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ABSTRACT
The early design phase of launch vehicles often involves low fidelity models that are character-
ized by a high level of modeling uncertainties. These uncertainties have to be propagated into
the whole design process in order to ensure the robustness of the found vehicle architecture.
Launch vehicle design involves trajectory optimization that induces a large computational cost
for the uncertainty propagation phase using nested loop approach (outer uncertainty loop and in-
ner optimal control loop). In this paper, a methodology is proposed in order to build a surrogate
model of the uncertainty propagation phase on the trajectory optimization in order to carry out
the uncertainty quantification at a reduced cost. The proposed approach couples reduced order
model and spectral methods in order to allow to generate optimal launch vehicle trajectories as
functions of the input uncertainties. The method is applied to two-stage-to-orbit launch vehi-
cle design in several uncertainty quantification analyses (reliability analysis, sensitivity analysis,
quantile estimation).

1. Introduction
The design of a new launch vehicle is a process that is in general decomposed into different successive phases: the

early design phase, followed by the preliminary phase, the detailed phase, up to the manufacturing and its operational
life. In the early design phase, various launch vehicle architectures, technologies and life cycle options are assessed in
order to identify the most suited launcher for a dedicated market. Therefore, the associated design space in the early
design phase is large as only few characteristics are frozen. Designing a launch vehicle involves a multidisciplinary
process which couples disciplines such as propulsion, aerodynamics, structure or trajectory. The launch vehicle per-
formance assessment requires a coupled analysis between the disciplines called MultiDisciplinary Analysis (MDA) [3]
which consists in solving a nonlinear system of equations to satisfy the interdisciplinary couplings. Due to the large
design space that has to be explored, in the early design phase, low fidelity models are commonly used to evaluate the
launch vehicle performance through aMDA. These types of disciplinary models allow a limited computational cost as-
sociated to the repeated evaluations of the disciplines for instance in a Multidisciplinary Design Optimization (MDO)
framework. However, due to physical simplifications (e.g., Euler-Bernoulli beam theory instead of Timoshenko beam
theory), numerical relaxation (e.g., convergence criterion, coarse mesh), compared to higher fidelity models, the pre-
dicted performance of the launch vehicle is uncertain. Therefore, it is essential to account for the modeling uncertainty
into the early design phase of a launch vehicle. In practice, uncertain variables are often described according to the
probability formalism and sampling-based techniques (such as Crude Monte Carlo) are used for uncertainty quan-
tification [8]. However, including uncertainty quantification into the assessment of launch vehicle performance is a
challenge as it combines the computational cost of MDA, uncertainty propagation and optimization. In addition, for
launch vehicle design, the trajectory module is a key discipline in the MDA. It involves a dynamical system including
control variables for the launch vehicle. The dynamical system is expressed through a system of equations of motion
describing the dynamics of the state variables (e.g., altitude, velocity, flight path angle) under a certain control law
(defined by the control variables). In general, the trajectory discipline includes an auxiliary optimization problem
to find the optimal trajectory control variables for the considered launcher at each iteration step of the MDO process.
Therefore, the propagation of modeling uncertainty (coming from the different disciplines) to assess the launch vehicle
performance requires to repeat trajectory optimization problem solving which is computationally intensive.
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Figure 1: Existing approaches for uncertainty quantification with optimal control trajectory optimization

In the literature, several approaches have been proposed to propagate uncertainty through the MDA for the assess-
ment of the performance of a launch vehicle. Two main approaches exist in the literature to propagate uncertainty in
the multidisciplinary problem (Figure 1). The first one [8, 11, 39] is a nested loop method withMonte Carlo Simulation
(MCS) at the outer level and optimal control at the inner level. Therefore, for each realization of the uncertain variables,
an optimal control problem is solved resulting in a high computational cost. This approach offers the possibility to get
exact state variable realizations (e.g., altitude, velocity) with an optimal trajectory for each realization of the uncertain
modeling variables. However, in this case, the calculation cost combines the cost of uncertainty propagation, the one
of MDA performed for each sample of the uncertainty propagation, and the trajectory optimization which has to be
carried out at each loop induced by the MDA. Consequently, a large number of the trajectory simulations has to be
performed (see Figure 2) and only a limited number of samples may be propagated. For example, if the trajectory
optimal control problem calls in average 200 trajectory simulations, MDA requires 5 loops between the different dis-
ciplines and 10000 samples are used for uncertainty propagation, the trajectory has to be simulated 107 times which is
not achievable.

The second approach [16, 24, 36, 38] (for instance applied to aircraft trajectories or entry descent and landing trajec-
tories) consists in decomposing the optimal control problem with spectral methods (e.g., Polynomial Chaos Expansion
- PCE) and to solve a single optimization problem over an extended design space. It allows to transform the nested
loop approach into a single deterministic optimization problem by a decomposition of the state variables according to
PCE. However, in practice, the resulting optimization problem is very difficult to solve (due to the high dimension of
the search space) and computationally expensive. As mentioned in [36], this type of approach is in practice applied to
problems with a limited number of uncertain variables (≤ 3) [16, 24, 38].

Trajectory 
simulation

Trajectory optimization

MultiDisciplinary Analysis

Uncertainty propagation

Propulsion

Structure

Aerodynamics

Figure 2: Involved loops for uncertainty propagation inducing MDA and trajectory optimization

The main objective of this paper is to derive an uncertainty propagation technique for launch vehicle design with
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a reasonable computational cost. It is based on surrogate model allowing to handle the numerical cost of uncertainty
quantification for coupled problems involving trajectory optimization. The proposed approach couples model order
reduction and spectral methods to define a surrogate model that may be used in different uncertainty quantification
studies about the performance of the launch vehicle (e.g., statistical moment estimation of the state variables, reliability
analysis, sensitivity analysis). The rest of the paper is organized as follows. In Section 2, the proposed methodology
is described. Starting from the optimal control problem formulation, the different steps of the proposed approach are
then presented. In Section 3, this approach is applied to the optimal control problem of a two-stage-to-orbit expendable
launch vehicle. Different uncertainty quantification analyses are performed: computation of statistical moment of time
dependent state variables, sensitivity analysis and reliability analysis. The proposed approach is compared to the nested
loop method both in terms of resulting accuracy and computational cost.

