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Abstract
Explaining decisions is at the heart of explainable AI. We investigate the computational complexity
of providing a formally-correct and minimal explanation of a decision taken by a classifier. In the
case of threshold (i.e. score-based) classifiers, we show that a complexity dichotomy follows from the
complexity dichotomy for languages of cost functions. In particular, submodular classifiers allow
tractable explanation of positive decisions, but not negative decisions (assuming P̸=NP). This is
an example of the possible asymmetry between the complexity of explaining positive and negative
decisions of a particular classifier. Nevertheless, there are large families of classifiers for which
explaining both positive and negative decisions is tractable, such as monotone or linear classifiers.
We extend tractable cases to constrained classifiers (when there are constraints on the possible
input vectors) and to the search for contrastive rather than abductive explanations. Indeed, we
show that tractable classes coincide for abductive and contrastive explanations in the constrained or
unconstrained settings.
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1 Explanations of ML models

Recent work has shown that it is possible to apply formal reasoning to explainable AI,
thus providing formal guarantees of correctness of explanations [39, 40, 23, 24, 14, 13, 20]1.
However, scaleability quickly becomes an issue because testing the validity of an explanation
may be NP-hard, or even #P-hard. As a result, more recent work focused on investigating
classes of classifiers for which explanations can be found in polynomial time [2, 33, 1]. A
natural question is thus which other classes of classifiers allow for formal explanations to be
computed in polynomial time. This is our motivation for investigating the computational
complexity of finding explanations of decisions taken by boolean classifiers. More concretely,
the paper proposes conditions on the decision problems associated with classification functions,
which enable finding in polynomial time a so-called abductive or contrastive explanation.
Furthermore, the paper shows that several large classes of classifiers respect the proposed
conditions.

We consider a boolean classification problem with two classes K = {⊕,⊖}, defined
on a set of features (or attributes) x1, . . . , xn, which will be represented by their indices
A = {1, . . . , n}. The features can either be real-valued or categorical. For real-valued features,

1 There exist a wide range of explainable AI approaches offering no formal guarantees of correctness,
e.g. [17].
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21:2 On the Tractability of Explaining Decisions of Classifiers

we have λi ≤ xi ≤ µi, where λi, µi are given lower and upper bounds. For categorical
features, we have xi ∈ {1, . . . , di}. A concrete assignment to the features referenced by A is
represented by an n-dimensional vector a = (a1, . . . , an), where aj denotes the value assigned
to feature j, represented by variable xj , such that aj is taken from the domain of xj . The
set of all n-dimensional vectors denotes the feature space A.

Given a classifier with features A, the corresponding decision function is a mapping from
the feature space to the set of classes, i.e. τ : A → K. For example, for a linear classifier,
the decision function picks ⊕ if

∑
i wixi > t, and ⊖ if

∑
i wixi ≤ t, for some constants wi

(i = 1, . . . , n) and t. Given a ∈ A, with τ(a) = c, we consider the set of feature literals of the
form (xi = ai), where xi denotes a variable and ai a constant.

▶ Definition 1. A PI-explanation [39] is a subset-minimal set P ⊆ A, denoting feature
literals, i.e. feature-value pairs (taken from a), such that

∀(x ∈ A).
∧

j∈P
(xj = aj) → τ(x) = c (1)

is true.

PI-explanations are also referred to as abductive explanations [23]. PI-explanations are
analoguous to prime implicants of propositional formulae: finding subset-minimal (prime)
implicants rather than shortest implicants is interesting from a computational point of view
since deciding the existence of an implicant of size less than k is ΣP

2 -complete [43].

▶ Example 2. We consider as a running example the case of a bank which uses a function
τ to decide whether to grant a loan to a couple represented by a feature vector x =
(sal1, sal2, age1, age2), where sal1, sal2 are the salaries and age1, age2 the ages of the two
people making up the couple. Suppose that τ(x) = ⊕ if and only if (max(sal1, sal2) ≥
salmin)∧ (min(age1, age2) ≤ agemax). If a corresponds to a couple who both earn more than
salmin and both are younger than agemax, then there are four PI-explanations for τ(a) = ⊕:
{1, 3}, {1, 4}, {2, 3} and {2, 4}. For example, {1, 3} means that the first and third features
(sal1 and age1) are sufficient to explain the decision. On the other hand, if b corresponds
to a couple who both earn more than salmin and both are older than agemax, then the only
PI-explanation for τ(b) = ⊖ is {3, 4} (i.e. that they are both too old).

2 Definitions

In order to study the complexity of finding explanations, and in particular to identify tractable
cases, we need to place restrictions on the classifier τ . Let D be a set of domains. For
example, D may include all intervals of the real numbers and all finite subsets of the integers.
Let T D represent the family of functions τ : Πn

i=1Di → K where each domain Di ∈ D (i.e.
the feature space A is the Cartesian product of domains from D). We call n the arity of τ .
Recall that K = {⊖,⊕}.

We say that τ : A→ K is a F-threshold classifier if it can be represented by an objective
function f : A→ R ∪ {−∞,∞} belonging to F such that an input vector x ∈ A is classified
as positive (τ(x) = ⊕) iff f(x) is strictly greater than some threshold t, negative otherwise.
Concentrating on threshold classifiers is not really a restriction, since any binary classifier
τ : A→ {0, 1} (identifying ⊖ with 0 and ⊕ with 1) can be viewed as a threshold classifier
with f = τ and threshold t = 0. It is the choice of the family of functions F which determines
the complexity of explaining decisions.
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If F is the set of real-valued linear functions, then F-threshold classifiers are known
as linear classifiers. Similarly, we can define larger families of threshold classifiers, such as
monotone or submodular threshold-classifiers by restricting the objective function f to be
monotone or submodular. A function f is monotone if ∀x, y, x≤y implies f(x)≤ f(y);
f is submodular if ∀x, y, f(min(x, y)) + f(max(x, y)) ≤ f(x) + f(y), where min and max
are applied componentwise [16]. All linear functions are submodular but only those linear
functions whose coefficients are non-negative are monotone. Similarly, f is antitone if ∀x, y,
x ≤ y implies f(x) ≥ f(y); f is supermodular if ∀x, y, f(min(x, y)) + f(max(x, y)) ≥
f(x) + f(y); f is modular if ∀x, y, f(min(x, y)) + f(max(x, y)) = f(x) + f(y). It is worth
pointing out that all these classes of functions (linear, modular, submodular, supermodualr,
monotone, antitone) are closed under addition. Modular functions are exactly those functions
f that can be decomposed into a sum of unary functions f(x) =

∑n
i=1 fi(xi) [9]. By definition,

modular functions are both submodular and supermodular and include linear functions as a
special case.

