
HAL Id: hal-03523342
https://hal.science/hal-03523342v1

Submitted on 12 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bringing Opportunistic Networking to Smartphones: a
Pragmatic Approach

Frédéric Guidec, Yves Mahéo, Pascale Launay, Lionel Touseau, Camille Noûs

To cite this version:
Frédéric Guidec, Yves Mahéo, Pascale Launay, Lionel Touseau, Camille Noûs. Bringing Opportunistic
Networking to Smartphones: a Pragmatic Approach. COMPSAC 2021 - IEEE 45th Annual Comput-
ers, Software, and Applications Conference, Jul 2021, Madrid, Spain. pp.574-579, �10.1109/COMP-
SAC51774.2021.00085�. �hal-03523342�

https://hal.science/hal-03523342v1
https://hal.archives-ouvertes.fr


Bringing Opportunistic Networking to Smartphones:
a Pragmatic Approach

Frédéric Guidec1, Yves Mahéo1, Pascale Launay1, Lionel Touseau1 and Camille Noûs2

1 IRISA, Université Bretagne Sud, Vannes France. Email: name.surname@univ-ubs.fr
2 Laboratoire Cogitamus. Email: name.surname@cogitamus.fr

Abstract—Opportunistic networking allows mobile devices to
communicate without any fixed infrastructure, using the store-
carry-and-forward principle, based on D2D (device to device)
transmissions. Although smartphones may appear as perfect
candidates to implement opportunistic networking protocols and
algorithms, it turns out that their ability to support D2D
transmissions is quite constrained, which hinders the deployment
of opportunistic applications at a large scale. Acknowledging this
fact we present Ligo, a device that is meant to behave as a
peripheral device of a smartphone, providing this smartphone
with the opportunistic networking services it cannot implement
natively. The hardware components of Ligo are detailed in this
paper, as well as the different software elements that enable the
communication in the opportunistic network and the interaction
with the smartphone. Experimental results are finally presented
in order to validate our approach.

Index Terms—Opportunistic networking, mobile networking,
wireless networking

:

I. INTRODUCTION

Opportunistic networks are a kind of challenged networks in
which the mobility of devices and their sparse or unpredictive
distribution hinder end to end connectivity. In an oppor-
tunistic network, mobile devices communicate directly with
one another through short-distance radio links. Network-wide
communication is enabled by applying the store-carry-and-
forward principle borrowed to Delay-Tolerant Neworks [1]:
a mobile device maintains a cache of messages, so that it can
store messages while moving, in order to be able to forward
them when an opportunity occurs, that is, when it enters in
contact with some other device.

In the last two decades, research has been active in oppor-
tunistic networking. Focus has been mainly put on forwarding
protocols that try to minimize the delivery delay while limiting
the number of copies of messages and the volume of data
exchanged during a possibly short contact [2], [3]. This has
led to the definition of many protocols, each more or less
adapted to the type of devices considered (hand-held devices,
vehicles, sensors...), or their mobility, in particular when this
mobility depends on social behaviors. Yet, most of the works
on forwarding protocols have been validated only through
simulation, and few effective opportunistic networking systems
have been proposed and experimented in real conditions,
especially at medium or large scale.

A number of application domains have been identified for
opportunistic networking, though. Opportunistic networking is

obviously a good option when the fixed infrastructure that sup-
ports traditional communication is not available, for instance
in disaster relief scenarios or wildlife sensing. But other use
cases are also envisaged, such as vehicular communication, or
social networking in regions where the Internet is censored.
One could expect that such use cases would have drawn the
development and the deployment of opportunistic networking
software. In addition, as smartphones are now pervasive,
one could even think that mobile opportunistic networking
applications would have been distributed at a large scale. But
the reality is far from that. Even at the research level, only
a few works reach the level of a proof of concepts, deployed
on a bunch of devices, and the publicly available operational
applications are almost nonexistent.

As stated in [4], the human factor is one of the main
reasons for the lack of real experimentation: developing a fully
operational protocol stack or a communication middleware is
not an easy task, and conducting field experiments remains
time-consuming. There is a need for some opportunistic mid-
dleware exposing a clear and simple API and some effective
deployment tools. The second reason mentioned in [4] is the
technology hindrance, and this reason is probably the most
pregnant one: to date there is no radio technology suitable
for opportunistic networking that is easily usable on off-
the-shelf mobile devices. Indeed, opportunistic networking
requires device discovery and, in the general case, should
allow direct transmissions between a priori unknown devices
without human intervention. Even though Wi-Fi and Bluetooth
chipsets are common on handheld mobile devices, operating
systems (essentially, Android and iOS) do not offer proper
support to meet opportunistic networking requirements. Wi-Fi
in ad hoc mode is not possible on non-rooted devices, Wi-
Fi Direct and Bluetooth solicit the user for configuration and
pairing acceptance. Other promising technologies such as 4G
or 5G D2D are simply not available yet, and it is unclear
if device-to-device communication will be widely enabled in
operator-managed networks in the near future.

This paper presents a prototype architecture that is intented
to ease the development and the deployment of opportunistic
applications on handheld mobile devices such as smartphones.
Having aknowledged the inadequation of such devices to op-
portunistic communication, we propose to assign this function
to a separate device, built out of more controlable materials.
This device, that we call Ligo, is small enough to be carried in
a pocket. In this paper, we present a prototype of Ligo based



ad hoc

ad hoc

Figure 1. Global communication architecture

on a Raspberry Pi Zero, whose Wi-Fi interface is used in ad
hoc mode so that several Ligo units can form an opportunistic
network. Each Ligo unit is associated with a handheld device
(for the sake of simplicity, we will assume in the rest of
this paper that this device is a smartphone) via Bluetooth in
order to interact with the user application. Figure 1 depicts
the resulting global communication architecture, that involves
smartphones and Ligo units.

