + c p Π p (e 1 )) U t 0 (ζ) (ρ s Π s (e 1 ) + ρ p Π p (e 1 )) T d , where T d (ζ) := ΛT Λ -1 = W -1
0 . We will first compute m 0 d when d = 2. We have

U t 0 (ζ) = 0 -ζ 2 ζ 2 0 , W 0 = ρ p -ζ 2 ζ 2 ρ s and hence T 2 (ζ 2 ) = (r 0 + ρ s ρ p ) -1 ρ s ζ 2 -ζ 2 ρ p .
Then we have

λζ ⊗ e 1 + µe 1 ⊗ ζ = 0 λζ 2 µζ 2 0 , c s ρ 2 s Π s (e 1 ) + c p ρ 2 p Π p (e 1 ) T 2 = (r 0 + ρ s ρ p ) -1 c p ρ 2 p 0 0 c s ρ 2 s ρ s ζ 2 -ζ 2 ρ p = (r 0 + ρ s ρ p ) -1 c p ρ 2 p ρ s ζ 2 c p ρ 2 p -ζ 2 c s ρ 2 s c s ρ 2 s ρ p , (c s Π s (e 1 ) + c p Π p (e 1 )) U t 0 (ζ) (ρ s Π s (e 1 ) + ρ p Π p (e 1 )) T 2 = (r 0 + ρ s ρ p ) -1 0 -ζ 2 c p ρ s ζ 2 c s ρ p 0 ρ s ζ 2 -ζ 2 ρ p = (r 0 + ρ s ρ p ) -1 ζ 2 2 c p ρ s -ζ 2 c p ρ s ρ p ζ 2 c s ρ s ρ p ζ 2 2 c s ρ p .
Since in this case ζ 2 = √ r 0 , an easy computation leads to the formula (5.25) m 0 2 := (r 0 + ρ s ρ p ) -1

z 2 nρ s -2µ √ r 0 (r 0 + ρ s ρ p ) + z 2 n √ r 0 2µ √ r 0 (r 0 + ρ s ρ p ) -z 2 n √ r 0 z 2 nρ p .
Let now d ≥ 3. Then, in view of (2.4) and (2.6), we have 

Θ k (ζ) -1 T d (ζ)Θ k (ζ) = T 2 ( √ r 
Θ k (ζ) -1 m 0 d (ζ)Θ k (ζ) = m 0 2 + c s ρ s d j=3 e j ⊗ e j = M d for ζ/|ζ| ∈ U k . Let φ k ∈ C ∞ (S d-2 ), 0 ≤ φ k ≤ 1, k = 1, ..., K, K k=1 φ k = 1
, be a partition of the unity such that supp φ k ⊂ U k . Then we conclude from (5.25) and (5.26) that

χm d = K k=1 φ k (ζ/|ζ|)χJ k M d J -1 k where J k (x ′ , ξ ′ ) = Λ(x ′ ) -1 Θ k (ζ(x ′ , ξ ′ )).

✷

In what follows we will bound the norm of the difference between the DN map and the operator Op h (m d ). To this end, observe that u satisfies the equation

(h 2 ∆ λ,µ + z 2 n) u = h v,
where the function v is of the form v = (2πh) -d+1 e i h y ′ -x ′ ,ξ ′ e i ϕs/h B s + e i ϕp/h B p f (y ′ )dξ ′ dy ′ = Op h e i ϕs/h B s + e i ϕp/h B p f with some matrix-valued functions B s and B p . To find them we will use the identity e -iϕ/h (h 2 ∆ λ,µ + z 2 n(x)) e iϕ/h a = -P (x,

γ∇ x ϕ) + z 2 n a + h 2 ∆ λ,µ a + hL(ϕ, A)f,
where a is a vector-valued function of the form a = A(x, ξ ′ )χ(x ′ , ξ ′ )f (y ′ ) and L is a matrix-valued function of the form

