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An Interpolated Model Recovery Anti-Windup for a Canard-Guided
Projectile Subject to Uncertainties

Sovanna Thai1, Clément Roos2, Jean-Marc Biannic2, and Spilios Theodoulis1

Abstract— This paper presents an autopilot design for a dual-
spin guided projectile subject to aerodynamic uncertainties
and actuator saturations. The proposed design consists of a
gain-scheduled baseline controller together with an interpolated
dynamic anti-windup compensator based on model recovery.
Evaluation of the closed-loop is done through IQC-based
analysis at an operating point, and through Monte Carlo
simulations. Both assessments show that the addition of an anti-
windup compensator can drastically improve the behaviour of
the system in degraded flight conditions.

Index Terms— guided projectiles, autopilot design, gain
scheduling, anti-windup, robustness analysis

I. INTRODUCTION

The unguided nature of ballistic projectiles makes them
incompatible with demanding operational requirements. In-
deed, deviations from the nominal trajectory can easily occur
due to disturbances or uncertainties, ultimately leading to
significant miss distances. Guided projectile concepts seek
to overcome these shortcomings by adding steering mecha-
nisms.

The concept studied in this paper is a dual-spin projectile
featuring a roll-decoupled nose equipped with four canards
(see Fig.1). These canards are independently actuated, and
their deflection allows to alter the trajectory in flight. A stan-
dard flight scenario of such a projectile is depicted in Fig.2.
During the ballistic phase, the on-board electronics activate,
and a roll autopilot ensures control of the nose position.
Afterwards, the guided phase starts, during which additional
efforts on the pitch and yaw channels are generated by the
canards. Although attractive for its apparent simplicity, this
solution leads to a challenging control problem. Previous
work on this concept include [1], which tackled system
modelling as well as controller synthesis. More recently in
[2], saturations were taken into account and a gain-scheduled
static anti-windup compensator was proposed. Building up
on these previous studies, this paper revisits the anti-windup
design and proposes a dynamic compensator with a suitable
interpolation strategy, and sets up the integral quadratic
constraints (IQC) framework for robustness analysis of the
closed-loop against both aerodynamic uncertainties and sat-
urations.
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Fig. 1. Dual-spin projectile concept

Fig. 2. Standard flight scenario

Section II reviews the open-loop components and model.
Section III deals with autopilot design, with a brief descrip-
tion of the baseline autopilot from [2], and the computation
of a dynamic anti-windup compensator. Section IV presents
the robustness analysis framework and early analysis results,
and Section V details Monte Carlo simulations.

II. OPEN-LOOP MODEL

The 7 degree-of-freedom airframe model is described by
its translational and attitude dynamic equations. They are
expressed in a non-rolling reference frame B′ shown in Fig. 1
as:u̇v̇
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where [u, v, w]T are the linear velocities, and [pf , pa, q, r]
T

the angular rates of the projectile (the subscripts f and a
denote the forward and aft parts respectively). The constants
appearing in these equations are the mass m of the projectile
and its moments of inertia Ixf , Ixa, and It. Complementing
these equations are the translational and attitude kinematic
equations which describe the linear and angular positions,
[xe, ye, ze]

T and [φf , φa, θ, ψ]T , with respect to the inertial



reference frame. These are omitted for brevity but can be
found e.g. in [1].

Assuming no wind, Eq. (1a) can be rewritten in terms
of the airframe velocity V , angle of attack α, and angle of
sideslip β, in a form that is more useful for control design
purposes:V̇α̇

β̇

 =

 0
q + r(cosα tan θ − sinα) tanβ
−r(cosα+ sinα tan θ)


+

1
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 (2)

The modelling of the forces and moments is based on
ballistics theory as presented in [3]. For brevity, we focus on
the pitch/yaw channels, as the roll channel is not as relevant
for autopilot design. The external forces Y,Z include lift,
Magnus (originating from the spinning motion), control
(generated by the canards), and gravitational terms:[

Y
Z

]
= qS

([
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]
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The external moments M,N consist of pitch/yaw, Mag-
nus, damping, and control terms:[

M
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The expressions of the forces and moments involve aero-
dynamic coefficients that depend in a nonlinear manner
on the Mach number M = V/a(h), with a the altitude-
dependent speed of sound. These coefficients are subject
to uncertainties, as detailed in Table I. Other parameters
and constants appearing in the expressions of the forces
and moments are the dynamic pressure q = 1

2ρ(h)V 2,
with ρ(h) the altitude-dependent air density, the gravitational
acceleration g(h), the reference area S and the calibre d.