Apart from the hardware design of Ligo, the main contri-
butions detailed in this paper comprise a Bluetooth gateway
application for connecting a smartphone to a Ligo unit, and
a protocol added to the opportunistic communication mid-
dleware to enable exchanges with the external application
hosted on the smartphone, which can be a native application or
executed in a Web browser. Additionally, a solution for the de-
ployment of user applications is presented, taking into account
that the smartphones involved in the opportunistic network
are not permanently connected to the Internet. The different
hardware and software propositions are complemented by
the description of a series of experiments that validate our
approach.

II. RELATED WORK

Deploying and testing opportunistic networks in real con-
ditions and at a sufficiently large scale has been reckoned
as a future direction to follow in opportunistic networking
research, in order to go beyond the definition of forwarding
protocols and their validation through simulation [5], [6]. Yet,
it is admittedly a delicate task. One of the main problems is
that although smartphones are often considered as the obvi-
ous deployment target for opportunistic networking protocols
and applications, they can hardly support the kind of radio
transmission required in an opportunistic network. Indeed,
opportunistic networking requires spontaneous direct device-
to-device (D2D) communication between network nodes. Yet
the wireless interfaces available in smartphones are mostly
adapted for infrastructure-based communication (i.e., via cell-
phone networks or Wi-Fi access points). Wi-Fi ad hoc com-

munication would constitute a perfect means to achieve direct
device to device transmissions among smartphones, but this
mode of operation is disabled in standard releases of Android
and iOS. This constraint can of course be removed by rooting
(a.k.a. jail-breaking) the operating system of the smartphone as
it has been done to test some opportunistic middleware [7], but
in that case only a few people are willing to serve as testers for
the proposed solution. In order to provide an alternative to real
ad hoc communication among smartphones, many solutions
have been proposed that rely on Bluetooth or Wi-Fi Direct [8],
[9]. With both technologies, though, spontaneous interaction
between smartphones is not possible, because both Android
and iOS require user confirmation before two devices can
connect together for the first time. This constraint prevents
smartphones from interacting spontaneously with one another,
and it constitutes an obstacle to large scale experimentation of
opportunistic networking.

Since real ad hoc communication between smartphones
cannot be obtained directly with the builtin hardware and OS,
the approach presented in this paper consists in externalizing
the missing features. Indeed, the idea of bringing additional
transmission technologies to smartphones has already been
considered in many research projects, and it has even ma-
terialized in a few commercial products.

goTenna proposes two kinds of devices (one for professional
users, one for standard consumers) that can be paired with
smartphones via BLE (Bluetooth Low Energy), bringing these
smartphones the possibility to exchange short messages or
GPS locations without relying on any fixed infrastructure (e.g.,
cellular or Wi-Fi) [10]. Transmissions are performed using
GFSK modulation in either the UHF band (for both kinds
of products) or the VHF band (for professional products), and
mesh networking based on proprietary routing protocols allows
messages to propagate over up to six hops [11], [12], [13].
goTenna devices do not rely on the store, carry and forward
principle, though, so a device cannot store a message while
its owner is moving, and forward this message later to other
neighbor devices.

bearTooth is another device that works on a quite simi-
lar principle as goTenna [14]. It does not implement mesh
networking, but PTT voice is supported in addition to text
messaging and location sharing. Transmissions are achieved
using FSK modulation (for PTT voice) and LoRa modulation
(for short messages) in the ISM 915 band (902-928 MHz), so
this device cannot currently be used out of ITU Region 2 (that
is, mostly, the American continent).

Satellite communication can also be an option to provide
communication services in unpopulated areas. A device such
as Zoleo can be paired via Bluetooth with a smartphone, and
then provide this smartphone with text messaging and location
sharing services via the Iridium satellite constellation [15].
This approach requires paying a subscription fee, and it does
not really qualify as an infrastructure-less approach.

The above-mentioned products all rely on the same basic
idea: bringing new communication facilities to a smartphone
by extending this smartphone with a peripheral device with



which it can interact via a Bluetooth link, and which will
basically serve as a new external transmission interface for
the smartphone. It is worth noting that none of these devices
can support opportunistic networking, though, for none of
them relies on the store, carry and forward principle. In the
remainder of this paper we present Ligo, a device we de-
signed specifically to provide smartphones with opportunistic
networking services.

III. LIGO’S HARDWARE

A. Rationale

The Ligo device we based our approach on is built out
of hardware components intented to support opportunistic
communication and interaction with a smartphone. Before
giving details on its hardware features, we summarize in the
following the requirements we tried to fullfill when designing
Ligo.

Radio capabilities: Ligo units must be able to form
an opportunistic network by communicating directly with
each other. Thus, the device must be equipped with radio
technology allowing discovery and direct transmissions be-
tween devices, even never encountered before, without human
intervention. A Wi-Fi interface operating in ad hoc mode is a
perfect way to achieve device-to-device communications.

Moreover, Ligo and the smartphone must be associated and
communicate via a short range radio link. Thus, Ligo must
embed a Bluetooth interface, a technology widely available
on smartphones.

Battery life: a smartphone is usually expected to run for
at least 12 hours between two battery charges. Any device
bringing opportunistic networking functionalities to such de-
vices should have a similar battery life. In a smartphone or
a tablet, though, the operating system implements aggressive
strategies in order to preserve the battery. The builtin radios
(i.e., Wi-Fi, Bluetooth, and cellular radios) are disabled most
of the time, and the task scheduler itself freezes whenever
possible, so the power consumption of the CPU is kept
at a minimum. In contrast, the Ligo device must operate
continuously in order to be able to detect neighbor devices,
and be detected by them.

Storage capacity: Ligo must implement the store, carry
and forward principle in order to serve as an effective carrier
of messages. Ligo must therefore be able to store a large
number of messages in a cache. The storage capacity is a
major characteristic of a Ligo device. Besides it is preferable
that messages be stored in a persistent storage space, so Ligo
does not lose all the messages it was carrying every time it is
shut down.