Monotonicity [34] is a desirable property in applications where it is important to guarantee
meritocratic fairness (do not favour a less-qualified candidate) [27]. It has been imposed even
for classifiers as complex as neural networks [32].

Submodularity is a well-studied concept in Operations Research and Machine learning
whose origins can be traced back to the the notion of diminishing marginal returns studied
by Gaspard Monge [5]. It is well known that a submodular function over boolean domains
can be minimized in polynomial time [36, 31, 6]. For example, if the objective function
f is the sum of functions of pairs of variables, then minimizing f is equivalent to finding
the minimum cut in a weighted graph [8]. A polynomial-time algorithm for minimizing
a submodular function over any finite domains follows from the polynomial reduction to
boolean domains obtained by replacing each variable xi with domain {1, . . . , d} by d − 1
boolean variables xir = 1⇔ xi ≥ r (r = 1, . . . , d− 1) [9].

▶ Example 3. Consider again our example of a bank which uses a function τ to decide whether
to grant a loan to a couple represented by the feature vector x = (sal1, sal2, age1, age2).
Suppose that τ is a threshold classifier τ(x) = ⊕ ⇔ f(x) > t, where f = αf1 + βf2 + γf3
and f1(x) = max(sal1, sal2) + µ min(sal1, sal2) (where 0 ≤ µ ≤ 1), and f2(x) = 1 iff
(max(age1, age2) ≥ agemin) (and f2(x) = 0 otherwise), and f3(x) = 1 iff (min(age1, age2) ≤
agemax) (and f3(x) = 0 otherwise), where agemin, agemax and α, β, γ, µ ≥ 0 are constants.

It can be verified that f1 and f2 are both submodular and monotone, and that f3 is both
submodular and antitone. Thus (by additivity of submodularity), f is submodular but it is
neither monotone nor antitone (assuming α, β, γ > 0). On the other hand, f is monotone if
γ = 0.

We say that τ is a F-multi-threshold classifier if it can be represented by functions
fi ∈ F (i = 1, . . . , r) such that an input vector x ∈ A is classified as positive (τ(x) = ⊕) iff
(f1(x) > t1) ∧ . . . ∧ (fr(x) > tr) for some constants ti (i = 1, . . . , r). For example, if F is the
set of real-valued linear functions, then for F-multi-threshold classifiers the set of positive
examples x is a polytope.

We are specifically interested in families of classifiers T ⊆ T D which are closed under
replacing arguments by constants (sometimes known as restriction or conditioning [15]) since
this a necessary condition for the correctness of our polynomial-time algorithm. Fortunately,
this is true for most families of functions of interest. For example, a linear/monotone/sub-
modular threshold-classifier remains respectively linear/monotone/submodular if any of its
arguments are replaced by constants. For τ ∈ T D of arity n, S ⊆ {1, . . . , n} and v an
assignment to the arguments indexed by S, let τv : Πi/∈SDi → K be the function obtained

CP 2021
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from τ by fixing the arguments in S to v, i.e. for all x ∈ Πi/∈SDi, τv(x) = τ(v ∪ x). We say
that T is closed under fixing arguments if for all τ : Πn

i=1Di → K such that τ ∈ T , for all
S ⊆ {1, . . . , n} and for all v ∈ Πi∈SDi, we have τv ∈ T .

3 Tractability of finding one PI-explanation

To obtain a polynomial-time algorithm, we require that a particular decision problem
be solvable in polynomial time. For a family T ⊆ T D of boolean-valued functions, let
Tautology(T ) be the following decision problem: given a function τ ∈ T , is it true that
τ ≡ ⊕, i.e. for all x ∈ A, τ(x) = ⊕? To avoid exploring dead-end branches, our algorithm
requires the answer to this question for functions obtained by fixing a subset of the arguments
of a classifier, which is why we require that T be closed under fixing arguments.

Firstly we consider the more general case in which the only assumption we make is that
all functions in T execute in polynomial time. In this case, Tautology(T ) ∈ coNP (since a
counter-example can be verified in polynomial time). If, furthermore, T is closed under fixing
arguments, then using a greedy algorithm (as in Proposition 3.1 case (3) of [7]) we can deduce
that n calls to an NP oracle are sufficient to find a PI-explanation. In the following, we
investigate cases for which Tautology(T ) ∈ P and hence for which finding a PI-explanation
is also polynomial-time by a similar greedy algorithm.

We now state conditions which guarantee a polynomial-time algorithm to find one PI-
explanation for large classes of classifiers. The algorithm initialises P to A and greedily
deletes literals from P as long as this preserves property (1) of being an explanation.

▶ Proposition 4. If T is closed under fixing arguments and Tautology(T ) ∈ P, then for
any classifier τ ∈ T and any positively-classified input a, a PI-explanation of τ(a) = ⊕ can
be found in polynomial time.

Proof. An explanation is a set P ⊆ {1, . . . , n} such that equation (1) holds. The algorithm is a
simple greedy algorithm that initialises P to the trivial explanation {1, . . . , n} (corresponding
to the complete assignment a) and for each i ∈ P tests whether i can be deleted to leave a
valid explanation P \ {i}:

P ← {1, . . . , n}
for i = 1, . . . , n :

if P \ {i} is a valid explanation then P ← P \ {i}

Clearly, the final value P̃ of P is an explanation. Furthermore, it is minimal because if
P \ {i} was not a valid explanation for some P ⊇ P̃, then neither is P̃ \ {i}.