L(ϕ, A) = |α|+|β|≤2, |α|≥1 L α,β (x)∂ α x ϕ∂ β x (χA),
L α,β being smooth matrix-valued functions depending only on the variable x. Observe also that ∆ λ,µ a = G(A)f , where G(A) is a matrix-valued function of the form

G(A) = 1≤|α|≤2 G α (x)∂ α x (χA).
We would like to apply the above identity to ϕ s , a s = A s χf and ϕ p , a p = A p χf . In view of (5.1) and (5.8), we have

P (x, γ∇ x ϕ s ) -z 2 n a s = c s -z 2 n(γ∇ x ϕ s ) -2 Π s (γ∇ x ϕ s )a s = x N 1 Φ s (γ∇ x ϕ s ) -2 Π s (γ∇ x ϕ s )a s .
By the above identities we get

B s = h [∆ λ,µ , Ψ] χA s -h -1 x N 1 ΨΦ s (γ∇ x ϕ s ) -2 Π s (γ∇ x ϕ s )χA s +ΨL(ϕ s , A s ) + hΨG(A s )
and similarly for B p . Let u satisfy equation (1.1) with u| Γ = Op h (χ)f . Then uu satisfies equation (4.1) with v replaced by v. Therefore, by (4.2) we get the estimate

(5.27) N (z, h)Op h (χ)f + ihB λ,µ u| x 1 =0 L 2 (Γ;C d ) h 1/2 θ -1/2 v L 2 (Ω;C d ) .
Theorem 1.1 follows from (5.27) together with Lemma 5.5 and the following Lemma 5.6. For N big enough depending on ǫ and ε we have the estimates

(5.28) Op h (χq)f L 2 (Γ;C d ) θ -1/2-ℓ f H 2 h (Γ;C d ) , (5.29) v L 2 (Ω;C d ) h 1/2 θ -3/2-ℓ f H 3 h (Γ;C d ) . Indeed, we have (5.30) N (z, h)Op h (χ)f -Op h (χm d )f L 2 (Γ;C d ) hθ -2-ℓ f H 3 h (Γ;C d ) .
We can now take a partition of the unity χ j , j = 1, ..., J, 0 ≤ χ j ≤ 1, J j=1 χ j = 1, such that (5.30) holds with χ replaced by each χ j . Moreover, to each χ j we can associate a smooth matrix-valued function Λ j (x ′ ) such that Λ j (x ′ )ν(x ′ ) = e 1 and Λ -1 j (x ′ ) = Λ t j (x ′ ) in π x ′ (supp χ j ). Thus, summing up all estimates (5.30) leads to (1.4) with

m d = J j=1 χ j m d = J j=1 K k=1 χ j φ k,j J k,j M d J -1 k,j where φ k,j (x ′ , ξ ′ ) = φ k -Λ j (x ′ )β 0 (x ′ , ξ ′ )/ r 0 (x ′ , ξ ′ ) , J k,j (x ′ , ξ ′ ) = Λ j (x ′ ) -1 Θ k (-Λ j (x ′ )β 0 (x ′ , ξ ′ )).
6. Proof of Lemma 5.6

In view of (3.2), we have

∇ x ′ ρ s ∈ S -1 2,2 (|ρ s |) + S 1 0,1 ⊂ S -1/2 1,1 (θ) + S 1 0,1
and similarly for ρ p . Therefore, we have (θ) + S 2 0,1 . Now (5.28) follows from (6.1) and Proposition 3.1. Furthermore, it is easy to see that (5.29) is a consequence of the following Lemma 6.1. For N big enough depending on ǫ and ε we have the estimate

U t (γ ∇ x ′ (ρ p -ρ s )) ∈ S -1/2
(6.2) Op h e i ϕs/h B s H 3 h (Γ;C d )→L 2 (Γ;C d ) h + θ -1-ℓ e -Cx 1 θ/h
and similarly for e i ϕp/h B p , where C > 0 is the same constant as in Lemma 5.2.