Data processing: Ligo must be able to interact with
several neighbor Ligo units simultaneously, which requires
multitasking.

Autonomous behavior: Ligo must be able to interact
with a smartphone in order to receive commands from this
smartphone, but it must also be able to run autonomously
(interacting continuously with other Ligo units) when the
smarpthone is in sleep mode or is shut down.

Figure 2. Ligo’s components and its casing

User interactions: Finally, Ligo must allow some basic
interactions with its user, such as providing information on
its operating status and battery level through visual or audible
signals, and allow the user to turn it on or off.

B. Ligo’s components

The Ligo prototype combines a Raspberry Pi Zero W
with several additional components: a battery cell, a power
controller, a real-time clock module, a buzzer, and a few
passive components that make it possible to switch the device
on and off. These components are assembled together thanks
to a ProtoZero prototyping board (see Figure 2).

The Pi Zero W is a small single-board computer developed
by the Raspberry Pi Foundation. It is based on Broadcom’s
single-core BCM2835 SoC, running at 1 GHz CPU clock
speed. It features 256 MB onboard memory (RAM), 2 USB
ports (one of which can only be used to power the device), and
wireless capabilities (Wi-Fi and Bluetooth). A MicroSDHC
card is used to store the operating system, and serve for
persistent data storage. The BCM2835 also includes a GPU
videocore, but this feature is not used in Ligo as this is a
headless device.

The antenna used for Bluetooth and Wi-Fi communication
on the Raspberry Pi Zero W is a resonant cavity antenna that is
directly printed on the circuit board. There is no provision for
connecting an external antenna, although this would certainly
improve the performance of wireless transmissions. While
preparing the first release of the Ligo prototype, though, we
decided to keep it simple, and to do with the builtin antenna.
Experiments conducted with the Ligo prototype confirm that,
although the builtin antenna of the Pi Zero W is located close
to the Li-Ion battery in Ligo’s casing, this does not seem to
hinder wireless transmissions dramatically (see Section VII-B
for details about these experiments). In any case, adding an
external high-gain antenna to the Ligo prototype may be an



option for future releases, if only to improve significantly the
radio range of this device when it is used outdoors.

The battery cell of the Ligo prototype is a 18650 recharge-
able Li-Ion battery, with 3000 mAh nominal capacity. Other
kinds of batteries could of course be used, in order to get a
higher capacity (e.g., 26650 cells with 5000 mAh capacity),
or a different form factor (e.g., Li-Po batteries).

The power controller is Adafruit’s PowerBoost 1000C. This
charger circuit is based on a DC/DC boost converter module
that can be powered by any 3.7 V Li-Ion or Li-Po battery.
It can provide the Pi Zero with a steady 5 V power input,
while recharging the battery if necessary. Ligo can thus run
equally on its battery or on an external power supply (provided
via a USB plug), and it can switch from one power mode
to the other without being interrupted. The power controller
features four LEDs that indicate its current state. These LEDs
are visible to the user of Ligo, and therefore indicate if Ligo
is currently running, if the battery is being charged or is fully
charged, and if the battery level is low. The power controller
also features two control pins EN (enable) and LBO (low-
battery output). In Ligo, pin EN is used to enable the power
output (thus allowing the Pi Zero to boot), and pin LBO is
connected to an input pin of the Pi Zero’s GPIO port, so the
Pi Zero can be notified when the battery level is getting low.

The real-time clock module is a small PCB (printed circuit
board) based on a DS3231 RTC clock. This PCB includes its
own cell-button battery, so the clock keeps running even when
the other components of Ligo are off. The timing accuracy of
the DS3231 clock is around ± 5ppm (± 0.432 sec / day). This
clock communicates via I2C, so its pins are connected to the
pins devoted to I2C communication on the Pi Zero’s GPIO
port. With the appropriate driver and configuration on the Pi
Zero, the current time can be read from the DS3231 during
the Pi Zero’s boot sequence.

The buzzer is connected to a digital output pin of the
GPIO port. It can thus be controlled by appropriate software
(typically, a simple Python script). Currently, Ligo produces
three short beeps after booting, and six short beeps before
shutting down. Additional audio signals may of course be
designed in order to notify the user of various other events.

Switching Ligo on and off is obtained by pressing an on/off
button. A few passive components (a few resistors, a capacitor,
and a diode) have been used to connect this button with the
power controller and with the Pi Zero. As a result, when the
button is pressed while Ligo is not running, this event triggers
the EN pin of the power controller, so the Pi Zero is powered
on and starts booting. When the button is pressed while Ligo
is running, this event is detected by a Python script running on
the Pi Zero, and this script triggers a shutdown of the Pi Zero.
The same script also monitors continuously the state of the
LBO (low battery) pin of the power controller, so a shutdown
is triggered automatically when the battery gets too low.

Since the Ligo device is a prototype, a 3D printable casing
has been designed for this device. With this casing, the USB
port of the power controller is accessible so the battery can
be charged when necessary. One USB port of the Pi Zero is

accessible as well, so the Pi Zero can be connected to another
computer, and get controlled (via an SSH session) from this
computer. This feature is mostly used to update the software
of the Pi Zero. In order to prevent any unintentional activation
of the on/off button, this button is kept hidden inside Ligo’s
casing, and it can only be accessed through a small hole. The
user must thus use the tip of a pen, or a similar sharp object,
to switch the device on or off. Light guides are embedded in
the casing, so the four LEDs that indicate the status of the
power controller are clearly visible from the outside.

IV. BLUETOOTH LINK BETWEEN A SMARTPHONE AND
LIGO

Communication between a smartphone and Ligo relies on
Bluetooth transmissions. An application we designed must first
be installed on the smartphone, so it can communicate with
Ligo. This application is named Ligo Gateway. To date it is
only available for Android smartphones.