Let v be the partial assignment corresponding to the values aj for j ∈ P \ {i}. Testing
whether P\{i} is a valid explanation is equivalent to testing whether τv ≡ ⊕ and hence can be
performed in polynomial time since T is closed under fixing arguments and Tautology(T )
∈ P. The algorithm needs to solve exactly n instances of Tautology(T ). It follows that
one PI-explanation can be found in polynomial time. ◀

Proposition 4 can be seen as a special case of the complexity of finding maximal solutions
to problems for which the instance-solution relation is in P (Proposition 3.1 of [7]).

As we will now see, Proposition 4 applies to a large range of classifiers, such as linear,
submodular or monotone threshold-classifiers as well as multi-threshold classifiers.

Consider threshold classifiers of the form τ(x) = ⊕ iff f(x) > t, for some real-valued
objective function f ∈ F and some constant t. Then

τ ≡ ⊕ ⇔ min
x∈A

f(x) > t. (2)
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Thus, if T is the set of F-threshold classifiers, then Tautology(T ) ∈ P if functions in F
can be minimised in polynomial time. Examples of classes of functions that can be minimised
in polynomial time are the objective functions of extended linear classifiers (referred to as
XLCs) [33], monotone functions over real/integer intervals [34] and submodular functions
over finite ordered domains [31, 9].

Now consider the case of multi-threshold classifiers of the form τ(x) = ⊕ iff
∧r

i=1 fi(x) > ti,
for some real-valued functions fi ∈ F and some constants ti (i = 1, . . . , r). Then

τ ≡ ⊕ ⇔
∧r

i=1
(min

x∈A
fi(x) > ti). (3)

Thus, if T is the set of F -multi-threshold classifiers, then again we have that Tautology(T )
∈ P if each function in F can be minimised in polynomial time. For example, f1 could be
monotone, f2 submodular and the other fi linear.

We end this section by showing that a polytime tautology test is not only a sufficient but
also a necessary condition for tractabilty of finding a PI-explanation. Let PIExpl+(T ) be
the problem of finding a PI-explanation of a positive decision taken by a classifier in T .

▶ Theorem 5. If T is closed under fixing arguments, then PIExpl+(T ) ∈ FP iff
Tautology(T ) ∈ P.

Proof. The “if” part of the proof is Proposition 4. For the “only if” part, suppose that T is
closed under fixing arguments and PIExpl+(T ) ∈ FP. Let τ ∈ T . Let a be an arbitrary
choice of feature vector. Then τ is a tautology iff both τ(a) = ⊕ and the empty set is a
PI-explanation of τ(a) = ⊕. Note that in the case that the empty set is a PI-explanation, it
is necessarily the unique PI-explanation. Thus we can decide Tautology(T ) in polynomial
time. ◀

4 Explanations of negative decisions

In the previous section we exclusively studied the problem of finding an explanation of a
positive decision τ(x) = ⊕. We show in this section that the complexity of this problem
can change drastically if we require an explanation of a negative decision τ(x) = ⊖. For a
family T ⊆ T D of boolean functions, let Unsat(T ) be the following decision problem: given
a boolean function τ ∈ T , is it true that τ ≡ ⊖, i.e. for all x ∈ A, τ(x) = ⊖? By an entirely
similar proof based on a greedy algorithm, we can deduce the following proposition which
mirrors Proposition 4.

▶ Proposition 6. If T is closed under fixing arguments and Unsat(T ) ∈ P, then for any
classifier τ ∈ T and any negatively-classified input a, a PI-explanation of τ(a) = ⊖ can be
found in polynomial time.

A simple case in which all features are boolean is TDNF, the family of DNF classifiers.
Since deciding the (un)satisfiability of a DNF is trivial, we have Unsat(TDNF) ∈ P and so a
PI-explanation of a negative decision can be found in polynomial time. On the other hand,
by Theorem 5, and the co-NP-completeness of deciding whether a DNF is a tautology, a
PI-explanation of a positive decision cannot be found in polynomial time (assuming P̸=NP).

Now consider threshold classifiers of the form τ(x) = ⊕ iff f(x) > t, for some real-valued
objective function f ∈ F and some constant t. Then

τ ≡ ⊖ ⇔ max
x∈A

f(x) ≤ t. (4)

CP 2021
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Thus, if T is the set of F -threshold classifiers, then Unsat(T ) ∈ P if functions in F can be
maximised in polynomial time. Examples of functions that can be maximised in polynomial
time are linear, monotone, antitone (over real/integer intervals) or supermodular functions
(over finite ordered domains). Note that submodular function maximisation cannot be
achieved in polynomial time (assuming P ̸=NP) [12].

Thus, for a given family of classifiers (such as submodular threshold classifiers), the
complexity of finding an explanation of a positive decision may be polynomial-time whereas
the complexity of finding an explanation of a negative decision may be intractable.

We end this section with a theorem that is the equivalent of Theorem 5 for negative
decisions. Let PIExpl−(T ) be the problem of finding a PI-explanation of a negative decision
taken by a classifier in T .

▶ Theorem 7. If T is closed under fixing arguments, then PIExpl−(T ) ∈ FP iff Unsat(T )
∈ P.