The force and moment control terms involve virtual con-
trol variables [δq, δr]

T . These are related to the actual canard
deflection angles [δ1, δ2, δ3, δ4]T through:

[
δq
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]
= T (φf )
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2 0 − 1
2

1
2 0 − 1

2 0

]
δ1
δ2
δ3
δ4

 (5)

with T (φf ) =
[

cosφf − sinφf
sinφf cosφf

]
.

The relevant dynamics for flight control are the lateral
(pitch/yaw) channels, which can be rewritten in the generic
form:

ẋ(t) = f(x(t),u(t),σ(t))

y(t) = g(x(t),u(t),σ(t))
(6)

with states x = [α, q, β, r]T , inputs u = [δq, δr]
T , outputs

y = [nz, ny, q, r]
T , and parameters σ = [V, h, pa, θ]

T . The
load factors are defined as [nz, ny] = 1

mg [Zs, Ys], where Zs
and Ys are respectively the normal and lateral components
of the external forces excluding gravity (cf. Eq. (3)).

TABLE I
AERODYNAMIC COEFFICIENT UNCERTAINTIES

Coefficient Uncertainty (%) Coefficient Uncertainty (%)
CNα 6 Cmα 3
CY pα 30 Cnpα 15
CNδ 10 Cmq 15

- - Cmδ 10

The linearisation of the above nonlinear system requires
defining an extended trimming vector ρ = [V, h, pa, θ, α, β]T

so that equilibrium points can be analytically computed [4].
Because the trimming vector includes state variables, this
leads to a quasi-LPV model:

ẋε(t) = A(ρ)xε(t) +B(ρ)uε(t)

yε(t) = C(ρ)xε(t) +D(ρ)uε(t)
(7)

where xε, uε, and yε denote the state, input, and output
deviation vectors from equilibrium. In anticipation of ro-
bustness analysis, aerodynamic uncertainties are introduced
in the linearised model by computing corresponding linear
fractional representations (LFR). This point is given more
attention in Section IV.

In addition to the airframe model, the plant includes actu-
ator and sensor dynamics. The canard actuators are modelled
as second-order systems of natural frequency 20 Hz and
damping ratio 0.781, with an additional amplitude saturation
δsat = ±10◦. For simplicity, we use two virtual actuators
corresponding to the two virtual command signals. The
sensors are modelled as fast first-order systems with natural
frequency 133 Hz, and provide measurements of the load
factors [nz,m, ny,m]T , the angular rates [qm, rm]T , and the
deflection angles [δq,m, δr,m]T . This amounts to a plant
model of order 14 = 4 + (2× 2) + (6× 1).

III. AUTOPILOT DESIGN

A. Baseline Autopilot

The baseline autopilot considered in this paper is identical
to the one used in [2], and only its main features are
recalled here. The controller is structured as in Fig.3, where
the subscripts •c and •m denote commanded and measured
variables respectively. In addition, symmetries are imposed
on the controller gains, reflecting the symmetries of the plant:
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(8)

The eight gains are computed at 8× 6× 5 = 240 operating
points, using H∞ multi-objective synthesis with systune
[5]. The chosen design points correspond to an equidistant
grid of a reduced three-dimensional flight envelope consist-
ing of the scheduling variables V ∈ [140 m/s, 420 m/s],
h ∈ [0 m, 15000 m], and pa ∈ [750 rad/s, 1600 rad/s]. The
global controller is obtained by linearly interpolating the
gains between the design points. The gain surfaces remain
relatively smooth, as shown in Fig.4.
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Fig. 3. Structure of the pitch/yaw channel linear controller

Fig. 4. Gain surfaces for fixed pa

B. Anti-Windup Synthesis

To counteract the effects of saturations, an anti-windup
compensator AW is added. As illustrated by Fig.5, this
additional element is driven by the difference between the
desired controller output yc and the achieved command
signal u = sat(yc). It then generates a signal v = [v1, v2]T

that modifies the controller dynamics. In an LTI context, this
yields:

(K)


ẋc = Acxc +Bc

[
y
w

]
+ v1

yc = Ccxc +Dc

[
y
w

]
+ v2

(9)

where (Ac, Bc, Cc, Dc) is a state-space realisation of the
baseline controller K.