2. Model order reduction and spectral methods for launch vehicle trajectory under
uncertainty

2.1. Optimal control problem formulation
Given architectural design variables z ∈ ℝd (e.g., stage diameters, chamber pressures, nozzle geometry shape), the

multidisciplinary analysis involves in general an optimal control problem within the trajectory. Indeed, the trajectory
module may be considered as an analysis discipline or a simulation discipline depending on the handling of the trajec-
tory control variables [3]. If the control variablesw for the launch vehicle are handled at the system level, the trajectory
discipline is only a simulation discipline propagating the system dynamic using the Ordinary Differential Equations
(ODEs). However, if the control variables are handled at the discipline level, the trajectory discipline is an analysis
discipline and an optimal control problem is solved to determine the best value of the control variables considering
an objective function while satisfying path constraints. In the following, an analysis discipline is considered for the
trajectory discipline. The corresponding optimal control problem for the trajectory discipline may be formulated as
follows:

min J (z, y, x(t),w(t),U) (1)
w.r.t. w(t)
s.t. ẋ(t) = f (z, y, x(t),w(t),U) (2)

g(z, y, x(t),w(t),U) ≤ 0 (3)
xmin ≤ x(t) ≤ xmax ∀t ∈  (4)
wmin ≤ w(t) ≤ wmax ∀t ∈  (5)
x(t0) = x0 (6)
x(tf ) = xf (7)

where z ∈ ℝd is the vector of architectural design variables, y ∈ ℝs is the vector of input coupling variables to the
trajectory, x(t) is the time dependant state variable vector (t ∈  ) with t0 and tf the initial and final time instants.
Moreover, w(t) is the control variable vector (for example the pitch angle profile as a function of time). The state
variable vector follows a system of dynamic equations ẋ(t) = f (z, y, x(t),w(t),U) with U ∈ ℝp is considered as a
constant vector for the moment and will be used to represent the uncertainties later. g(z, y, x(t),w(t),U) ≤ 0 is the
vector of path constraints. The state and control variable vectors are definedwithin an interval with corresponding lower
and upper bounds. J (⋅) is the performance criterion for the optimal control problem (e.g., overall consumption during
the trajectory). Two main categories of optimization techniques may be distinguished to solve such an optimization
trajectory problem [5]. These are the direct and the indirect methods. The direct methods are often used as they are easy
to implement and can be relatively well initialized comparatively to the indirect methods. In this kind of approaches,
the control vector w(t,!) is defined by a finite set of parameters ! which are controlled by the optimizer in order to
satisfy the optimality conditions. This results in a Non-Linear Programming problem (NLP) which may be solved
using classical gradient-based optimization algorithms [6] or alternatively by metaheuristic algorithms [18]. For more
details about optimal control techniques for launch vehicle trajectory, please refer to [5, 28].

In the presence of uncertainty, U is not considered as a constant vector but as an aleatory vector defined over a
probability space (Υ,,ℙ) with Υ the universal set, a �-algebra and the probability measure ℙ. U is defined using
a joint probability density function �U(⋅) on its definition domain Ω. Due to the presence of uncertain variables U, the
Loic Brevault, Mathieu Balesdent: Preprint submitted to Elsevier Page 3 of 33
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state variable vector become stochastic process given a control profile. It is noted X ∶  × Ω → ℝq corresponding
a multivariate stochastic process of the state variables of dimension q with  the time domain and X(t,U) ∈ ℝq . To
introduce some notations associated to the stochastic process, Xt ∶ Ω → ℝq is the random variable vector at time
t ∈  defined by Xt(u) = X(t,u) and X(u) ∶  → ℝq is a realization of the process for a given realization of
U defined by X(u)(t) = X(t,u). The autocovariance of the stochastic process for two different times t1, t2 ∈  2 is
defined by CXX(t1, t2) = cov[Xt1,Xt2] = E[(Xt1 − �t1)(Xt2 − �t2)] with �ti the mean associated to the stochastic
process �t = E[Xt].Therefore it is possible to define the following application of interest:

U ∼ �U
X∗
⟶ X∗(t,U) (8)

withX∗(t,U) the resulting optimal stochastic process trajectories for the state variables obtained by solving the optimal
control problem according to the different realizations of U. In the rest of the paper, for notation simplicity, the
derivations are made for one component of the stochastic process output.

Proposedbapproach

Limitedbsize
Montebcarlobsimulation

Optimalbcontrol

Stepb1

Karhunen-Loèveb(KL)bexpansion
ofbthebstatebvariablebstochastic

processes

Stepb2

Polynomialbchaosbexpansion
ofbthebrandombvariablesbinvolved

inbthebKLbexpansion

Stepb3

Exploitationbofbthebcreatedb
surrogatebmodelbforbuncertainty

quantification

Stepb4

Figure 3: Proposed strategy for uncertainty quantification with optimal control trajectory optimization

Using X∗ (⋅), it is possible to perform uncertainty quantification of different quantities of interest involving the
optimal stochastic process for the state variables (or control variables). For instance, it is possible to estimate the mean
function of the state variables (of the altitude, the velocity, the dynamic pressure, etc.) or to estimate quantiles over
the state variables to define a flight envelope considering the uncertain input vector U. It is also possible to define a
probability of exceedance for a state variable to be above a certain threshold (e.g., probability that the dynamic pressure
is above a threshold). Eventually, it could be interesting to determine along the trajectory a sensitivity index of the state
variables with respect to the input uncertain variables. However, all these uncertainty quantification estimations require
repeated evaluations of the application X∗ (⋅) which is computationally prohibitive as it involves the solving of an
optimal control problem. As discussed in the previous section, the solving of optimal control problem under uncertainty
for launch vehicle trajectory is challenging. In order to limit the computational cost for uncertainty quantification, the
proposed approach relies on the definition of a surrogate model ̂X∗ (⋅) of the application X∗ (⋅) relying on model
order reduction [17, 21, 35] and Polynomial Chaos Expansion [2, 15, 33, 37]. These techniques (Karhunen-Loève
decomposition and Polynomial Chaos Expansion) are classically used within the context of uncertainty quantification
when stochastic processes are involved as they have been developed for the purpose of uncertainty propagation. In the
following sections, the different steps of the proposed strategy are detailed (Figure 3).
Loic Brevault, Mathieu Balesdent: Preprint submitted to Elsevier Page 4 of 33
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2.2. Step 1: Limited size Monte Carlo Simulation
In a first step, a Monte Carlo Simulation (MCS) ofM samples is carried out. It consists in generating samples of

the input vectorM = [u1,… ,uM ] by sampling according to the joint Probability Density Function (PDF) �U(⋅). Foreach sample uk∈[1,…,M] of M , a deterministic optimal control problem is solved in order to determine the resulting
realization of the optimal stochastic processes x∗(t,uk) and w∗(t,uk). In practice, as the resulting stochastic process
realization is defined by the solving of an optimization problem involving an ODE, the stochastic process realization
is discretized over a mesh in time N such that [x(t1,uk),⋯ , x(tN ,uk)] with N vertices. Once theM deterministic
optimal control problems have been solved, it resultsM realizations (also called sample paths) of the optimal stochastic
processes for the state variables and the control variables. Because of the need of accuracy in the integration of
ODE, the number of vertices N in each realization of the stochastic process is in general substantial. Therefore, the
discretized stochastic process consists ofN time-correlated random variables. In the step 2, using theM realizations
of the stochastic process X∗(t,U), this latter is decomposed according to Karhunen-Loève expansion [17, 21, 35].
2.3. Step 2: Karhunen-Loève expansion