Proof. The “if” part of the proof is Proposition 6. For the “only if” part, suppose that T is
closed under fixing arguments and PIExpl−(T ) ∈ FP. Let τ ∈ T . Let a be an arbitrary
choice of feature vector. Then τ is a unsatisfiable iff both τ(a) = ⊖ and the empty set is a
PI-explanation of τ(a) = ⊖. Thus we can decide Unsat(T ) in polynomial time. ◀

5 Explanation of classifiers with constrained features

It may be that some constraints exist between features, so that not all vectors in A are
possible. For example, gender = male and pregnant = yes are incompatible, and clearly
we must have years_of _employment ≤ age. This affects the definition of a PI-explanation.
Suppose that there are constraints on the possible feature vectors x given by a predicate
C(x). In the context of constraints C, a PI-explanation of a decision τ(a) = c is now a
subset-minimal set P ⊆ A of feature literals such that

∀(x ∈ A).
(

C(x) ∧
∧

j∈P
(xj = aj)

)
→ τ(x) = c. (5)

▶ Example 8. Consider a medicine that doctors are allowed to prescribe to everybody who
has the flu except to pregnant women. A PI-explanation why Alice (who is pregnant) was
not prescribed the medicine is that she is pregnant; there is no need to mention that she is a
woman given the constraint that there are no pregnant men. There are two PI-explanations
why Bob was prescribed the medicine: (1) that he is not pregnant and he had the flu, (2) that
he is a man and he had the flu. Note that the rule for prescribing the medicine can be stated
without mentioning gender: prescribe to people who have the flu but are not pregnant. The
PI-explanations remain the same. In particular, the explanation (2) for Bob being prescribed
the medicine mentions gender even though this feature is not mentioned in the rule. If we
did not take into account the constraint that men cannot be pregnant, then the explanation
(2) would not be valid.

Equating ⊖ with 0 and ⊕ with 1, we have the following equivalence which follows from
equations (1), (5) and the logical equivalence C ∧A→ B ≡ A→ B ∨ ¬C

▶ Proposition 9. A PI-explanation of a classifier τ under constraints C is precisely a
PI-explanation of the unconstrained classifier τ ∨ ¬C.



M. C. Cooper and J. Marques-Silva 21:7

Table 1 Examples of tractable families of constrained threshold-classifiers over finite domains.

decision objective function f constraints C

positive submodular max and min-closed
positive monotone min-closed
positive antitone max-closed
negative supermodular max and min-closed
negative monotone max-closed
negative antitone min-closed

Consider a threshold classifier with objective function f under constraints C. We can
reduce to the unconstrained case by introducing the function g where

g(x) =
{

0 if C(x)
∞ if ¬C(x).

(6)

Then a PI-explanation for f(a) > t under constraints C is a PI-explanation of f(a)+g(a) > t

(in the unconstrained setting). We saw in Section 3 that finding a PI-explanation of a
positive decision taken by a threshold classifier is polynomial-time if the objective function
can be minimised in polynomial time. Thus, for example, if f + g is submodular over finite
domains, then a PI-explanation can be found in polynomial time. Assume in the following
that f is finite-valued and g is defined as in equation (6). A necessary condition for f + g to
be submodular is that g be both min-closed and max-closed [10], where min-closed means
C(x)∧C(y) ⇒ C(min(x, y)) and max-closed means C(x)∧C(y) ⇒ C(max(x, y)) [26]. Over
finite domains, the class of monotone objective functions can be extended to a maximal
tractable class of constrained minimisation problems by adding min-closed constraints and
the class of antitone objective functions can be extended to a maximal tractable class by
adding max-closed constraints [9].

As we have already seen, explanations of positive and negative decisions may have
very different complexities. Indeed, a PI-explanation for f(a) ≤ t under constraints C

is a PI-explanation of f(a) − g(a) ≤ t (in the unconstrained setting). The sign of g has
changed so that the inequality is satisfied whenever g is infinite. As we saw in Section 4, a
PI-explanation of a negative decision of a threshold classifier can be found in polynomial
time if the objective function can be maximised in polynomial time. Thus, for example, if
f − g is a supermodular function (over finite domains), then a PI-explanation can be found
in polynomial time. A necessary condition for f − g to be supermodular is that g be both
min-closed and max-closed [10]. For the class of monotone functions f , the maximisation of
f − g is tractable if the relations C (corresponding to the functions g) are max-closed, and
for the class of antitone functions f , the maximisation of f − g is tractable if the relations C

are min-closed [9].
This allows us to identify the tractable families of constrained threshold-classifiers listed

in Table 1.

6 Contrastive explanations

PI-explanations are also known as abductive explanations, since they are answers to the
question “Why is τ(a) = c?” A contrastive explanation [35, 22, 21] is an answer to a different
question: “Why is it not the case that τ(a) ̸= c”? It gives a set of features which if changed
in a can lead to a change of class. Contrastive explanations tend to be be smaller than
abductive explanations and hence can be easier to interpret by a human user [35].

CP 2021
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▶ Definition 10. Given that τ(a) = c, a contrastive explanation is a subset-minimal set
S ⊆ A such that

∃(x ∈ A).
((∧

j /∈S
(xj = aj)

)
∧ τ(x) ̸= c

)
. (7)

If τ ≡ c, then there is no contrastive explanation of τ(a) = c.

▶ Example 11. Consider the classifier studied in Example 2: a bank uses a function τ , given
by τ(x) = ⊕ if and only if (max(sal1, sal2) ≥ salmin)∧ (min(age1, age2) ≤ agemax), to decide
whether to grant a loan to a couple represented by a feature vector x = (sal1, sal2, age1, age2).
If a corresponds to a couple who both earn more than salmin and both are younger than
agemax, then the contrastive explanations of the decision τ(a) = ⊕ are {1, 2} and {3, 4}. If
b corresponds to a couple who both earn more than salmin but both are older than agemax,
then the contrastive explanations of the decision τ(b) = ⊖ are {3} and {4}.

Let Invalid(T ) be the following decision problem: given a boolean function τ ∈ T , does
there exists x ∈ A such that τ(x) = ⊖. Similarly, let Sat(T ) be the problem: given a boolean
function τ ∈ T , does there exists x ∈ A such that τ(x) = ⊕. The following proposition is
the contrastive equivalent of Proposition 4 and Proposition 6.