Indeed, we have

v 2 L 2 (Ω;C d ) h 2 f 2 H 3 h (Γ;C d ) + θ -2-2ℓ f 2 H 3 h (Γ;C d ) ∞ 0 e -2Cx 1 θ/h dx 1 hθ -3-2ℓ f 2 H 3 h (Γ;C d ) . ✷
Proof of Lemma 6.1. Observe first that by (3.2) we have (θ) + S 1 0,1 if k ≥ 2, on supp Ψ, uniformly in x 1 , and similarly with ϕ s replaced by ϕ p . By (6.8), (6.9)

(6.3) φ 0 x 1 /|ρ s | 3 δ φ 0 (x 1 ξ ′ ε /δ) ∈ S 0 2,2 (|ρ s |) + S 0 0,1 ⊂ S 0 1,1 (θ) + S 0 0,1
∂ k x 1 U t (γ∇ x ϕ s ), ∂ k x 1 U t (γ∇ x ϕ p ) ∈ S 0 1,1 (θ) + S 1 0,1 if k = 0, S (1-3k)/2 1,1 (θ) + S 1 0,1 if k ≥ 1, on supp Ψ, uniformly in x 1 . By (6.9) and (5.11), (6.10)

∂ k x 1 A s , ∂ k x 1 A p ∈ S -ℓ 1,1 (θ) + S 2 0,1 if k = 0, S -ℓ+(1-3k)/2 1,1 (θ) + S 2
0,1 if k ≥ 1, on supp Ψ, uniformly in x 1 . It is easy to see that (6.4), (6.8) and (6.10) imply (6.11) ΨL(ϕ s , A s ), ΨL(ϕ p , A p ) ∈ S -1-ℓ 1,1 (θ) + S 3 0,1 , (6.12) ΨG(A s ), ΨG(A p ) ∈ S -5/2-ℓ 1,1

(θ) + S 2 0,1 . By (6.6), (6.11) and (6.12) we conclude (6.13) e Cx 1 θ/h e i ϕs/h Ψ (L(ϕ s , A s ) + hG(A s )) ∈ S -1-ℓ 1,1 (θ) + S 3 0,1 as long as θ ≥ h 2/5-ǫ . Thus, by (6.13) and Proposition 3.1 we obtain (6.14) Op h e i ϕs/h Ψ (L(ϕ s , A s ) + hG(A s ))

H 3 h (Γ;C d )→L 2 (Γ;C d )
θ -1-ℓ e -Cx 1 θ/h .

Furthermore, since

x N 1 e -Cx 1 θ/h h N θ -N , x N 1 e -Cx 1 |ξ ′ |/h h N |ξ ′ | -N , we deduce from Lemma 5.2 that (6.15) h -N x N 1 e i ϕs/h ∈ S -N 1,1 (θ) + S -N 0,1 uniformly in x 1 and h. By (6.15) and (5.3), (6.16) h -N x N 1 e i ϕs/h Φ s ∈ S 1-5N/2 1,1

(θ) + S 2-N 0,1 on supp Ψ, uniformly in x 1 and h. On the other hand, it follows from (6.7) and (6.8) that (6.17) Π s (γ∇ x ϕ s ) ∈ S 0 1,1 (θ) + S 2 0,1 on supp Ψ. Taking N big enough, depending on ε, and δ small enough, we can arrange

z 2 n + x N 1 Φ s ≥ C -x N 1 |Φ s | ≥ C -O ( 
δ) ≥ C/2 on supp Ψ, with some constant C > 0. Therefore, using the eikonal equation (5.1) we can write