In order to be able to construct a surrogate model of the application X∗ (⋅), due to the high dimension of the
output stochastic process, a proper decomposition is required. The Karhunen-Loève (KL) theorem [17, 21, 35] states
that a square integrable stochastic process can be represented by a linear combination of orthogonal functions, typically
taken to be eigenfunctions of the autocovariance function of the stochastic process, with random coefficients. The KL
expansion is based on the spectral decomposition of its autocovariance function. The set of deterministic functions
over which any realization of the stochastic process is expanded is defined by an eigenvalue problem. The eigenvalues
and eigenfunctions are determined by solving the second kind Fredholm equation associated to the autocovariance
function CX∗X∗ (⋅, ⋅) of the stochastic process (noted C(⋅, ⋅) for simplicity):

∫
C(s, t)k(t)dt = �kk(s) ∀s ∈  (9)

where (�k)k≥1 are the eigenvalues and (k)k≥1 the associated sequence of eigenfunctions. (k)k≥1 form a complete
orthogonal basis of L2( ). It results that any realization of the stochastic process may be expanded over this basis:

X∗(t,u) = �(t) +
∞
∑

k=1

√

�k�k(u)k(t) (10)

where (�k)(u)k≥1 corresponds to the coordinates of the realization of the stochastic process with respect to the de-
terministic function k(⋅). Moreover, considering all possible realizations of the stochastic process, (�k)k≥1 forms a
set of orthonormal random variables. Due to the orthonormality of the eigenfunctions, each random variable �k(u) isdetermined by a linear transform:

�k(u) =
1

√

�k ∫

(

X∗(t,u) − �(t)
)

k(t)dt (11)

In practice, the KL decomposition is truncated and limited to the most firstNk significant modes (the most signif-
icant eigenvalues): X∗(t,u) ≃ �(t) +∑Nk

k=1

√

�k�k(u)k(t). The eigenfunction basis k(⋅) is optimal in the sense that
the mean square error (integrated over Ω) resulting from a truncation after the first Nk terms is minimal compared to
any alternative L2( ) basis.

In the present case, the covariance function associated to the optimal stochastic process X∗ is not explicitly known
but only accessible through the M realizations (X∗1,⋯ ,X∗M ) obtained during the Step 1. Therefore, for a centered
stochastic process, C = 1

M X̃X̃
T with X̃ = (X∗1|⋯ |X∗M ) the snapshot matrix constituted of theM realizations of the

stochastic process.
The determination of the eigenvalues and eigenfunctions require to solve the second kind Fredholm equation nu-

merically using for instance a Galerkin-type approach [17, 21, 35]. Let consider a basis ℎi(⋅) of the Hilbert space
L2( ). Each eigenfunction k(⋅) may be represented in this basis by:

k(t) =
Nk
∑

i=1
dki ℎi(t) (12)

Loic Brevault, Mathieu Balesdent: Preprint submitted to Elsevier Page 5 of 33
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where dki are unknown coefficients. The purpose of the Galerkin approach is to determine the best approximation of
k(t) considering the truncation. For that, it is possible to define an error function �Nk

(⋅) using Eq.(9) to determine
the residual due to the truncation:

�Nk
(t) =

Nk
∑

i=1
dki

[

∫
C(t, t′)ℎi(t′)dt′ − �kℎi(t)

]

(13)

By imposing that the residual is orthogonal to the approximating basis, it yields:

∫
�Nk

(t)ℎj(t)dt = 0 ∀j = 1,… , Nk (14)

By injecting the expression of the residuals into Eq.(14), the integral rewrites:

Nk
∑

i=1
dki

[

∫

[

∫
C(t, t′)ℎi(t′)dt′

]

ℎj(t)dt − �k ∫ ℎi(t)ℎj(t)dt
]

= 0 (15)

This equation may be rewrite with a matrix form:
CD = �BD (16)

with:
Cij = ∫ ∫

C(t, t′)ℎi(t)ℎj(t′)dtdt′ (17)

Bij = ∫
ℎi(t)ℎj(t)dt (18)

Dij = dki (19)
�ij = �ij�i (20)

where �ij is the Kronecker symbol. Equation (16) is a generalized eigenvalue problem [17, 35]. It is solved for
eigenvectors D and the eigenvalues �. In practice, to compute the integrals involved in the matrices C and D, a
quadrature approach is used with the vertices of the mesh N used as the quadrature nodes. Moreover, a Singular
Value Decomposition is used to simplify the solving of the Eq.(16) [21].

The obtained KL expansion of the output optimal stochastic process decouples the uncertainty and the time depen-
dencies. It is therefore possible to build a surrogate model of X∗ (⋅) based on Polynomial Chaos Expansion (PCE)
particularly dedicated to uncertainty quantification studies.
2.4. Step 3: Polynomial Chaos Expansion

Considering the KL expansion of Step 2, constructed from the available stochastic process realizations obtained at
the Step 1, it is possible to create a surrogate model of the application X∗ (⋅). In the expansion:

X̂∗(t,u) = �̂(t) +
Nk
∑

k=1

√

�̂k�k(u)̂k(t) (21)

(�k)k≥1(⋅) correspond to the uncertainty parts of the decomposition. Therefore, for each random variable associated
to the expansion, it is possible to create a PCE [2, 15, 33, 37] of the following application:

u ∼ �U
�k
⟶ �k(u) (22)

PCE provides a polynomial approximation of the function �k(⋅) decomposed over an orthogonal basis of polyno-
mials. Considering a vector of p uncertain variables U = [U1,… , Up]. For each component i of the vector, �Ui (⋅) is
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the marginal distribution of the variable Ui. It is possible to define a family of orthogonal polynomials {P (i)k , k ∈ ℕ}
such that:

⟨P (i)j , P
(i)
k ⟩i

def
= E

[

P (i)j (Ui), P
(i)
k (Ui)

]

= ∫Ωi
P (i)j (u)P

(i)
k (u)�Ui (u)du = a(i)j �jk (23)

where k is the degree of the polynomial P (i)k and a(i)j is the squared norm of P (i)j :

a(i)j
def
=∥ P (i)j ∥2i= ⟨P (i)j , P

(i)
j ⟩i

If Ui is defined through classical PDF, the associated family of orthogonal polynomials is known [2, 15]. For
instance for uniformly distributed variables, the resulting orthogonal polynomial family is the Legendre polynomi-
als. Similarly, for normally distributed variables, the corresponding family is the Hermite polynomials. To define an
orthonormal family  , a normalization is defined:

 (i)j =
P (i)j
√

a(i)j

, i = 1,… , p, j ∈ ℕ (24)

To build a multivariate orthonormal polynomial basis from the orthonormal univariate family
{

 (i)j
}∞

j=0
, a tensor

product approach is used:

F�(u) =
p
∏

i=1
 (i)�i (ui) (25)

with � = (�1,… , �p) ∈ ℕp a multi-index. The total degree of the multivariate polynomial F� is given by: |�| =
∑p
i=1 �i.PCE allows to decompose �k(⋅) over the multivariate orthonormal polynomial basis such that:

�k(u) =
∑

�∈ℕp

�kF�k (u) (26)

In practice, the expansion is often truncated using the standard truncation scheme consisting in selecting all the
polynomials such that |�k| is smaller or equal to a given � . The multi-indices belong to � = {�k ∈ ℕd , |�k| ≤ �}.