When Ligo boots, the discoverable and pairable modes
are enabled for a limited time (by default: 2 minutes) on its
Bluetooth interface. During that time, a user can use the Ligo
Gateway app to pair her smartphone with Ligo. There is no
need to repeat this procedure once the two devices have been
paired, since they will both remember that they can trust each
other.

Once a smartphone has been paired with Ligo, the Ligo
Gateway app is meant to run in the background, as its main
goal is to open and maintain an RFCOMM link between the
smartphone and Ligo.

Ligo and the Ligo Gateway app support two methods for
managing RFCOMM links. In both cases the Bluetooth gate-
way running on Ligo listens to a predefined RFCOMM channel
C0, waiting for a smartphone to connect to that channel. By
default Ligo is meant to serve only one smartphone at a time,
so when a smartphone connects to channel C0 it is served di-
rectly on that channel. If Ligo must serve several smartphones
simultaneously, then when a smartphone connects to channel
C0, Ligo selects another available RFCOMM channel Ci, and
it notifies the smartphone that it should connect to Ci rather
than monopolize C0. Channel C0 is thus used as a signalling
channel, while actual data transfers are performed on other
channels.

Note that the Service Discovery Protocol (SDP) of the
Bluetooth standard is not used in the current version of
Ligo, because it would not bring any real advantage in that
case: since Ligo only provides a single kind of service over
Bluetooth, there is no need for smartphones to enquire about
the kinds of services it provides. Besides the Ligo Gateway
app must be used to establish an RFCOMM link between both
devices.

Once this RFCOMM link is established, it is used as a
tunnel in which multiple TCP sessions can be multiplexed.
Application programs running on both sides of the tunnel
can then communicate together via TCP sessions, although
all traffic is actually multiplexed on a single RFCOMM link
(see Figure 3). If the RFCOMM link —and thus the tunnel it



Smartphone

port1

port3

port2 RFCOMM Channel 

Bluetooth
gateway

(Android app)

TCP client

TCP client

TCP client

port1

port3

port2

TCP server

Bluetooth
gateway

(Python)

TCP server

TCP server

Ligo

Figure 3. Bluetooth link between a smartphone and Ligo

supports— gets disrupted, all TCP sessions are automatically
closed, and the Ligo Gateway app starts looking for Ligo
again.

In practice, both the Ligo Gateway app and its Python
counterpart on Ligo can be configured so as to listen to a list
of specific TCP sockets. Let us assume that the Ligo Gateway
app has been configured to listen to TCP port #8000 on the
smartphone. If a local client program attempts to connect to
this particular socket, then a notification is sent to the opposite
gateway (running on Ligo), which in turn attempts to open a
TCP session to socket #8000 on Ligo. If this attempt succeeds,
then all traffic originating from the client program on the
smartphone will be forwarded via the Bluetooth tunnel to
the server program running on Ligo. Both gateways can be
configured to listen to any number of TCP sockets.

V. OPPORTUNISTIC COMMUNICATION

A. Device-to-device transmissions

Two major charateristics required from a mobile device
in an opportunistic network are the ability to spontaneously
discover its neighbors, and to engage in communication (i.e.,
exchange messages) with these neighbors. In both cases, direct
device-to-device (D2D for short) communication on a wireless
channel is required between the mobile devices. In Ligo, we
chose to use the Wi-Fi interface for this purpose. The Wi-Fi
standard can support D2D communication thanks to the so-
called ad hoc mode of operation. Contrarily to the operating
systems running on smartphones, the Linux Debian OS in-
stalled on Ligo imposes no restriction on the configuration of
the Wi-Fi interface, and hence allows us to enable the ad hoc
mode. An IPv6 address is forged and assigned to the Wi-Fi
interface on each Ligo unit, using stateless autoconfiguration
(SLAAC), so the opportunistic network is inherently scalable.
Neighbor discovery relies on announcements sent periodically
to a multicast group (with link local scope, so only one-
hop neighbors can receive these announcements), and data
exchanges between neighbor nodes rely on standard unicast
transmissions.

B. Opportunistic middleware

Ensuring the forwarding of messages from node to node in
an opportunistic network requires appropriate protocols. Al-
though many message forwarding protocols for opportunistic
networks have already been proposed in the literature [16],
[5], [17], [2], [18], [19], most of these protocols have only
been implemented as pseudo-code, and run with simulators.

They can thus hardly be deployed on real platforms, and used
in real conditions. Notable exceptions are IBR-DTN [20] and
aDTN [21], which both support destination-based message
forwarding based on the Bundle Protocol (BP) [22]. Another
option is DoDWAN [23], which does not rely on BP as it is
devoted to content-driven message dissemination, while BP is
devoted to address-driven message forwarding.

The first release of Ligo includes the DoDWAN middleware.
IBR-DTN and aDTN may be considered for inclusion in future
releases.

When a radio contact is established between two instances
of DoDWAN, they strive to exchange messages that match
their respective interest profiles. Each message received by a
DoDWAN node is stored in a local cache, so this message can
be forwarded later to other nodes. This mode of operation is in-
spired from the Autonomous Gossiping (A/G) algorithm [24],
which itself defines a selective version of the epidemic routing
model proposed in [25].

DoDWAN is implemented in Java, and it is meant to
support the content-driven dissemination of messages in an
opportunistic network. In content-driven dissemination, the
flow of messages is directed towards interested receivers rather
than towards specifically set destinations. This mode of com-
munication typically calls for a publish/subscribe (pub/sub)
API. An application service that needs to send a message
in the opportunistic network uses this API to publish the
message, and all application services that have subscribed to
receive this kind of message receice a copy of the message.
Since DoDWAN supports content-driven dissemination, each
message must be published with a descriptor that characterizes
its content. Conversely, when an application service subscribes
to receive some content, this subscription is characterized
by a pattern that can be matched to the descriptor of any
message. The patterns defined by all the application services
running on a DoDWAN node define the interest profile of this
node. The descriptor associated with a message must include
an indication of this message’s deadline. When this deadline
is reached, the message is automatically expunged from the
cache of any DoDWAN node. Assigning each message that
propagates in an opportunistic network a set deadline is a
common way of ensuring that this message will not remain
forever in the network.