In the context of the studied application, we assume a fixed
roll angle φf = 45◦ and δp = 0 during the guided phase
(which can be ensured by the independent roll autopilot
from [6]). In addition, a pseudo-inverse allocation is used
to convert the virtual controller outputs [δq, δr]

T back into
the commanded canard angles [δ1, δ2, δ3, δ4]T . This yields:δ1δ2δ3

δ4

 =

√
2

2

 0 −1
+1 0
0 +1
−1 0

[δq + δr
δq − δr

]
(10)

From the above relation, it follows that the amplitude
saturation δsat = 10◦ applied on the canard angles can
be expressed as a saturation δsat,virtual =

√
2 × 10◦ on

[δq + δr, δq − δr]
T , which is subsequently defined as the

controller output yc with respect to Eq. (9) and Fig.5.
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Fig. 5. Principle of anti-windup compensation
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Fig. 6. MRAW compensation scheme

In [2], local static anti-windup compensators were com-
puted and then interpolated to cover the flight envelope.
While the simplicity of this structure makes it attractive,
it is interesting to investigate whether we can benefit from
the increased number of degrees of freedom of a dynamic
anti-windup. In this study, a model-recovery anti-windup
(MRAW) approach is proposed (see [7], [8]). The principle
of MRAW augmentation is shown in Fig.6, and consists in
embedding a model of the plant P into the anti-windup.
Noting (Ap, Bp, Cp, Dp) a realisation of the plant with
removed exogenous input and output, we have

(P̂ )


ẋaw = Apxaw +Bp(u− yc + ṽ2)

yaw = Cpxaw +Dp(u− yc + ṽ2)

ṽ2 to be designed
(11)

The motivation for this structure is that xaw tracks the mis-
match between the unconstrained response and the closed-
loop response. A natural objective is then to bring xaw to
0, in which case the unconstrained behaviour is recovered.
This is achieved by way of the signal ṽ2. Note that the anti-
windup signals yaw and ṽ2 in the MRAW scheme do not
exactly match the signals v1 and v2 from Eq. (9). However,
these can directly be derived from:

v1 = −Bcyaw v2 = −Dcyaw + ṽ2 (12)

Several algorithms exist to compute MRAW compen-
sators, and we refer to [7] and [8] for more details on the
topic. Because the flight envelope includes points where the
plant is exponentially unstable, and to keep the tuning effort
to a minimum, a regional LQ-based MRAW was chosen.
Thus the anti-windup signal ṽ2 is given by:

ṽ2 = Klqrxaw (13)



Fig. 7. Response to a step input on ny : without anti-windup (dotted), with
static anti-windup (dashed), and with MRAW-LQ (full)

associated to the quadratic cost function J =∫∞
0

(xTawQxaw + ṽ2Rṽ2)dt. The corresponding gain
matrix Klqr ∈ R2×14 is thus easily computed (e.g. with
the Matlab command Klqr = -lqr(A,B,Q,R); the
minus sign arises from the sign convention of the anti-
windup signals). The cost function is kept the same for
all the 240 design points, with Q = diag(I10, 50 · I4) and
R = I2, enforcing a stronger penalty on the four last states
corresponding to the (mismatch on the) actuator states,
see Section II. The resulting compensator is capable of
improving step responses, as illustrated by Fig.7. On this
particular case, there is no apparent advantage in using
the LQ-based MRAW compensator compared to the static
one. The benefits will become clearer when robustness
analysis will be addressed in Section IV (see Fig. 10). It
is worth noting that the 240 local MRAW compensators
were calculated in about 2 seconds. By contrast, obtaining
the static anti-windup compensators took 152 seconds. The
relative length of the latter computation can be attributed to
the required LMI resolution, although it should be pointed
out that it was done using LMI Lab, and that faster solvers
are available.

The relatively high order naw = 14 of the compensators
does not lend itself to the interpolation of the state-space
coefficients. Instead, the interpolation method chosen to
obtain the global compensator is based on output blending as
described in [9]: at a given operating point, the neighbouring
local anti-windup compensators are made active, and their
outputs are interpolated to yield the global compensator out-
put. Since three scheduled variables (V, h, pa) are considered,
the interpolation is made between the outputs of 23 = 8
local anti-windup compensators. Although this interpolation
scheme does not offer stability or performance guarantees,
it remains attractive as its implementation is straightforward
even for high order systems. Furthermore, it involves fewer
on-line operations compared to other ad hoc strategies such
as pole-zero or state-space interpolations.