The truncated PCE rewrites:
�̂k(u) =

∑

�k∈�


�kF�k (u) (27)

The computation of the PCE coefficients may be carried out by non-intrusive techniques such as projection, least-
square or stochastic collocation [15]. In the following, the least-square approach is employed. Following the PCE
decomposition, it holds:

�k(u) =
∑

�k∈�


�kF�k (u) + � (28)

with � the residual terms corresponding to all the polynomials whose index �k is not in the truncation set � . The
least-square method consists in finding the PCE coefficients �k = {
�k,�k∈� }, using the M samples generated by
MCS M = [u1,… ,uM ] and the corresponding values in the KL expansion [�k(u1),… , �k(uM )] such that:

�̂k = argmin
�k

1
M

M
∑

i=1

⎛

⎜

⎜

⎝

�k(ui) −
∑

�k∈�


�kF�k (ui)
⎞

⎟

⎟

⎠

2

(29)
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Classical least-square solvers may be used to determine the optimal PCE coefficients �̂k = {
̂�k,�k∈� }. This PCE
decomposition is carried out for each �k(⋅)k≥1 in the KL decomposition.

At the end, the surrogate model of the application X∗ (⋅) is defined by:

X̂∗(t,u) = �̂(t) +
Nk
∑

k=1

⎛

⎜

⎜

⎝

√

�̂k
∑

�k∈�

(


̂�kF�k (u)
)

̂k(t)
⎞

⎟

⎟

⎠

(30)

This surrogate model may be used to carry out uncertainty quantification on the launch vehicle trajectory while
limiting the associated computational cost.
2.5. Step 4: Exploitation for uncertainty quantification
2.5.1. Statistical moment estimates

Once the surrogate model has been created with the Steps 1 to 3, it is possible to use it to carry out different
uncertainty quantification studies. As it relies on KL and PCE, it is possible to use the specificities of KL and PCE
for uncertainty analysis. First, the aleatory variables involved in the KL expansion are uncorrelated random variables.
Moreover, due to the fact that PCE are decomposed over orthonormal polynomial basis, mean and standard deviation
of the PCE output may be directly computed from the PCE coefficients [15]. Considering these elements, the mean
value and the variance of the PCE output write:

E
[

�k(u)
]

= E
⎡

⎢

⎢

⎣

∑

�k∈�


̂�kF�k (u)
⎤

⎥

⎥

⎦

= 
̂0k (31)

and:

V
[

�k(u)
]

= V
⎡

⎢

⎢

⎣

∑

�k∈�


̂�kF�k (u)
⎤

⎥

⎥

⎦

=
∑

�k∈�
�k≠0


̂2�k (32)

Using these elements, it is possible to get the first two statistical moments of the stochastic process of the state
variables, for the mean field:

E
[

X̂∗(t,u)
]

= �̂(t) +
Nk
∑

k=1

(
√

�̂k
̂0k̂k(t)
)

(33)

and the variance:

V
[

X̂∗(t,u)
]

=
Nk
∑

k=1

(
√

�̂k̂k(t)
)2

∑

�k∈�
�k≠0


̂2�k (34)

2.5.2. Quantile estimates
The estimation of quantile over the state variable stochastic process is interesting to define trajectory envelop

considering the input uncertain variables. Considering the aleatory variable �k(u) and � ∈ [0., 1.], the �-quantile q� isdefined by:
q� = inf

v∈ℝ
{ℙ

[

�k(u) ≤ v
]

≥ �} = inf
v∈ℝ

{Ψ�k (v) ≥ �} (35)
with Ψ�k (⋅) the CDF of �k(u).

This definition may be extended to the surrogate model of the stochastic process X̂∗(t,u). In practice, R samples
of the input vector R = [u1,… ,uR] are generating according to �U(⋅). Then, using the surrogate model X̂∗(t,u), R
realizations of the stochastic process corresponding to the input samples are generated. Eventually, for each t ∈ N ,
X̂∗t is a random variable and R realizations of this variable are available. Therefore, the �-quantile q� of X̂∗t may be
computed using the empirical estimate of the CDF of X̂∗t . Following this approach, it is possible to provide �-quantile
estimate of the stochastic process X̂∗(t,u). For instance, it may be used to determine the 5% or the 95% quantiles of
the altitude as a function of time along the trajectory considering the input uncertain variables.
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2.5.3. Probability of failure estimates
Using the surrogate model X̂∗(t,u) of the stochastic process of the state variables, it is possible to carry out relia-

bility analysis by estimating probability of failures. For instance, it is possible to estimate the probability that an event
occurs during the trajectory. Indeed, one could be interested to estimate the probability that one state variable during
the trajectory goes out of a defined feasible domain (e.g., trajectory envelop). Concerning launch vehicle trajectory,
an important aspect is that the launcher has to be visible at each time by a ground station for safety reasons. Therefore,
one might be interested to estimate the probability that at one instant during the trajectory, the launch vehicle is not
visible by any ground station. The estimation of this probability of failure requires to know the state variables at each
instant of the trajectory. Therefore, the probability of failure could be defined as: ℙ [

∃t ∈ N |Xt(u) ∈ t
] where tis the failure domain that depends on time and corresponds to the ensemble of positions in space that are not visible

by any ground station.
Using the surrogate model X̂∗(t,u), it is possible to estimate such a probability of failure using for example aMonte

Carlo Simulation technique. In practice, R samples of the input vector R = [u1,… ,uR] are drawn according to the
joint PDF �U(⋅). Using the surrogate model X̂∗(t,u), R realizations of the stochastic process corresponding to the
input samples are generated. Then, the probability of failure is computed by MCS:

ℙ̂ = 1
R

R
∑

i=1
1∃t∈N |Xt(u)∈t (36)

where 1∃t∈N |Xt(u)∈t is equal to 1 if ∃t ∈ N |Xt(u) ∈ t and 0 otherwise.
2.5.4. Sensitivity analysis with Sobol’ technique

Variance-based Sensitivity Analysis (SA) relies on a functional decomposition of the variance of the output of
interest to provide sensitivity indices, that can be interpreted as the proportion of variability of the output that can
be apportioned to each input. It decomposes the output variance into contributions of different elements (marginal
effects and interactions between the input variables). In the following, the function Y = �(u) is considered (k as been
dropped for more clarity in the notations). Let consider that the coordinates ofU are distributed according to a uniform
distribution over the unit-hypercube ℝp.

The Sobol’ decomposition is given by [32]:

Y = �(U) = �0 +
p
∑

j=1
�j
(

Uj
)

+
p
∑

i<j
�ij

(

Ui, Uj
)

+⋯ + �1…p
(

U1,… , Up
)

, (37)

where �0 = E[�(U)] = ∫Ω �(u)�(u)duwithΩ the p-dimensional cube [0, 1]p in which the input variables are distributed
according to the uniform PDF �(⋅). Furthermore,

�j
(

Uj
)

= E
[

� (U) |Uj
]

− �0,

�ij
(

Ui, Uj
)

= E
[

� (U) |Ui, Uj
]

− E
[

� (U) |Ui
]

− E
[

� (U) |Uj
]

+ �0,

and �1,…,p
(

U1,… , Up
) is determined by the difference between �(U) and the sum of all the increasing dimension

functions in order for Eq.(37) to be verified. Moreover, ∀l ∈ {1,… , s} ; ∀{j1,… , js} ⊆ {1,… , p}

∫Ω
�j1,…,js

(

uj1 ,… , ujs
)

dujl = 0. (38)

is verified for each function of the decomposition [30]. The orthogonality of the Sobol’ decomposition functions may
be proved from Eq.(37) [32].