DoDWAN can support different kinds of wireless tech-
nologies and protocol stacks. In Ligo it relies on IPv6-based
transmissions over a Wi-Fi channel. Neighbor discovery is
therefore based on UDP annoucements sent to a multicast
group, and two neighbor nodes can interact with each other
via TCP sessions.

Each DoDWAN node periodically broadcasts an announce-
ment (in a UDP datagram) in order to inform its neighbors
about its presence on the wireless channel. By receiving
similar announcements a host discovers its neighbors. Every
time a DoDWAN node detects the presence of a new neighbor,
a connection is established (via a TCP session) with this neigh-
bor, and both nodes first exchange their interest profiles. Based
on this information, each node can examine the descriptors



of the messages available in its cache, selecting among these
messages those that could be of interest to the peer node. An
offer is then sent to this peer, which can then request any of
the proposed messages. This process goes on until the radio
link between the two peer nodes is disrupted. Each DoDWAN
node maintains soft-state information about the other nodes
it has encountered recently, and about the messages it has
already exchanged with each of theses nodes. Thus, when two
nodes meet again, they can avoid offering each other messages
they have already exchanged. In any case, a message is never
sent to a node that has not requested it explicitly, so the
wireless channel is not obstructed by redundant, and possibly
useless message transfers. Of course a DoDWAN node may
be connected to several other nodes simultaneously, so each
node may actually serve as a conduit between two other nodes
that cannot exchange messages directly.

The cache where DoDWAN stores messages is implemented
in the host’s filesystem, but a lookup table is maintained in
memory so the descriptors of these messages can be parsed
rapidly. Since the Ligo prototype uses a MicroSDHC card as
a persistent filesystem, the number of messages that can be
stored on Ligo is only limited by the capacity of this card.
Although there is no limit to the size of the messages that can
be exchanged between two DoDWAN nodes, using Ligo —
and thus DoDWAN— to share video files may not be a wise
choice. Exchanging text messages, images, and even small
audio files is perfectly acceptable, though.

C. DoDWAN network API

The user application deployed on a smartphone must be
able to interact with the DoDWAN instance running on the
associated Ligo unit. For this purpose, DoDWAN has been
endowed with a network API that proposes the main functions
needed to develop an application that exploits opportunistic
communication. This API covers the aspects related to neigh-
bor discovery and to publication/subscription. The network
API is presently implemented in two versions: a TCP version
adapted to native applications, and a WebSocket version more
useful for Web applications (that is, applications running in
Web browsers).

The DoDWAN network API (NAPI for short) relies on a
client-server asynchronous protocol. The DoDWAN instance
hosted on Ligo runs a daemon to which clients can connect via
one of the TCP connections multiplexed on the Bluetooth link.
The protocol data units (PDU) exchanged between the client
and the DoDWAN daemon are serialized. The serializisation
method can be chosen among several ones (presently JSON or
BSON). A PDU issued by a client is a command PDU (e.g.,
publish). It is expected that the daemon replies to a command
with a response PDU. A token is included in the command
and is copied in the corresponding response by the daemon
to ensure command-response matching. A PDU issued by the
DoDWAN daemon can be either a response to a command
or a notification. There are two types of notifications: the
notifications related to the changes of neighborhood (peers
appearing and disappearing), and notifications related to the

arrival of DoDWAN messages in the opportunisc network,
resulting from subscriptions. PDUs are structured as maps,
composed of key/value pairs that include a name and some
parameters. Each value of a pair has a given type among the
following seven types: String, 32 bit Integer, 64 bit Integer,
Boolean, Binary Data, Map of strings, Array of strings. The
following PDU (noted for clarity in pseudo-JSON) contains a
command to publish a message, with a given descriptor and
content.

{ "name":"publish",
"tkn":"1234",
"mid":"3f56fr67",
"desc":{"topic":"general", "language":"en"},
"data":...0x5 0x00...}

A client opens a NAPI connection to the daemon using
the underlying transport protocol (WebSocket or TCP). The
first NAPI PDU issued by the client should be the hello
command in which the client passes its (unique) id to the
daemon. The reception by the daemon of a hello command
marks the beginning of a session. During a session, the
notifications generated by DoDWAN are transmitted to the
client that initiated the session, on the current underlying
connection, if the session is active. A session is made active
once the client has issued a start command. It is made inactive
when the client has issued a stop command. Notifications
generated by DoDWAN, when no connection is opened or
when an opened connection is non active, are lost. However
the client may later retrieve missed subscription notifications
with the get_matching command. A connection may be closed
for several reasons, unexpectedly or not. When closed, the
connection is automatically considered inactive. The client is
expected to retry to open the connection within the session,
and if successful to first issue a hello command with the
continuation parameter set. A session is ended explicitely by
the client when this client issues a bye command.

On the daemon’s side, the sessions are not persistent. This
means that no session is considered open by the daemon
when the daemon restarts after having been stopped (or after a
crash). The client can be aware that the daemon has restarted
when the daemon responds to a hello command (with the
continuation parameter set) with an error.

Table I lists the main commands (for each command, a
corresponding response, not shown in the table, is issued by
the daemon) and notifications handled by the NAPI protocol.

VI. APPLICATION DEPLOYMENT

One of the main motivations for using Ligo for opportunistic
computing is the ease of development and deployment of
opportunistic applications.