▶ Proposition 12. Suppose that T is closed under fixing arguments. If Invalid(T ) ∈ P,
then for any classifier τ ∈ T and any a such that τ(a) = ⊕, a contrastive explanation of
τ(a) = ⊕ can be found in polynomial time. If Sat(T ) ∈ P, then for any classifier τ ∈ T and
any a such that τ(a) = ⊖, a contrastive explanation of τ(a) = ⊖ can be found in polynomial
time.

Proof. We say that S can lead to a class change if equation (7) holds. The algorithm is
analogous to the algorithm for PI-explanations. It requires n tests of equation (7) to find a
contrastive explanation:

S ← {1, . . . , n}
if S cannot lead to a class change then report that no CXp exists ;
for i = 1, . . . , n :

if S \ {i} can lead to a class change then S ← S \ {i}

Testing whether S can lead to a class change from ⊕ is a test of invalidity (after fixing
features in A \ S), whereas testing whether S can lead to a class change from ⊖ is a test of
satisfiability (after fixing features in A \ S). Thus, the above algorithm finds a contrastive
explanation of τ(a) = c in polynomial time if Invalid(T ) ∈ P (in the case c = ⊕) or Sat(T )
∈ P (in the case c = ⊖). ◀

For threshold classifiers of the form τ(x) = ⊕ iff f(x) > t, invalidity corresponds to
minx∈A f(x) ≤ t and satisfiability corresponds to maxx∈A f(x) > t. Thus, if T is the set of
F -threshold classifiers, then Invalid(T ) ∈ P if functions in F can be minimised in polynomial
time and Sat(T ) ∈ P if functions in F can be maximised in polynomial time.

Let CExpl+(T ) (respectively, CExpl−(T )) be the problem of finding a contrastive
explanation of a positive (negative) decision taken by a classifier in T or determining that
no contrastive explanation exists. The following theorem follows from Proposition 12 and
the fact that deciding the existence of a contrastive explanation of τ(a) = c is equivalent to
deciding ¬(τ ≡ c).

▶ Theorem 13. If T is closed under fixing arguments, then CExpl+(T ) ∈ FP iff Invalid(T )
∈ P, and CExpl−(T ) ∈ FP iff Sat(T ) ∈ P.
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In the context of of constraints C, a contrastive explanation of a decision τ(a) = c is now
a subset-minimal set S ⊆ A of feature literals such that

∃(x ∈ A).
((∧

j /∈S
(xj = aj)

)
∧ τ(x) ̸= c ∧ C(x)

)
. (8)

Equating ⊖ with 0 and ⊕ with 1, and using the logical equivalence ¬B ∧ C ≡ ¬(B ∨ ¬C),
we have the following proposition.

▶ Proposition 14. A contrastive explanation of a classifier τ under constraints C is precisely
a contrastive explanation of the unconstrained classifier τ ∨ ¬C.

In the case of constrained threshold classifiers, with objective function f and threshold t,
let g be as defined by equation (6). Then testing invalidity under constraints C is equivalent
to determining whether minx∈A(f(x) + g(x)) ≤ t and testing satisfiability is equivalent to
determining whether maxx∈A(f(x)− g(x)) > t. It follows that the tractable cases for finding
contrastive explanations or PI-explanations are identical. Example are shown in Table 1,
where, in both cases, the decision corresponds to the original decision (i.e. the value of τ(a)).

In fact, from Theorem 5, Theorem 7, Theorem 13, Proposition 9 and Proposition 14,
we can deduce the following theorem which says that tractable classes of finding abductive
or contrastive explanations coincide. It follows from the fact that Invalid(T ) ∈ P iff
Tautology(T ) ∈ P and that Sat(T ) ∈ P iff Unsat(T ) ∈ P (since a problem is in P iff its
complement is in P).

▶ Theorem 15. In the unconstrained or constrained setting, if T is closed under fixing argu-
ments, PIExpl+(T ) ∈ FP iff CExpl+(T ) ∈ FP, and PIExpl−(T ) ∈ FP iff CExpl−(T )
∈ FP.

7 A language dichotomy for threshold classifiers

We consider threshold classifiers over finite (i.e. categorical) domains whose objective function
can be decomposed into functions of bounded arity:

f(x) =
∑m

i=1
fi(x[σi]) (9)

where each σi (the scope on which the function fi is applied) is a list of indices from {1, . . . , n}
and x[σi] is the projection of the vector x on these indices. Given a set (language) L of
functions, we denote by TL the set of threshold classifiers whose objective function f is the
sum of functions fi ∈ L. Recall that PIExpl+(TL) is the problem of finding a PI-explanation
of a positive decision taken by a classifier in TL.

Cost Function Networks (CFNs) (also known as Valued Constraint Satisfaction Problems)
are defined by sets of functions fi (and their associated scopes) over finite domains whose
sum f (given by equation (9)) is an objective function to be minimized [11]. CFNs are a
generic framework covering many well-studied optimisation problems. For example, Bayesian
networks can be transformed into CFNs after taking logarithms of probabilities [11]. Let
CFN(L) denote the problem of determining, given an objective function f of the form given
in equation (9) where each fi ∈ L, together with a real constant t, whether

min f(x) ≤ t.

A technical point is that, due to the necessarily bounded precision of the values of functions,
this is equivalent to the problem of determining, given f and t ∈ R, whether min f(x) is
strictly less than t.
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The complexity of CFN(L) has been extensively studied for finite languages (i.e. languages
L such that |L| is finite). It is now known that there is a dichotomy: depending on the
language L, CFN(L) is either in P or is NP-complete. This result was known for languages
of finite-valued cost-functions [41] and the dichotomy for the more general case, in which
costs can be infinite, follows from the recently-discovered language dichotomy for constraint
satisfaction problems [4, 44, 29, 30]. The following proposition will lead us to a similar
dichotomy for explaining decisions.

▶ Proposition 16. Let L be a set of non-negative functions closed under fixing arguments.
Then PIExpl+(TL) is in FP if and only if CFN(L) is in P.

Proof. If L is closed under fixing arguments, then so is TL. The “if” part of the proof follows
directly from Proposition 4 and the subsequent discussion in Section 3, so we concentrate on
the “only if” part.