(γ∇ x ϕ s ) -2 = c s z 2 n + x N 1 Φ s -1 .
In view of (5.3) we have z 2 n + x N 1 Φ s ∈ S 0 1,1 (θ) + S 0 0,1 on supp Ψ. Thus we obtain (6.18) (γ∇ x ϕ s ) -2 ∈ S 0 1,1 (θ) + S 0 0,1 on supp Ψ. By (6.10), (6.16), (6.17) and ( 6 (6.20) h N -1 θ -5N/2 h 5ǫN/2-1 h as long as θ ≥ h 2/5-ǫ and N ≥ 4/5ǫ. Let χ be of compact support and suppose that supp χ∩Σ s = ∅, supp χ ∩ Σ p = ∅. Then [∆ λ,µ , Ψ] χ = 0 for x 1 ≤ δ 1 |ρ s | 3 for some constant δ 1 > 0. Therefore, on supp [∆ λ,µ , Ψ] χ we have the bounds e -Cx 1 θ/h ≤ e -Cδ 1 |ρs| 3 θ/h ≤ e -Cθ 5/2 /h h N θ -5N/2 .

Clearly, we have similar bounds when supp χ ∩ Σ p = ∅, supp χ ∩ Σ s = ∅. When supp χ ∩ Σ s = ∅, supp χ ∩ Σ p = ∅, then [∆ λ,µ , Ψ] χ = 0 for x 1 ≤ δ 2 for some constant δ 2 > 0. So, in this case the above bounds still hold. Let now χ ∈ S 0 0,1 be such that supp χ ⊂ supp(1η). Then [∆ λ,µ , Ψ] χ = 0 for x 1 ≤ δ 3 ξ ′ -ε for some constant δ 3 > 0. Hence, on supp [∆ λ,µ , Ψ] χ we have the bounds e -Cx 1 |ξ ′ |/h ≤ e -C|ξ ′ | 1-ε /h h N |ξ ′ | -N (1-ε) . Therefore, by Lemma 5.2 and (6.10) we get h N +1 θ -ℓ-1-5N/2 h 5ǫN/2+1-(ℓ+1)(2/5-ǫ) h as long as θ ≥ h 2/5-ǫ and N big enough. Now the estimate (6.2) follows from (6.14), (6.20) and (6.22). ✷

  (1.1) (∆ λ,µ + τ 2 n(x))u = 0 in Ω, u = f on Γ, where τ ∈ C, Re τ > 0, |τ | ≫ 1, u = (u 1 , ..., u d ), f = (f 1 , ..., f d ), and ∆ λ,µ denotes the elastic Laplacian defined by(∆ λ,µ u) i = d j=1 ∂ x j (σ ij (u)) , i = 1, ..., d,whereσ ij (u) = λdiv uδ ij + µ ∂u i ∂x j + ∂u j ∂x i is the stress tensor, δ ij = 1 if i = j, δ ij = 0 if i = j.Here λ, µ ∈ C ∞ (Ω) are scalar real-valued functions called Lamé parameters supposed to satisfy the condition(1.2) µ(x) > 0, λ(x) + µ(x) > 0, ∀x ∈ Ω.The scalar function n ∈ C ∞ (Ω) in (1.1) is the density and is supposed to be strictly positive. It is easy to see that the elastic Laplacian can be written in the form∆ λ,µ u = µ∆u + (λ + µ)∇(∇ • u)modulo a first-order matrix-valued differential operator, where ∆ and ∇ denote the Euclidean Laplacian and gradient, respectively. The natural Neumann boundary condition for the elastic equation is B λ,µ u = 0, where (B λ,µ u) i = d j=1 σ ij (u)ν j , i = 1, ..., d, ν = (ν 1 , ..., ν d ) being the Euclidean unit normal to Γ. We define the elastic Dirichlet-to-Neumann map N (τ ) : H 1 (Γ; C d ) → L 2 (Γ; C d ) by N (τ )f = B λ,µ u| Γ where u and f satisfy the equation (1.1). The equation (1.1) describes the propagation of elastic waves in Ω with a frequency τ . It is well-known that the elastic waves are superpositions of two waves, called S and P waves, mooving with speeds µ n and 2µ+λ n , respectively. From purely mathematical point of view, this is explained by the fact that the principal symbol, P , of the operator -∆ λ,µ can be decomposed as P (x, ξ) = c s (x)Π s (ξ) + c p (x)Π p (ξ) where c s = µ, c p = 2µ + λ, Π s (ξ) + Π p (ξ) = ξ 2 I d , I d being the identity d × d matrix, and Π p (ξ) = ξ ⊗ ξ. Throughout this paper, given two vectors ξ = (ξ 1 , ..., ξ d ) ∈ C d , η = (η 1 , ..., η d ) ∈ C d , we will denote by ξ ⊗ η the matrix defined by (ξ ⊗ η)g = ξ, g η, g ∈ C d .