Sobol’ derives the Sobol’ indices [30] to quantify the partition of the output variance [31] based on the functional
decomposition Eq.(37). With the decomposition of the function �(⋅) into the sum of functions of increasing dimensions
and by using the decomposition of the variance [32], it follows:

V [Y ] =
p
∑

j=1
Vj[Y ] +

p
∑

i<j
Vij[Y ] +⋯ + V123…p[Y ], (39)
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with V the variance, and Vj[Y ] as defined in Eqs.(43−44). The variability of the output Y due to all the input variables
except Uj is analyzed by fixing the input variable Uj at a realization uj :

V
[

Y |Uj = uj
]

= E
[

Y 2|Uj = uj
]

− E
[

Y |Uj = uj
]2 . (40)

The expectation of the conditional variance is estimated to account for all the possible uj leading to:

E
[

V
[

Y |Uj = uj
]]

= ∫ΩUj
V
[

Y |Uj = uj
]

�Uj
(

uj
) duj . (41)

Given the total variance:
V [Y ] = V

[

E
[

Y |Uj
]]

+ E
[

V
[

Y |Uj
]]

, (42)
the value V

[

E
[

Y |Uj
]] may be used for SA. It increases as the contribution of the variable Uj with respect to the

variance of Y increases. To have a normalized quantity, the first order Sobol’ index Sj for the input variable Uj andsecond order Sobol’ index Sij for the interaction between Ui and Uj are defined such that:

Sj =
V
[

E
[

Y |Uj
]]

V [Y ]
=

Vj
V [Y ]

, (43)

Sij =
V
[

E
[

Y |Ui, Uj
]]

− Vi − Vj
V [Y ]

=
Vij
V [Y ]

. (44)

The first order Sobol’ index quantifies the part of variance of Y due to Uj , referred to as main effect. The second order
Sobol’ index allows at measuring the importance of the interaction between two input variables Ui and Uj . The same
principle may be used to derive the Sobol’ indices of order 3, 4, etc. The total Sobol’ indices STj are the sum of all
the Sobol’ indices relative to Uj

STj =
∑

j♯i
Si, (45)

where j♯i stands for all the Si1,…,id terms that include the index j. For instance, ST1 includes S1, S12,… , S1p,
S123,… , S123…p. Total Sobol’ indices measure the part of the output variance explained by all the effects in which
the input variable j plays a part (the first order and all the higher orders).

For black-box functions, the Sobol’ indices may not be analytically derived and have to be numerically estimated.
Several methods may be employed. Crude Monte Carlo method is traditionally used to estimate Sobol’ indices. Other
sampling schemes may be performed such as Jansen’s [23] or Fourier Amplitude Sensitivity Test (FAST) [29]. The
Sobol’ index calculations are computationally expensive and require a large number of calls to the studied function.
The Sobol’ method is applicable to all the cases for which variances are finite (linear or nonlinear, monotonic or non
monotonic functions).

As Sobol’ decomposition and PCE are sums of orthogonal functions, it is possible to use PCE characteristics to
provide the Sobol’ indices as a by-product of the surrogate model creation of the state variable stochastic processes
[19, 34]. Let us define B = {� ∈  ∶ �k ≠ 0 if and only if k ∈ B}, the set of multi-indices that depend only on a
subset of variables B = {i1,⋯ , is} ⊂ {1,⋯ , p}. The union of all these sets are equal to . Therefore, it is possible
to reorganize the PCE decomposition in order to exhibit the Sobol’ decomposition (sum of increasing dimension
polynomials):

�̂(u) = 
̂0 +
∑

B⊂{1,⋯,p}
B≠0

KB(uB) (46)

with KB(uB) = ∑

�∈B

̂�F�(u)
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Therefore, in the case B corresponds to the variable Ui, because of the orthogonal decomposition:
Vi = V

[

Ki(Ui)
]

=
∑

�∈i


̂2� (47)

The Sobol’ indices at any order may be estimated by a simple combination of the squares of the PCE coefficients.
Therefore, for the first-order Sobol’ indices:

Ŝi =

∑

�∈i

̂2�

∑

�∈,�≠0 
̂2�
(48)

with i = {� ∈  ∶ �i > 0, �j≠i = 0}. Similarly, the total order Sobol’ indices are given by:

ŜT i =

∑

�∈T
i

̂2�

∑

�∈,�≠0 
̂2�
(49)

with T
i = {� ∈  ∶ �i > 0}.Considering all these elements, it is possible to derive the first order and total order Sobol’ indices for the stochastic

process of the state variables:

ŜX̂∗(t,ui) =

∑Nk
k=1

(
√

�̂k̂k(t)
)2

∑

�k∈
�
i

̂2�k

∑Nk
k=1

(
√

�̂k̂k(t)
)2

∑

�k∈�
�k≠0


̂2�k

(50)

and:

ŜT X̂∗(t,ui) =

∑Nk
k=1

(
√

�̂k̂k(t)
)2

∑

�k∈
T �
i

̂2�k

∑Nk
k=1

(
√

�̂k̂k(t)
)2

∑

�k∈�
�k≠0


̂2�k

(51)

The proposed approach presented in Section 2 allows to construct a surrogate model dedicated to uncertainty
propagation for launch vehicle optimal control problem using KL decomposition and PCE interpolation. This surrogate
model may be used for different uncertainty quantification studies as presented in Section 2.5. The proposed approach
and the different uncertainty quantification studies are illustrated in the next Section on a two-stage-to-orbit launch
vehicle optimal control problem.

3. Application to launch vehicle optimal control problem
3.1. Problem description and considered uncertainties

In order to illustrate the proposed method to propagate the uncertainties, the optimization of the trajectory of a
Two-Stage-To-Orbit launch vehicle is considered. The launch vehicle is composed of two stages with a first stage
involving 9 engines and a second stage using only one engine. All the engines use LOx / LCH4 propellant. The launch
vehicle has a diameter of 4.6 m for both stages. The reference mission is relative to the injection of a 7.5 tons payload
into a circular 800 km x 800 km Sun Synchronous Orbit (SSO). The launch pad is located at the European spaceport
(Kourou in French Guiana).

The optimization of the consumption of the launch vehicle is carried out. Here, it is supposed that the architecture
of the launch vehicle is already defined and the objective is to minimize the propellant mass needed to inject the
considered payload at the given orbit. It is considered that the Gross Lift Off Weight is fixed to 442 tons.