By Theorem 5 we know that if PIExpl+(TL) ∈ FP then Tautology(TL) ∈ P.
Tautology(TL) is the problem of determining, for a function f expressible as the sum of
functions fi ∈ L (as in equation (9)) and a constant t, whether f(x) > t for all x ∈ A. This
is the complement of CFN(L) which is the problem of determining whether minx∈A f(x) ≤ t.
Hence, if Tautology(TL) ∈ P then CFN(L) ∈ P, which completes the proof. ◀

We now consider constrained classifiers. Let Γ be a language of constraint relations. For
each constraint relation in Γ we can construct a corresponding {0,∞}-valued function g, as
given by equation (6). Let CΓ denote the set of all such {0,∞}-valued functions for relations
in Γ. Then L ∪ CΓ can be viewed as a language of cost functions. Let ConPIExpl+(TL, Γ)
(respecively, ConPIExpl−(TL, Γ)) denote the problem of finding one PI-explanation of a
positive (negative) decision taken by a classifier in TL under a finite set of constraints from Γ.

▶ Proposition 17. Let L be a set of non-negative functions closed under fixing arguments
and Γ a finite set of constraint relations. Then ConPIExpl+(TL, Γ) is in FP if and only if
CFN(L ∪ CΓ) is in P.

Proof. We know from the discussion in Section 5 that ConPIExpl+(TL, Γ) is equivalent to
PIExpl+(TL∪CΓ). Thus the result follows immediately from Proposition 16. ◀

We now consider finding explanations for negative decisions. Although, as we will show,
there is again a dichotomy, it is not the same since in this case we are studying a (constrained)
maximisation problem rather than a (constrained) minimisation problem. Given a finite
language L of real-valued functions, all bounded above by B ∈ R, let Linv denote the set
{B − f : f ∈ L}. Clearly, maximising a sum of functions from L is equivalent to minimising
a sum of functions from Linv.

▶ Proposition 18. Let L be a set of non-negative finite-valued functions closed under fixing
arguments. Then PIExpl−(TL) is in FP if and only if CFN(Linv) is in P.

Proof. The “if” part follows from Proposition 6 and the subsequent discussion in Section 4.
For the “only if” part, we know from Theorem 7 that if PIExpl−(TL) is in FP then Unsat(TL)
is in P. Unsat(TL) is the problem of determining, for a function f expressible as the sum
of m functions fi ∈ L and a constant t, whether f(x) ≤ t for all x ∈ A. This is equivalent
to determining whether mB − f(x) ≥ mB − t for all x ∈ A. This is the complement of
the problem of determining whether min(mB − f) < t′ (for t′ = mB − t). This is precisely
CFN(Linv). Hence, if Unsat(TL) ∈ P, then CFN(Linv) ∈ P, which completes the proof. ◀

We now generalise this result to constrained classifiers.
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▶ Proposition 19. Let L be a set of non-negative functions closed under fixing arguments
and Γ a finite set of constraint relations. Then ConPIExpl−(TL, Γ) is in FP if and only if
CFN(Linv ∪ CΓ) is in P.

Proof. It is easy to see that ConPIExpl−(TL, Γ) is equivalent to ConPIExpl+(TLinv , Γ).
Thus the result follows immediately from Proposition 17. ◀

Given the known P/NP-complete dichotomy for CFN(L) for finite languages L, discussed
above, we can immediately deduce the following theorem.

▶ Theorem 20. Let L be a finite language of non-negative functions closed under fix-
ing arguments and Γ a finite set of constraint relations. Then each of PIExpl+(TL),
ConPIExpl+(TL, Γ), PIExpl−(TL), ConPIExpl−(TL, Γ) is either in FP or is NP-hard.

Indeed, by Theorem 15, we have an identical dichotomy result for contrastive explanations.

8 Diversity of explanations

We have concentrated up until now on the problem of finding a single explanation. This
is because the problem of finding all explanations has the obvious disadvantage that the
number of explanations may be exponential. For example, in a first-past-the-post election in
which a A wins with m ≥ k out of the n = 2k − 1 votes cast, and each vote is considered as
a feature, there are Ck

m PI-explanations for this victory; for a candidate B who lost with
only p ≤ k votes, there are Ck−p

n−p contrastive explanations for why they did not win.
Rather than providing a single explanation to the user or listing all explanations, we can

envisage providing a relatively small number of diverse explanations. A similar strategy of
finding a number of diverse good-quality solutions to a Weighted Constraint Satisfaction
Problem has been used successfully in computational protein design [37], among other
examples [18, 19, 25].

An obvious measure of diversity of a set of explanations {S1, . . . , Sk} is the minimum
Hamming distance |Si∆Sj | between pairs of distinct explanations Si, Sj , where ∆ is the
symmetric difference operator between two sets. This leads to the following computational
problem.

k-Div-PIExpl+: Given a binary classifier τ : A→ {⊖,⊕}, a positively-classified input a
and an integer m, find k PI-explanations S1, . . . , Sk of τ(a) = ⊕ such that for all i, j such
that 1 ≤ i < j ≤ k, |Si∆Sj | ≥ m.

The definitions for negatively-classified inputs a (k-Div-PIExpl−) and/or for contrastive
explanations (k-Div-CExpl+, k-Div-CExpl−) are entirely similar. Since Hamming distance
is a submodular function, one might hope that there would be interesting tractable classes.
Unfortunately, since we are, in a sense, maximising this distance rather than minimising it,
these four problems turn out to be NP-hard even in the simplest non-trivial case.

▶ Proposition 21. Even in the case of k = 2 and for a linear classifier τ over domains of
size 2, the following four problems are NP-hard: (a) k-Div-PIExpl+, (b) k-Div-PIExpl−,
(c) k-Div-CExpl+, (d) k-Div-CExpl−.