The DoDWAN Network API is a simple API that allows
the rapid development of pub/sub client applications to be
deployed on smartphones. The programmer can chose to
develop a native client (iOS or Android) or she can develop a
client running in a Browser, that will connect to the DoDWAN



Commands
name parameters role
hello tkn, client, [cont] starts a NAPI session
bye tkn ends a NAPI session
start tkn activates a NAPI session
stop tkn deactivate a NAPI session

publish tkn, mid, desc, data | file, [expire] publishes a message
add_sub tkn, key, desc, [dir] adds a subscription

remove_sub tkn, subs removes subscriptions
get_desc tkn, msg_id retrieves the descriptor of a message

get_payload tkn , msg_id, [file] retrieves the payload of a message
get_matching tkn , subs gets the ids of the messages matching some subscriptions
get_peers_id tkn gets the ids of the neighbor DoDWAN peers

get_my_id tkn gets the id of the local DoDWAN peer
Notifications

on_desc_recvd tkn, mid, key, desc, [ferror] a message has been received (its descriptor is provided)
on_peer_added pid a new DoDWAN peer has come in contact

on_peer_removed pid a DoWDAN peer has lost contact

Table I
MAIN COMMANDS AND NOTIFICATIONS OF THE DODWAN NAPI PROTOCOL

daemon via a WebSocket. In both cases, the Bluetooth gateway
will maintain the link between the smartphone and Ligo.

Developing a DoDWAN client as a Web application (a
DoDWAN WebApp for short) is particulary interesting for
portability reasons. Such an application is generally developed
in HTML/CSS/JavaScript. A few simple Javascript functions
can easily be built in order to use the DoDWAN Network API
via a WebSocket. Of course, compared to native applications,
Web applications may be restricted, in particular as far as the
access to system functions is concerned. But for a number
of applications, these restrictions are not a concern and can
be simply circumvented. Morever, the deployment of Web
applications is almost transparent for the user.

In the context of opportunistic networking, though, some
constraints are to be considered as the smartphone may not
be permanently connected to the Internet. In order to facilitate
the deployment of DoDWAN WebApps, we have added to
the Ligo’s software a Web server that plays the role of a
WebApp repository (see Figure 4 for a global picture of the
designed architecture). This repository is intended to store
DoDWAN WebApps so that these applications can be used
on demand, even when the smartphone is not connected to
the Internet. The main entry point to this repository is a
WebApp manager, accessible via HTTP on the smartphone
(see Figure 5). The WebApp manager is used to download
DoWDAN WebApps from the Internet when possible, to store
them on Ligo’s SDcard for later use, and to present the list
of available WebApps that can then be launched via a simple
click. A REST API is also provided in order to access the
main repository functions (list the WebApps ; add, remove,
update a WebApp in the repository). A simple archive format
(with filename extension .dwar) has been defined for packaging
DoDWAN WebApps: the Web application tree is compressed,
encoded in base64 and encapsulated in a JavaScript call,
following the JSONP pattern1. Hence, despite same-origin

1JSONP has been chosen for its simplicity for our prototype. It should be
replaced by CORS to increase security.

Smartphone

Bluetooth
gateway

Browser

DoDWAN

NAPI

TCPWebsocket

Webapp
Repository

Storage

HTTP-REST API HTTP

app3

HTTP-REST API

app1

app2

/repo

Ligo

Bluetooth
gateway

webapp
manager

/ /apps/storage

h
ttp

w
s

tcp

Native
Application

Opportunistic
Network

Figure 4. Deployment architecture on the smartphone and on Ligo

restrictions, WebApps can be easily provided by any Web
server on the Internet as .dwar files, without any further
configuration. Finally, the HTTP server deployed on Ligo also
provides WebApps with storage facilities via a REST API (as
an equivalent to Cloud storage) to compensate for the lack of
large storage capabilities for browser-embedded applications.

VII. EXPERIMENTAL RESULTS

A. Battery Life

We ran experiments in order to observe how long a Ligo
unit can run with a 18650 battery cell. These experiments
involved a fully functioning unit, meaning that both the



Figure 5. DoDWAN WebApp manager application

Wi-Fi and Bluetooth radios were enabled during the tests.
Besides, the opportunistic networking middleware DoDWAN
was also running during the tests, and the Ligo unit was paired
and interacting actively with a smartphone. Each experiment
started with a fully charged battery cell, and the Ligo unit
was allowed to run until the low battery signal triggered an
automatic shutdown of the unit. The uptime was later retrieved
from the log files.

We observed that with a 3000 mAh battery cell the Ligo
unit can operate for about 14 hours. This autonomy can be
doubled by using a 26650 battery cell instead of a 18650 cell,
but in that case the Ligo unit is of course heavier, and its
casing bulkier.

B. Transmission range and bitrates

1) Bluetooth link: Experiments have confirmed that a Blue-
tooth link can be established between a smartphone and a Ligo
unit over several meters, and that this link remains stable even
when the user carrying the smarpthone moves around the Ligo
unit. There is thus no need for the user to carry continuously
the Ligo unit that is paired with her smartphone. As long as the
smartphone and the Ligo unit are in the same room (or even
in adjacent rooms), the Bluetooth link remains quite stable.

The BCM2835 SoC of the Pi Zero W implements the BLE
4.1 standard, which is retro-compatible with Bluetooth 2.1 +
EDR (Extended Data Rate). Although the physical bit rate of
EDR is 3 Mbps, we never observed application-level bitrates
over 950 kbps when testing the Bluetooth link between a
smartphone and a Ligo unit. To the best of our knowledge, the
reason for this rather poor performance is that on a Pi Zero

W, the Bluetooth transceiver is interfaced with the CPU via a
UART. This UART constitutes a bottleneck, as it cannot stream
data fast enough when a Bluetooth channel is used intensively.
We confirmed this hypothesis by plugging a Bluetooth USB
dongle into the Ligo unit, using this additional Bluetooth
interface instead of the builtin one. In that case we observed
application-level bitrates around 2 Mbps. The Bluetooth don-
gle option has not been retained in our prototype, though,
because it tends to monopolize the only available USB port
of the Ligo unit.