IV. ROBUSTNESS ANALYSIS USING IQCS

A. IQC Framework

The anti-windup synthesis conducted above was done
assuming a nominal plant model and did not directly address
robustness issues. The robustness analysis of the closed-
loop can be done using integral quadratic constraints (IQCs).
The main principles of the method are briefly summed up
here, and we refer to [10] and [11] for more thorough

M11(s)

∆

yu

M(s)

∆

w z

yu

Fig. 8. LFR for IQC analysis (left: stability; right: performance)

theoretical explanations. IQC-based robustness analysis re-
lies on modelling the system to analyse as an LFR, as
depicted in Fig.8. The system M(s) =

[
M11(s) M12(s)
M21(s) M22(s)

]
is

the nominal model, assumed to be stable, and ∆ ∈ ∆
is a causal bounded operator that gathers the uncertainties
and nonlinearities of the system. A so-called IQC multiplier
Π: jR → C(ny+nu)×(ny+nu) is then sought, whose role is
roughly to capture the properties of ∆ and to provide a
stability certificate. These notions are made precise by the
main stability theorem from [10]:

Theorem 1: Let M11(s) be stable and ∆ ∈ ∆. If the
following properties hold:

• well-posedness: for every τ ∈ [0, 1], I−τM11(s)∆ has
a causal inverse;

• for every τ ∈ [0, 1], τ∆ satisfies the IQC defined by
the multiplier Π, i.e.:

∀y ∈ L2

∫ +∞

−∞

[
ŷ(jω)
û(jω)

]∗
Π(jω)

[
ŷ(jω)
û(jω)

]
dω ≥ 0 (14)

with u = τ∆(y), and where L2 is the space of signals
with finite energy, and for f ∈ L2, f̂ denotes the Fourier
transform of f .

• there exists ε > 0 such that

∀ω ∈ R
[
M11(jω)

I

]∗
Π(jω)

[
M11(jω)

I

]
� −εI (15)

then the interconnection of M11(s) and ∆ is stable.
The numerous works on IQC theory provide multipliers

for a wide variety of uncertainties. As emphasised in [11]
and [12], it is particularly convenient to work with multipliers
parametrised as Π = Ψ∗PΨ with some fixed Ψ ∈ RH∞ and
P = PT ∈ P , where P is described by LMI constraints.
Indeed, application of the Kalman-Yakubovich-Popov lemma
then allows to replace the condition of Eq. (15) by the
equivalent condition:

• there exists X = XT and P ∈ P such that I 0
A B
C D

T  0 X 0
X 0 0
0 0 P

 I 0
A B
C D

 ≺ 0 (16)

where (A,B,C,D) is a minimal realisation of
Ψ(s)

[
M11(s)
I

]
.

Thus verifying stability of the interconnection boils down to
solving an LMI problem.

The IQC framework extends seamlessly to performance
analysis, by taking into account the performance channel
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Fig. 9. Augmented system for IQC analysis

w → z from Fig. 8. In particular, when evaluating perfor-
mance through the L2-gain, Eq. (16) is adapted into: I 0

A B
C D

T  0 X 0
X 0 0
0 0 P

 I 0
A B
C D

 ≺ 0 (17)

where (A,B, C,D) is a minimal realisation of the system in
Fig.9 and P = diag(P, Iz,−γ2Iw). We then seek matrices
X = XT and P that minimise γ, under the LMI constraints
(17) and P ∈ P . This provides an upper bound on the worst-
case L2 gain from w to z.

B. Application to the Guided Projectile

To perform IQC analysis, an LFR model of the projectile
linearised pitch/yaw channels is computed at an operating
point of the flight envelope corresponding to high velocity
and low altitude. This step is done using the GSS library
of the SMAC toolbox [13]. The resulting ∆ block has the
following structure:

∆ = diag(δCNαI2, δCY pαI2, δCNδI2, δCmαI2, δCnpαI2,

δCmqI2, δCmδI2, dz, dz)
(18)

with normalised aerodynamic uncertainties (i.e. each δCi
lies in [−1, 1]), and where the deadzone nonlinearities dz
arise from a rewriting of the saturation functions: dz(x) =
x − sat(x). The performance channel w → z is taken as
the transfer from the guidance signals [nz,c, ny,c]

T to the
measured load factors [nz,m, ny,m]T .

A first analysis can be done ignoring the parametric
uncertainties. The remaining two deadzone nonlinearities can
then be locally described as sector bounded slope-restricted
nonlinearities φ ∈ sec(0, β) ∩ slope(0, β). Accordingly, we
use a combination of full-block circle criterion and Zames-
Falb multipliers (see Class 13 and Class 15 in [11] for their
implementation) to formulate the LMI problem to solve.
Fig. 10 shows bounds γ on the L2-gain plotted over the sec-
tor slope β, for different control strategies. It can be observed
that anti-windup compensators increase the maximum value
of the parameter β for which stability can be guaranteed,
which is especially pronounced for the LQ-based MRAW.
Although none of the design is able to validate stability
for β = 1, and thus for the actual deadzone nonlinearities,
this still qualitatively hints at better stability properties of
the MRAW scheme at this operating point. Curiously, there
seems to be a slight performance degradation for small values
of β when using the static anti-windup, compared to the
configuration with no anti-windup.