Loic Brevault, Mathieu Balesdent: Preprint submitted to Elsevier Page 11 of 33



Uncertainty quantification for launch vehicle multidisciplinary design using model order reduction and spectral methods

Table 1
Description of uncertainties

Name Notation Model (mean, standard deviation)
Specific impulse stage 1 UIsp1  (0, 2) (additive, s)
Specific impulse stage 2 UIsp2  (0, 2) (additive, s)
Residual mass stage 1 Um1  (0, 1500) (additive, kg)
Residual mass stage 2 Um2  (0, 500) (additive, kg)
Mass flow rate stage 1 Uq1  (0, 10) (additive, kg∕s)
Mass flow rate stage 2 Uq2  (0, 10) (additive, kg∕s)
Drag coefficient UCD  (1, 0.1) (multiplicative, −)

The optimization problem is the following :

min J (z, y, x(t),w(t),U) = ∫

tf

t0
ṁ(t)dt (52)

w.r.t. w(t) = {�, }
s.t. ẋ(t) = f (z, y, x(t),w(t),U) (53)

gapogee(z, y, x(t),w(t),U) ≤ �apogee (54)
gperigee(z, y, x(t),w(t),U) ≤ �perigee (55)
gburnt mass(z, y, x(t),w(t),U) ≤ �burnt mass (56)
xmin ≤ x(t) ≤ xmax ∀t ∈  (57)
wmin ≤ w(t) ≤ wmax ∀t ∈  (58)
x(t0) = x0 (59)
x(tf ) = xf (60)

with ṁ(⋅) the mass flow rate of the launch vehicle, � the pitch angle control vector,  the heading angle control vector,
gapogee(⋅), gperigee(⋅) and gburnt mass(⋅) the constraints about the apogee of the target orbit, the perigee of the target orbitand the available mass of propellant for injecting the payload (and � the corresponding tolerances). All these variables
will be described in the following section. Because the launch vehicle optimization problem presents a large number
of multiple optima [7], gradient-based algorithms cannot be used and an evolutionary-based algorithm (Covariance
Matrix Adaptation - Evolution Strategy, CMA-ES [22]) is involved in the optimization process [10].

Concerning the uncertainty vector, seven uncertain variables are considered. These variables are summarized in
the Table 1 provided by expert knowledge definition. Four modeling uncertainties about the propulsive performance
are involved, on the specific impulse (UIsp) of the two stages and the mass flow rate (Uq). Moreover, to account for
structural dry mass uncertainties, penalization on dry mass are considered using Um1 and Um2 . These uncertainties al-low to represent the lack of knowledge about the structural masses in the early design phase. Finally, the aerodynamics
model that is used also suffers from uncertainties characterized by a multiplicative term on the drag coefficient UCD.One can note that all the uncertainty model apart the aerodynamics one are additive.

3.2. Presentation of the launch vehicle modeling
3.2.1. Multidisciplinary process

In order to estimate the impact of the considered uncertainties on the trajectory, the performance of the launch
vehicle are estimated through a multidisciplinary process composed of the mass and sizing, the aerodynamics, the
propulsion and the trajectory. All these different disciplines are integrated into an Multidisciplinary Design Optimiza-
tion process using an MDA in order to ensure the consistency of the interdisciplinary couplings between the different
disciplines [3]. The design process is implemented into the openMDAO framework [20] (Figure 4). The different
disciplines are briefly described in this section. A focus is then made on the trajectory discipline in the next section.
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Figure 4: N2 chart of the design process

Propulsion In order to take the propulsive uncertainty into account, a propulsion module has been derived from
Rocket Chemical Analysis Equilibrium (CEA) model [25]. This code computes the performance of the rocket engine
(specific impulse, thrust) from several inputs (chamber pressure, oxydizer to fuel ratio, etc.). It carries out the ther-
mochemical simulation of complex mixtures, involving combustion of gas in the chamber pressure and expansion in
the nozzle. CEA performs theoretical performance of rocket engine calculations that are adapted to conceptual and
preliminary design phases. The specific impulse and the mass flow rate computed by CEA are coupling variables that
are transmitted to the mass & sizing and the trajectory disciplines. The nominal value of these variables computed by
CEA are then added to the corresponding realization of uncertainties before being transmitted to the other disciplines.
Mass and sizing The mass and sizing module aims at computing the dry mass of the different stages from the propul-
sion, geometry and trajectory variables. To this end, Mass Estimation Relationships (MERs) have been used from [12]
for expandable launch vehicles. All the different components of the launch vehicle (tanks, engine, nozzle, turbopumps,
thrust frame, intertank etc.) have been modeled and the masses of these elements are computed using analytical rela-
tionships. This module allows to provide a rapid estimation of the dry mass of the launch vehicle depending on the
design variables and other disciplines outputs.
Aerodynamics Estimating the aerodynamic performance of this type of vehicles for all the different phases (subsonic,
transonic, supersonic and hypersonic) is a quite challenging task. To this end, different engineering tools have been
combined by using multi-fidelity model [9]. For the subsonic and transonic flight domains, CFD Euler calculations
have been performed using CANOE tool developed at ONERA [13] . For the supersonic and hypersonic flight do-
mains, a combination of results given by a semi-empirical code (MISSILE [14]) and Local Surface Inclination method
(SHAMAN) have been used. All the responses of the different codes are aggregated and validated using Gaussian
process-based multi-fidelity techniques as detailed in [9]. The drag coefficient given by this module is then com-
bined to the corresponding uncertainty variable and then transmitted to the trajectory module in order to perform the
trajectory integration and calculate the performance of the launch vehicle.
3.2.2. Focus on the trajectory modeling

The trajectory discipline consists in integrating the system of the ordinary differential equations (equations of
motion) according to the time. Here, a single shooting method is used in order to define the optimal control law
(parameterized pitch and azimuth angles profiles). The parameters that define the control laww(t,!) are then optimized
using a direct single-shooting method [5]. The system of equations of motion ẋ(t) = f (z, y, x(t),w(t,!),U) is defined
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into polar coordinates as follows:
ṙ = v. sin 
 (61)
v̇ =

T cos(� − 
) −D
m

− g(r) sin 
 + !2Er cos�(sin 
 cos� − cos 
 sin� cos ) (62)


̇ =
[L + T sin(� − 
)] cos�

mv
+
(

v
r
−
g(r)
v

)

cos 
 + 2!E sin cos� +
!2Er cos�(cos 
 cos� + sin 
 sin� cos )

v
(63)

�̇ =
v cos 
 sin 
r cos�

(64)
�̇ =

v cos 
 cos 
r

(65)