Proof.
(a) Without loss of generality, we suppose that the domains Di (i = 1, . . . , n) are all {0, 1}

and τ(x) = ⊕ iff
∑n

i=1 αixi > t. We prove NP-hardness for the particular case in which
a = (1, . . . , 1) and the values t, α1, . . . , αn are strictly positive integers which satisfy the
following inequalities:
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α1 ≤ · · · ≤ αm < αm+1 ≤ · · · ≤ αn (10)
m∑

i=1
αi + 2

n∑
i=m+1

αi = 2(t + 1). (11)

To solve 2-Div-PIExpl+ we require sets S1, S2 ⊆ {1, . . . , n} satisfying (1) |S1∆S2| ≥ m

and (2) S1, S2 are minimal (for inclusion) sets such that the minimum value of
∑n

i=1 αixi

is at least t + 1 for inputs x with xi = ai = 1 for all i ∈ Sj (j = 1, 2). Since the values
αi are positive, the minimum is attained when xi = 0 for all i /∈ Sj , and so this is
equivalent to∑

i∈Sj

αi ≥ t + 1 (j = 1, 2). (12)

Summing these two inequalities (for j = 1, 2) gives∑
i∈S1

αi +
∑
i∈S2

αi ≥ 2(t + 1). (13)

Since, by (10), we have αr < αs for r ≤ m < s, and |S1∆S2| ≥ m, we know that the left
hand side of the sum in equation (13) is at most equal to the left hand side of equation
(11), which is equal to 2(t + 1). It follows that we actually have equality in inequality (13)
and S1∆S2 = {1, . . . , m} and S1 ∩S2 = {m + 1, . . . , n}. Equality in (13) implies that we
must also have equality in the inequalities (12) for j = 1, 2. Equality implies minimality
for subset inclusion since all weights αi are strictly positive. Denoting t + 1−

∑n
i=m+1 αi

by T and Sj ∩ {1, . . . , m} by Pj (for j = 1, 2), we can deduce that we require a partition
P1, P2 of {1, . . . , m} such that∑

i∈P1

αi = T =
∑
i∈P2

αi.

This is precisely the partition problem which is well known to be NP-complete [28]. It
follows that k-Div-PIExpl+ is NP-hard.

(b) We consider the same linear classifier τ as in case (a), except that equation (11) is
replaced by

∑m
i=1 αi = 2t, and this time we consider the vector a = (0, . . . , 0) which is

classified negatively by τ . To solve k-Div-PIExpl−, we require two sets S1, S2 such that
(1) |S1∆S2| ≥ m and (2) S1, S2 are minimal (for inclusion) sets such that

∑
i/∈Sj

αi ≤ t

(j = 1, 2). Given equation (10), this can only be attained when S1∆S2 = {1, . . . , m} and
S1 ∩ S2 = {m + 1, . . . , n}, so that

∑
i/∈S1

αi =
∑

i/∈S2
α2 = t. Thus, we need to find two

sets Pj = {1, . . . , n} \ Sj (j = 1, 2) which partition {1, . . . , m} and such that∑
i∈P1

αi = t =
∑
i∈P2

αi

Thus, again we have a polynomial reduction from the partition problem. Hence k-Div-
PIExpl− is NP-hard.

(c) Consider the same linear classifier τ as in case (b), but this time a = (1, . . . , 1). To
solve k-Div-CExpl+, we require two sets S1, S2 ⊆ {1, . . . , n} such that

∑
i/∈Sj

αi ≤ t

(j = 1, 2) and |S1∆S2| ≥ m. Since this is exactly the same problem encountered in case
(b), we can again deduce NP-hardness.
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(d) Consider the same linear classifier τ as in case (a), but with a = (0, . . . , 0). To solve
k-Div-CExpl−, we require S1, S2 ⊆ {1, . . . , n} such that

∑
i∈Sj

αi ≥ t + 1 (j = 1, 2)
and |S1∆S2| ≥ m. Since this is exactly the problem encountered in case (a), we can
again deduce NP-hardness. ◀

It is well known that the partition problem is one of the easiest NP-hard problems
to solve in practice [38]. Thus, Proposition 21 precludes (assuming P ̸=NP) a worst-case
polynomial-time algorithm for finding a diverse set of explanations, but leaves the door open
to the existence of practically-efficient algorithms.

9 Absolute explanations

Given a classifier we may want to have an absolute (global) explanation for a given class c,
rather than an explanation specific to a particular decision. This answers questions of the
type “Why can a customer be granted (or refused) a loan”. An absolute explanation is a
minimal but arbitrary partial assignment to the features that guarantees that the output of
the classifier τ will be the class c [24]. It does not depend on a concrete input instance but
rather the entire feature space.

A literal is an assignment of a value to a feature which we can write in the form (xi = u)
or simply as the pair ⟨i, u⟩ where i ∈ A and u belongs to Di the domain of feature i. A
set of literals U is well-defined if each feature i occurs at most once in U . For simplicity of
presentation, we implicitly assume from now on that all subsets of literals are well-defined.
This means that each subset of literals U corresponds to a partial assignment a to some
subset of features P ⊆ A. This allows us to equate U with the pair ⟨P, a⟩.

▶ Definition 22. Given a classifier τ , an absolute explanation (XP) for a class c is a
subset-minimal set of literals U = ⟨P, a⟩ such that

∀(x ∈ A).
∧

j∈P
(xj = aj) → τ(x) = c (14)

is true.

Equation (14) is identical to equation (1) in the definition of a PI-explanation, the
difference being that an XP is a set of literals rather than a set of features. A subtle
difference between PI-explanations and XP’s is that whereas a PI-explanation always exists,
since we are given an instance a such that τ(a) = c, an XP may not exist (which corresponds
to the case when τ never takes the value c).

Associating a set of literals with the term corresponding to their conjunction, we can
observe that a model τ is logically equivalent to the disjunction of the absolute explanations
for the class ⊕. This observation shows that, in the case of finite domains, a black-box model
can in theory be reconstructed from its absolute explanations.

Another global notion, dual to the notion of absolute explanation, is that of a counter-
example [24]. This is an answer to questions such as “Why can a customer not be granted a
loan”.