2) WiFi channel: Experiments conducted with several Ligo
units deployed either indoor or outdoor have shown that two
units can usually easily communicate (using Wi-Fi ad hoc
transmissions) over dozens of meters in a single building, and
that this distance can often exceed 100 meters in open space.

While conducting these experiments we have also measured
the transmission bitrates that can be observed over a Wi-Fi
channel. Since Ligo units communicate together in ad hoc
mode in the 2.4 GHz band, the transmission bitrates at physical
level are typically those allowed by the IEEE 802.11bgn
standard. We measured the transmission bitrate at application
level, using a home-made application that can either send or
receive streams of data on a TCP session (without any access
to the filesystem). While running this application on two Ligo
units, we also monitored the traffic on the radio channel with a
laptop running Wireshark. With the two Ligo units lying about
two meters apart, we observed that the data frames transferred
from the sending unit to the receiving unit were transmitted
at 72 Mbps on the radio channel. Yet, at application level the
transfer rate did not exceed 14 Mbps. When we moved one
unit a few rooms away, or even to the next floor, the parameters
of the OFDM modulation changed on the radio channel, so the
transmission rate of data frames decreased accordingly. Yet the
transfer rate at application level remained around 14 Mbps, and
it only started to decrease when the distance between the two
Ligo units exceeded 30 meters (indoor).

Thus it seems that although the builtin Wi-Fi transceiver of
the BCM2835 SoC makes a decent use of the radio channel,
application programs running on the Pi Zero W can hardly
observe data transfers over 14 Mbps. This is probably due to
the architecture of the Pi Zero W, but we are unable to pinpoint
what specific part of this architecture explains this rather poor
performance. Surprisingly enough, the application-level bitrate
is far better (about 32 Mbps) when a Pi Zero W receives a
stream of data from a laptop, rather than from another Pi Zero
W. When the Pi Zero W sends a stream of data to a laptop,
though, the bitrate is again around 14 Mbps.

C. Field experiment

We conducted a small-scale field experiment to observe
how Ligo units paired with smartphones can perform in
real conditions. This experiment lasted about 2 hours and
it involved 15 volunteers, each volunteer using a Ligo unit
together with her own Android smartphone. Before starting
the experiment, each volunteer was required to install the Ligo
Gateway app on her smartphone, and use this app to pair the



Metrics Values (∗=min/max/avg/stdev values)

Duration of the experiment 1h58’
Number of nodes 15

Field area 420 m × 160 m
Number of active nodes 5.0 / 15.0 / 14.2 / 1.8 (∗)

Activity duration per node 1h46’ / 1h55’ / 1h52’ / 2’12” (∗)

Average number of neighbors per node 0.3 / 4.0 / 1.8 / 0.7 (∗)

Number of contacts 956
Durations of contacts 1” / 12’32” / 1’05” / 1’52” (∗)

Number of messages published 541
Number of messages deliveries 7513 (delivery ratio: 99.2%)

Messages delivery delays 0” / 20’23” / 3’01” / 2’25” (∗)

Table II
STATISTICS ABOUT THE FIELD EXPERIMENT

smartphone with the Ligo unit. During the experiment, the
volunteers were asked to walk freely around our university
campus, while exchanging text messages using a dedicated
WebApp. Every message was sent on a public channel, so
it could be received by all other volunteers. Log files were
collected after the experiment and used to produce statistical
data, which are presented in Table II. In this table the figures
about the durations of radio contacts confirm the dynamics
of the network, and those about the number of neighbors
observed by each node are typical of a sparse distribution of
nodes in the network. Of the 541 messages that have been
published by the volunteers during the experiment, it can be
observed that almost all messages have been delivered to all
potential receivers. Some message deliveries occurred almost
instantaneously (when the receivers happened to be direct
neighbors of the senders), but the average delivery delay is
around 3 minutes. These figures confirm the effect of the store-
carry-and-forward principle enforced by the Ligo unit.

Overall this experiment performed in real conditions shows
that our prototype is fully functional, and that it makes it pos-
sible for off-the-shelf smarpthones to engage in opportunistic
communication.

VIII. CONCLUSION

In this paper, we have presented an architecture and de-
scribed a prototype we have developped to enable oppor-
tunistic communication between handheld devices such as
smartphones. Device-to-device communication is delegated
to a peripheral device, called Ligo, that communicates with
the smartphone through a Bluetooth link. The Ligo device
feature a Wi-Fi interface operating in ad hoc mode, allow-
ing discovery and direct communication between peers. The
DoDWAN middleware runs on the Ligo unit in order to
support opportunistic content-driven message dissemination.
Experiments have been performed to measure the battery
life, bitrates and transmission range of the prototype, and the
whole system has been validated with a field experiment. The
validation of this prototype shows the interest of our approach,
which makes it possible to bring opportunistic communication
to standard, off-the-shelf smartphones. Future work should no-
tably include running further field experiments (if possible at a
larger scale), considering alternative opportunistic networking

middleware (such as aDTN or IBR-DTN) to be deployed in
Ligo, and investigating other hardware platforms to bypass the
inefficiencies of the Raspberry Pi Zero.

AKNOWLEDMENT

This work was supported by the French ANR (Agence
Nationale de la Recherche) under grant number ANR-16-
CE25-0005-02.t

REFERENCES

[1] K. Fall, “A Delay-Tolerant Network Architecture for Challenged Inter-
nets,” in Proceedings of ACM SIGCOMM03, Karlsruhe, Germany, Aug.
2003, pp. 27–34.

[2] A. Triviño Cabrera and S. Cañadas Hurtado, “Survey on Opportunistic
Routing in Multihop Wireless Networks,” International Journal of
Communication Networks and Information Security (IJCNIS), vol. 3,
no. 2, pp. 170–177, Aug. 2011.

[3] Z. Zhang, “Routing in intermittently connected mobile ad hoc networks
and delay tolerant networks: overview and challenges,” IEEE Commu-
nications Surveys & Tutorials, vol. 8, no. 1, pp. 24–37, 2006.