 ̇ =
[L + T sin(� − 
)] sin�

mv cos 

+
v cos 
 sin tan�

r
+ 2!E(sin� − cos cos� tan 
) +

!2Er sin� cos� sin 
v cos 


(66)
ṁ = −q (67)

with :
• r : radius (m),
• v : norm of the velocity vector (m.s−1),
• 
 : flight path angle (rad),
• � : latitude (rad),
• � : longitude (rad),
•  : flight path heading (rad),
• � : bank angle (rad),
• � : pitch angle (rad),
• !E : angular velocity of the Earth (2�/86164.09 rad∕s)
• T : Thrust (N)
• D : Drag (N),
• L : Lift (N),
• g(r) : gravity acceleration at r (m2∕s),
• m : mass (kg),
• q : mass flow rate (kg.s−1).
The used referential is given in Figure 5. The integration of the system of ordinary differential equations is per-

formed using a 5tℎ order Runge-Kutta method involving the handling of events (fairing jettisoning, change of control
law profile as a function of flight conditions, etc.). The control law of the pitch angle is decomposed into different
phases [12]: lift-off, pitch-over maneuver, gravity turn and bi-linear tangent law (Figure 6). A discontinuity between
gravity turn and bi-linear tangent law is allowed since no more aerodynamics forces are undertaken by the launch
vehicle at this altitude. Each phase is parameterized by a set of design variables that are optimized. Concerning the
heading angle, the optimal heading angle profile is determined using the target inclination law formula involving the
inclination of the target orbit and the local latitude of the vehicle [12]. The engine of the second stage is shut down
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Figure 6: Flight phases of the trajectory (left : altitude as a function of range, right : angle of attack as a function of
time)

once the current orbit apogee matches the target apogee. Then, the propellant mass required to circularize the orbit
is determined as a function of the final conditions and inclination. Overall, the optimization problem involves eight
control variables. Constraints are involved in order to ensure that the reached apogee and perigee match the target ones
and the mass of propellant that has been used during the flight is consistent with respect to the rocket architecture. In
this paper, an opensource framework (OpenMDAO) is used to integrate trajectory optimization along with the other
disciplines (propulsion, structure, aerodynamics). The proposed methodology is non-intrusive and is compatible with
the use of alternative trajectory tools.
3.3. Surrogate model construction and validation
3.3.1. Illustration with the altitude state variable

In this section, the process of surrogate model construction and validation is derived for the launch vehicle test
case presented in the previous section. To carry out uncertainty quantification and surrogate modeling, OpenTURNS
library is used [4]. Following the proposed approach presented in Section 2, a limited size Monte Carlo Simulation
of M = 200 samples is carried out to generate optimal control solutions and the corresponding state variables. A
sensitivity analysis to the Monte Carlo Simulation size is performed in Section 3.3.2. Focusing first on the altitude
state variable as a function of time (Figure 7), the centered altitude samples are determined by removing the empirical
mean altitude from the samples (right of Figure 7) in order to carry out the KL decomposition.

These state variable samples are then projected using Eq.(2.3) to determine the corresponding value of the random
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Figure 7: MCS samples altitude as a function of time (left) and centered altitude as a function time (right)

variables into the KL basis for this realization of the state variable. Eventually, the KL expansion prediction is obtained
with Eq.(2.4).

To illustrate the influence of the KL truncation, different values of truncation are considered � = 10−2, 10−4, 10−6,
10−8, 10−10, 10−12 corresponding to the value above which the eigenvalues in the KL decomposition are kept. For each
KL decomposition corresponding to a different truncation level, the residual samples are determined by computing the
difference between the exact obtained validation samples and the predictions based on the KL decomposition using
Eq.(2.4). In order to validate the KL decomposition, additional 800 MCS input variable samples are generated and
the corresponding optimal state variables are computed by solving the optimal control problem as described in the
previous section. These output state variable are used as validation samples X∗v(t,u). The corresponding residual
samples are represented in red in Figure 8 along with the centered altitude validation samples. It can be seen in Figure
8, that for � = 10−2 (corresponding to only 3 modes in KL decomposition), the residual samples are non negligible.
The truncation level of KL is too high. However, by increasing the level of truncation (at � = 10−8 for instance), the
residual samples become negligible and the KL decomposition is able to predict efficiently the validation samples.

It is also possible to use a model versus surrogate model plot to visualize the quality of the KL decomposition. If
the KL decomposition prediction is accurate, in this plot, the data should be aligned along the first bisector. In Figure
9, it can be seen that the KL decomposition for � = 10−2 is not accurate enough, but the accuracy improved greatly by
increasing the truncation level. The truncation level is a compromise between the accuracy of the KL decomposition
and the number of terms in the truncation. Figure 10 illustrates the predictivity factor Q2 as a function of the number
of KL decomposition modes. The predictivity factor Q2 is defined such that:

Q2 = 1 −
∑Mv
i=1

(

X̂∗(t,ui) −X∗
v (t,ui)

)2

V
[

X∗
v (t,u)

] (68)

withMv the number of validation samples, X̂∗(t,ui) the KL decomposition andX∗
v (t,ui) the exact validation samples.

Q2 factor measures the adequacy between the KL decomposition prediction and the exact state variables obtained by
optimal control solving.

Table 2 provides the associated Q2 factor and the number of KL decomposition modes. As illustrated with the
previous figures, with � = 10−2 (corresponding to 3 KL modes), the predictivity factor is not accurate. By increasing
the number of KL modes, it converges to 1.0. The level of truncation is a trade-off between the number of nodes (and
therefore the number of Polynomial Chaos expansions) and the KL decomposition accuracy. For the altitude variable,
a value of � = 10−8 is a good compromise between Q2 factor and the number of KL modes.

For the altitude state variable, the first 30 KL decomposition modes (corresponding to � = 10−8) are represented
in Figure 11.

Eventually, based on the KL decomposition (truncated with the first 30 KL modes), Polynomial Chaos Expansions
are constructed to relate the input uncertain variables to the state variable prediction. Following the approach proposed
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Figure 8: Validation samples and residuals between exact validation samples and KL prediction

in Section 2.4, for each KL mode, a PCE is determined in order to define the final surrogate model Eq.(30). Then,
based on the input variable values generated by MCS for validation, the surrogate model prediction is compared to the
exact altitude obtained by solving the optimal control problem (Figure 12).

From Figure 12, the surrogate model predictions and the validation altitudes are similar. It is possible to determine
the average Root Mean Square Error (RMSE) along the trajectory (considering all the discretized instants) for the
altitude based on the validation set. For the 800 validation samples, the corresponding RMSE of the surrogate model
is of 0.564km, which is limited for a mean trajectory going for 0km up to 140km with a dispersion of around 10km
due to input uncertainties. In Figure 13, a comparison of the surrogate model predictions and the validation samples
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Figure 9: Comparison of validation samples (observed data) and KL prediction samples (reduced model prediction data)

is displayed. The values are aligned along the first bisector (except maybe for one or two realizations). Moreover, the
histogram of the error between the prediction and the exact state variable is presented in Figure 13. The error has a
mean value of -0.047km and a standard deviation of 0.562km.
3.3.2. Sensitivity to Monte Carlo Simulation size

In order to evaluate the influence of the initial MCS size, the process presented in the previous section is repeated
for four sizes of initial MCS samples (50, 100, 150 and 200).