▶ Definition 23. Given a classifier τ , a counterexample (CEx) for a class c is a subset-
minimal set of literals U = ⟨P, a⟩ such that

∀(x ∈ A).
∧

j∈P
(xj = aj) → τ(x) ̸= c (15)

is true.
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Clearly, in the case of binary classifiers with K = {⊖,⊕}, a counterexample for class ⊕
(⊖) is an absolute explanation of class ⊖ (⊕). Analogously to the fact, observed above, that
a model τ is logically equivalent to the disjunction of the absolute explanations for the class
⊕, it is also logically equivalent to the conjunction of the negations of the counterexamples
of the class ⊕.

▶ Example 24. We return to the function τ used by a bank to decide whether to grant a
loan to a couple represented by a feature vector x = (sal1, sal2, age1, age2), as in Example 2:
τ(x) = ⊕ if and only if (max(sal1, sal2) ≥ salmin) ∧ (min(age1, age2) ≤ agemax). If s0 ≥
salmin > s1, s2 and a0 ≤ agemax, then {⟨1, s0⟩, ⟨3, a0⟩} is an XP of a positive decision (and a
CEx of a negative decision) whereas {⟨1, s1⟩, ⟨2, s2⟩} is an XP of a negative decision (and a
CEx of a positive decision).

Despite the similarity between the definitions of PI-explanations and absolute explanations,
the complexity of finding one XP is not the same as the complexity of finding one PI-
explanation. This is due to the fact that we are not given a specific instance, but rather
a class c, and we actually have to find an instance which belongs to class c. Let XP+(T )
(respectively, XP−(T )) be the problem of finding an absolute explanation of a positive
(negative) decision taken by a classifier in T (or returning “none” if none exists).

▶ Theorem 25. If T is closed under fixing arguments, and domains of all features are finite,
then XP+(T ) ∈ FP iff Sat(T ) ∈ P and Tautology(T ) ∈ P.

Proof. For the “if” part, it is sufficient to give a polynomial-time algorithm. Consider τ ∈ T .
A call to Sat(T ) tells us whether or not an XP exists. In the case that an XP exists, we can
find an instance a such that τ(a) = ⊕ by the following incremental algorithm.

Initialise a to the empty assignment ;
for i = 1, . . . , n :

for each value d ∈ Di

extend a by assigning ai = d;
if τa is satisfiable then exit the inner for loop;

The partial assignment a is initialised to the empty assignment and successively, for each
feature i, at most |Di| calls to Sat(T ) are sufficient to find a value for ai which extends the
present partial assignment so that τa remains satisfiable. The final value of a is a complete
assignment such that τ(a) = ⊕. Since Tautology(T ) ∈ P, by Proposition 4 we can find
a PI-explanation P of τ(a) = ⊕ in polynomial time. Then ⟨P, a[P]⟩ is necessarily an XP,
where a[P] is the partial assignment of a on features P.

For the “only if” part, an XP exists iff τ ̸≡ ⊖ and is non-empty iff τ ̸≡ ⊕. Hence, a
polynomial-time algorithm for XP+(T ) necessarily decides both Sat(T ) and Tautology(T )
in polynomial time. ◀

▶ Corollary 26. If T is closed under fixing arguments, and domains of all features are finite,
then XP−(T ) ∈ FP iff Sat(T ) ∈ P and Tautology(T ) ∈ P.

Proof. First, observe that an absolute explanation (XP) of a negative decision taken by a
classifier τ is an XP of a positive decision taken by the classifier τ . To complete the proof, it
suffices to notice that τ is satisfiable iff τ is not a tautology (and τ is a tautology iff τ is not
satisfiable). So, by Theorem 25, XP−(T ) ∈ FP iff Sat(T ) ∈ P and Tautology(T ) ∈ P. ◀
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For a family T of threshold classifiers, Theorem 25 implies that XP+(T ) ∈ FP iff
the corresponding family of objective functions can be both minimized and maximized
in polynomial time. Examples are monotone functions and modular functions. Modular
functions, which by definition are both submodular and supermodular, are separable (i.e.
expressible as the sum of unary functions on the features) [42].

In the case of constrained classifiers we have the following proposition which follows
directly from Proposition 9.

▶ Proposition 27. An absolute explanation (XP) of a classifier τ under constraints C is
precisely an XP of the unconstrained classifier τ ∨ ¬C.

With f the objective function of the threshold classifier τ and g the function, given by
Equation 6, associated with the constraints C, Tautology(T ) corresponds to minimizing
f + g and Sat(T ) corresponds to maximizing f − g. By Theorem 25 together with the
discussion above and in Section 5, XP+(T ) is tractable for objective functions f which are
either modular, monotone or antitone and constraint relations C which are both min and
max-closed.

10 Discussion and Conclusion

We have investigated the complexity of finding one subset-minimal abductive or contrastive
explanation for different families of classifiers.

There remain many interesting open questions:
Since, as yet, there is no known characterisation of the complexity of cost-function
languages over infinite domains, the complexity of classifiers with real-valued features is
still an open problem.
We have investigated the problem of finding a subset-minimal explanation. The problem
of finding a cardinality-minimum explanation is naturally harder [39, 3] even though
it has been observed that there is often not a significant difference between the size of
subset-minimal and cardinality-minimum explanations [23]. It is known that the problem
of finding a cardinality-minimum explanation is NP-hard for decision trees [3] and is
tractable for linear classifiers [33]. It is an open theoretical question whether there are
any other interesting tractable cases.
Instead of searching for one explanation, we may want to find many explanations.
Unfortunately, the fact that a greedy algorithm can find one explanation in polynomial
time provides no guarantee that explanations can be enumerated in polynomial delay.
Again, for linear classifiers, there is a polynomial-delay algorithm for enumerating PI-
explanations [33], and it is an open question is whether this is true for other families of
classifiers. It is known to be false for monotone classifiers (assuming P ̸=NP) [34].
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