ξ e 1 -e 1 , ξ e j ) = d j=1 ξ 1 ξ j e j + d j=2 ξ j (ξ j e 1 -ξ 1 e j ) = d j=1 ξ 2 j e 1

 1111 

  e j for ζ/|ζ| ∈ U k . Using this and (5.24) one can easily obtain the formula(5.26) 

( 6 for

 6 .21) h -N e i ϕs/h [∆ λ,µ , Ψ] χA s ∈ S N big enough. It follows from (6.21) and Proposition 3.1 thatOp h he i ϕs/h [∆ λ,µ , Ψ] χA s L 2 (Γ;C d )→L 2 (Γ;C d )(6.22) 

  , ..., ξ d , η 1 ) = ξ 1 detM d-1 (ξ 1 , ..., ξ d-1 , η 1 ) + (-1) d ξ d detP d-1 (ξ 1 , ..., ξ d ),

	η 1
	and (2.3) in this case is obvious. When d ≥ 3 the formula (2.2) can be proved by induction. Indeed, we have
	detM d (ξ 1 where P d-1 denotes the (d-1)×(d-1) matrix with lines (ξ 2 , ..., ξ d ), (0, ξ 1 , 0, ..., 0), ..., (0, ..., ξ 1 , 0). Hence
	detP d-1 (ξ 1 , ξ 2 , ..., ξ d

  uniformly in x 1 , and similarly with |ρ s | replaced by |ρ p |. In view of the choice of the function χ, it is easy to see that (6.3) implies uniformly in x 1 . Furthermore, it is easy to see that Lemma 5.1 yields (6.7)∂ α x ′ ϕ s ∈ S 0 2,2 (|ρ s |) + S 1 0,1 ⊂ S 0 1,1 (θ) + S 1 0,1 , 1 ≤ |α| ≤ 2, (6.8) ∂ k x 1 ϕ s ∈ S 4-3k 2,2 (|ρ s |) + S 1 0,1 ⊂

		S 0 1,1 (θ) + S 1 0,1 if k = 1,
		S	2-3k/2 1,1
	(6.4) uniformly in x 1 . On the other hand, by Lemma 5.2, 1,1 (θ) + S 0 0,1 χΨ ∈ S 0
	(6.5)	e Cx 1 θ/h e i ϕs/h ∈ S 0 1,1 (θ) + S 0 0,1
	on supp Ψ, uniformly in x 1 , and similarly with ϕ s replaced by ϕ p . By (6.4) and (6.5),
	(6.6)	e Cx 1 θ/h e i ϕs/h χΨ ∈ S 0 1,1 (θ) + S 0 0,1

  .18) we conclude(6.19)h -N x N 1 e i ϕs/h Φ s Ψ(γ∇ x ϕ s ) -2 Π s (γ∇ x ϕ s )χA s ∈ Sprovided N ≥ 6. It follows from (6.19) and Proposition 3.1 thatOp h h -1 x N 1 e i ϕs/h Φ s Ψ(γ∇ x ϕ s ) -2 Π s (γ∇ x ϕ s )χA s L 2 (Γ;C d )→L 2 (Γ;C d )

	-5N/2 1,1	(θ) + S 0 0,1