[4] M. Conti, C. Boldrini, S. S. Kanhere, E. Mingozzi, E. Pagani, P. M.
Ruiz, and M. Younis, “From MANET to People-Centric Networking:
Milestones and Open Research Challenges,” Computer Communications,
vol. 71, pp. 1–21, 2015.

[5] M. J. Khabbaz, C. M. Assi, and W. F. Fawaz, “Disruption-Tolerant
Networking: A Comprehensive Survey on Recent Developments and
Persisting Challenges,” IEEE Communications Surveys and Tutorials,
vol. 14, no. 2, pp. 607–640, 2012.

[6] S. Grasic and A. Lindgren, “An Analysis of Evaluation Practices for
DTN Routing Protocols,” in Seventh ACM International Workshop on
Challenged Networks (CHANTS’12). ACM, 2012, pp. 57–64.

[7] O. Helgason, S. T. Kouyoumdjieva, L. Pajević, E. A. Yavuz, and
G. Karlsson, “A Middleware for Opportunistic Content Distribution,”
Computer Networks, vol. 107-2, pp. 178–193, Oct. 2016.

[8] V. Arnaboldi, M. Conti, and F. Delmastro, “CAMEO: a Novel Context-
Aware Middleware for Opportunistic Mobile Social Networks,” Perva-
sive and Mobile Computing, 2013.

[9] S. Trifunovic, M. Kurant, K. A. Hummel, and F. Legendre, “WLAN-
Opp: Ad-hoc-less opportunistic networking on smartphones,” Ad Hoc
Networks, vol. 25, Part B, pp. 346–358, Feb. 2015, special isssue on
New Research Challenges in Mobile, Opportunistic and Delay-Tolerant
Networks.

[10] “goTenna,” https://gotenna.com, december 2020.
[11] R. Ramanathan, C. Servaes, and W. Ramanathan, “ECHO: Efficient

Zero-Control Network-Wide Broadcast for Mobile Multi-Hop Wireless
Networks,” in IEEE Military Communications Conference (MILCOM
2018), 2018, pp. 1–6.

[12] A. Dusian, R. Ramanathan, W. Ramanathan, C. Servaes, and A. S. Sethi,
“VINE: Zero-Control-Packet Routing for Ultra-Low-Capacity Mobile
Ad Hoc Networks,” in IEEE Military Communications Conference
(MILCOM 2019), 2019, pp. 521–526.

[13] R. Ramanathan, C. Servaes, W. Ramanathan, A. Dusia, and A. S. Sethi,
“Long-Range Short-Burst Mobile Mesh Networking: Architecture and
Evaluation,” in 16th Annual IEEE International Conference on Sensing,
Communication, and Networking (SECON 2019), 2019, pp. 1–2.

[14] “Beartooth,” https://beartooth.com, december 2020.
[15] “Zoleo,” https://www.zoleo.com, december 2020.
[16] C. Boldrini, M. Conti, and A. Passarella, “Autonomic Behaviour of

Opportunistic Network Routing,” Inderscience International Journal of
Autonomous and Adaptive Communications Systems, vol. 1, no. 1, pp.
122–147, 2008.

[17] H. A. Nguyen and S. Giordano, “Routing in Opportunistic Networks,”
International Journal of Ambient Computing and Intelligence (IJACI),
vol. 1, no. 3, pp. 19–38, 2009.

[18] Z. Zhang, “Routing in Intermittently Connected Mobile Ad Hoc Net-
works and Delay Tolerant Networks: Overview and Challenges,” IEEE
Communications Surveys and Tutorials, vol. 8, no. 1, pp. 24–37, Jan.
2006.

[19] Z. Zhang and Q. Zhang, “Delay/disruption tolerant mobile ad hoc
networks: latest developments,” Wireless Communications and Mobile
Computing, vol. 7, no. 10, pp. 1219–1232, May 2009.



[20] M. Doering, S. Lahde, J. Morgenroth, and L. Wolf, “IBR-DTN: an
efficient implementation for embedded systems,” in Proceedings of the
4th ACM Workshop on Challenged Networks (CHANTS 2008). San
Francisco, CA, USA: ACM, 2008, pp. 117–120.

[21] C. Borrego, S. Robles, A. Fabregues, and A. Sánchez-Carmona, “A Mo-
bile Code Bundle Extension for Application-Defined Routing in Delay
and Disruption Tolerant Networking,” Computer Networks, vol. 87, pp.
59 – 77, 2015.

[22] K. Scott and S. Burleigh, “Bundle Protocol Specification,” IETF RFC
5050, Nov. 2007.

[23] “DoDWAN: Document Dissemination in Wireless Ad hoc Networks,”
https://casa-irisa.univ-ubs.fr/dodwan, december 2020.

[24] A. Datta, S. Quarteroni, and K. Aberer, “Autonomous Gossiping: a Self-
Organizing Epidemic Algorithm for Selective Information Dissemination
in Mobile Ad-Hoc Networks,” in 1st International Conference on
Semantics of a Networked World (ICSNW’04), ser. LNCS, no. 3226,
Paris, France, Jun. 2004, pp. 126–143.

[25] A. Vahdat and D. Becker, “Epidemic Routing for Partially Connected
Ad Hoc Networks,” Duke University, Durham, USA, Tech. Rep. CS-
200006, Apr. 2000.


	I Introduction
	II Related Work
	III Ligo's hardware
	III-A Rationale
	III-B Ligo's components

	IV Bluetooth link between a smartphone and Ligo
	V Opportunistic communication
	V-A Device-to-device transmissions
	V-B Opportunistic middleware
	V-C DoDWAN network API

	VI Application deployment
	VII Experimental results
	VII-A Battery Life
	VII-B Transmission range and bitrates
	VII-B1 Bluetooth link
	VII-B2 WiFi channel

	VII-C Field experiment

	VIII Conclusion
	References