Next, a robustness analysis including the aerodynamic
uncertainties, i.e. corresponding to the ∆ block structure (18)

Fig. 10. Bounds on the L2-gain in the presence of a nonlinearity φ ∈
sec(0, β)2 ∩ slope(0, β)2

is performed. This is done by adding dynamic DG-scaling
multipliers (see Class 5 in [11]). Results with the LQ-based
MRAW are shown in Fig. 11, where for convenience the
amplitudes of all the aerodynamic uncertainties are made to
vary simultaneously. Analyses were conducted on a 20× 20
grid, each one involving 2250 decision variables. The average
resolution time was 12 s using MOSEK/YALMIP [14], [15].
The difficulty of validating performance against parametric
uncertainties for higher values of β is clearly seen by the
increasing steepness of the surface in this area. This also
illustrates how IQC analysis can be used to analyse the
sensitivity of the system to specific groups of uncertainties.

ltigain(-10,1)+cc+zf(-10,2)

Fig. 11. Bounds on the L2-gain in the presence of aerodynamic uncer-
tainties |δCi | ≤ α and nonlinearity φ ∈ sec(0, β)2 ∩ slope(0, β)2

V. SIMULATION RESULTS

To evaluate the autopilot design, 300 Monte Carlo trajec-
tory simulations are conducted, with uncertainties applied
to each aerodynamic coefficient. The sampling of these
coefficients is done assuming a normal distribution, where
the standard deviation σ is such that 3σ corresponds to
maximum uncertainty as reported on Table I. For simplicity,
the sampled uncertainty level is kept constant over the entire
flight trajectory.

Simulations are first run on the closed-loop nonlinear
model with no saturations. As seen on Fig. 12 (for better
visibility, only 30 simulation results are shown), the baseline
autopilot is able to cope with aerodynamic uncertainties and
to follow the guidance signals. This results in a centimetric
accuracy at impact in all the tested cases. However, 49 of
these trajectories (about 16% of the cases) require canard
deflection angles above 10◦. With active saturations, this
can lead to a dramatic degradation of the guided phase, as
shown with the trajectory featured on Fig. 13, associated to
a miss distance of 74 m. Fig. 14 shows how anti-windup
augmentation can recover a satisfactory behaviour. Fig.15



Fig. 12. Monte Carlo trajectories without saturations; normal and lateral
accelerations (left), canard deflection angles (middle), trajectory (right)

Fig. 13. Trajectory with saturations; normal and lateral accelerations (left),
canard deflection angles (middle), trajectory (right)

shows the miss distance corresponding to the 49 identified
cases with saturations, for different projectile configurations:
ballistic, with only the baseline autopilot, and with anti-
windup compensation. The iterations are sorted by increasing
order of the miss distance for the baseline configuration. The
benefit of anti-windup is apparent from this figure, with an
increased number of cases where the target is successfully
reached (28 out of 49). Although very large miss distance can
still occur even with anti-windup, the dispersion is noticeably
reduced. Focusing on these 49 cases, the average miss
distance in the baseline configuration is 100.7 m, against
21.8 m with anti-windup. It is worth emphasising that this
improvement is obtained with an LQ-based MRAW that has
not specifically been tuned for robust performance.

VI. CONCLUSION

This paper deals with the autopilot design of a guided
dual-spin projectile. In particular, the use of a relatively
high order anti-windup compensator is investigated. IQC
analysis is set up in a fixed-parameter framework, giving the
possibility to assess robustness properties, compare different
autopilot designs, and analyse the sensitivity of the system
to the various uncertainties. The integration of the anti-
windup compensator in the nonlinear, parameter-varying
model is done with controller output blending. This approach
is validated through Monte Carlo simulations, and opens up
the possibility to investigate other dynamic schemes. The
results show that the resulting control law is able to miti-
gate the performance degradation induced by aerodynamic
uncertainties.

Future work will focus on exploiting IQC analysis results
to help with further autopilot syntheses, encompassing tuning
and controller order reduction, with the aim to further
improve robust performance. To this end, refinements of the
IQC analysis are still possible. The LFR model could include
time-varying elements to increase its representativeness with
respect to the complete nonlinear model. In addition, more
representative profiles of the signals could be better taken

Fig. 14. Trajectory with saturations and anti-windup; normal and lateral
accelerations (left), canard deflection angles (middle), trajectory (right)

Fig. 15. Miss distance distribution for 49 trajectories where uncertainty
samples on aerodynamic coefficients lead to saturations

into account to define a more relevant performance index
than the rather conservative L2 gain.
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