The obtained results are presented in Table 3 and Figure 14. The resulting RMSE for the different surrogate models
is given in Table 3. As expected, the increase in the number of initial MCS samples (Design Of Experiment - DoE)
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Figure 10: Predictivity factor Q2 as a function of the number of KL decomposition modes (right, zoom with only a number
of KL modes superior to 7)

Table 2
Predictivity factor Q2 as a function of the number of KL modes

Number of KL modes 2 7 12 30 53 133 197
� 10−2 10−4 10−6 10−8 10−10 10−12 10−14
Q2 -1.76486 0.95928 0.99736 0.99961 0.99978 0.99996 0.99999

Figure 11: The first 30 KL decomposition modes for the centered altitude

results in a decrease of the RMSE from 1.083km with 50 samples up to 0.564km for 200 samples. However, the
required computational cost (based on parallel calculations on a 6 cores cluster Broadwell Intel Xeon CPU E5-2650
v4 at 2.20GHz) increases consequently. A trade-off between the available time and the accuracy is required. As the
acquisition of the state variable data is carried out off-line, in the following, an initial DoE size of 200 samples is
considered. To obtained both the 200 samples for the training and the 800 samples for the validation it required 340h
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Figure 12: Surrogate model prediction based on 200 MCS samples for the training and 30 KL modes

Figure 13: Comparison of validation samples (observed data) and surrogate model prediction (left) and histogram of the
prediction error for the validation set for all the discretized instants (right)

Table 3
Average Root Mean Square Error as a function of the initial MCS size

Initial MCS size 50 100 150 200
Computational cost for initial DoE 17h 34h 51h 68h

average RMSE (km) 1.083 0.999 0.632 0.564

(a bit less than 6 days).
3.3.3. Illustration with other state variables

Similarly, the proposed approach may be applied to other state variables resulting from the optimal control problem
solving such as velocity, mass, flight path angle, etc. but also with quantities of interest derived from the state variable
such as the dynamic pressure, the heat flux, the load factor, etc.
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Figure 14: Comparison of validation samples (observed data) and surrogate model prediction for different initial MCS size
(50 - upper left, 100 - upper right, 150 - lower left, 200 - lower right)

In Figure 15, the surrogate model predictions for different state variables (velocity, mass, flight path angle) and
different quantities of interest (dynamic pressure, heat flux) are represented. For some variables presenting a disconti-
nuity that does not appear at the same instant (for instance the velocity at the stage separation), it is easier to represent
the variable as a function of the percent of stage flight (from 0 to 100%). The proposed approach is able to approximate
different types of variable dynamics along time, with linear and nonlinear relations. Therefore, based on a limited size
MCS samples, these surrogate models may be used for uncertainty quantification studies for launch vehicle trajectories
such as uncertainty propagation, sensitivity analysis and reliability analysis. In the following sections, illustrations of
such possible studies with an affordable computational cost are presented.
3.4. Uncertainty propagation

Based on the surrogate model constructed for the different state variables and quantities of interest, it is possible to
carry out uncertainty propagation to estimate statistical moments of the output at an affordable computational cost. For
that, samples from the input variable distributions are drawn and the surrogate model is evaluated (instead of solving
the exact optimal control problem) for each input sample. Then, mean value, standard deviation and quantiles may be
determined based on the surrogate model responses (or by using PCE coefficient relations for the mean value and the
standard deviation).

In this section, the different surrogate models have been trained using 200 MCS samples with a truncation level
� = 10−8. The estimated values (mean, standard deviation, quantiles) are compared to the values using the validation
set composed of 800 MCS samples (by solving the exact optimal control problem), and to the values obtained only by
using the training data. It allows to quantify the improvement offered by the surrogate model in terms of prediction.
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Figure 15: Surrogate model prediction based on 200 MCS samples for the training and 30 KL modes for different state
variables and quantities of interest

Considering the state variable velocity, Figure 17 represents the validation set for the velocity (left) and the centered
velocity (right - centered velocity).

Using the surrogate model, it is possible to estimate the mean plus the standard deviation for the centered velocity
(Figure 18) and to compare it to the value using only the training data (200 samples) and the value using the vali-
dation set (800 samples). Using only 200 samples to train the surrogate model and then to use it to predict the mean
plus/minus the standard deviation allows to improve the prediction compared to the same estimation using only the 200
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Figure 16: Illustration of generated trajectories

Figure 17: Validation set for the velocity (left) and centered velocity (right) as a function of time

samples. Indeed, in Figure 18, the surrogate model provides almost the same statistical moment results than by using
the validation set (800 samples) but only by using 200 samples, reducing the associated computational cost. It can be
seen that using alone the 200 samples without a surrogate model is not sufficient to accurately predict the statistical
moments of the exact stochastic process.

Similarly, considering the dynamic pressure (Figure 19), it is possible to construct a surrogate model and to use it
to estimate quantile values. For instance, in Figure 20, different quantiles are estimated (1%, 5%, 95% and 99%) using
the surrogate model. These values are compared to the estimation of the quantiles using the validation set and using
the training set alone. As for the mean and the standard deviation, the surrogate model prediction of the quantiles is
almost equal to the one of the validation set but by using 200 MCS samples instead of 800 samples. By comparing
the quantiles obtained with the surrogate model and with the training set, it is possible to see the interest of using a
surrogate model for uncertainty quantification at an affordable computational cost (Figure 21).
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Figure 18: Comparison of the mean plus (above 0) / minus (under 0) standard deviation prediction for the centered
velocity

Figure 19: Validation set for the dynamic pressure (left) and centered dynamic pressure (right) as a function of time

3.5. Reliability analysis
In order to ensure the safety of space operations, one has to be able to prove that the launch vehicle trajectory

will be sufficiently safe with a high level of probability. Among the safety analyses that are needed to ensure that a
launch vehicle is reliable (e.g., stage fallback analysis, desorbitation), several ones need to analyze the dynamics of
the full trajectory. For example, one can be interested by evaluating the portion of the trajectory that is not visible
by the ground stations. Indeed, during the flight, several ground stations are disposed along the trajectory in order to
follow the launch vehicle or receive the telemetry information. Examples of ground track for Ariane 5 GTO trajectory
is provided in Figure 22. In this section, a simplified problem with three ground stations is considered, defining three
cones of visibility (Figure 23).

The goal of this study is to estimate the probability that, due to the modeling uncertainty, the trajectory is not
visible by the ground stations for a duration greater than 1 second. The part of the trajectory near the launch pad is not

Loic Brevault, Mathieu Balesdent: Preprint submitted to Elsevier Page 24 of 33



Uncertainty quantification for launch vehicle multidisciplinary design using model order reduction and spectral methods

Figure 20: Comparison of the quantiles for the centered dynamic pressure (5% and 95% - left / 1% and 99% - right)

Figure 21: 1% and 99% quantiles estimations using the surrogate model and the validation set

considered (altitude under 30 km). This probability can be written as follows:

Pf = ∫ℝd
1
∫
tf
t0
1runvis(t,u)dt>1

�U(u)du. (69)

with runvis(t,u) a function that takes 1 when the trajectory at the considered instant is not visible by the ground stationsand 0 elsewhere. Classical methods to estimate such a probability of failure include Monte-Carlo Simulations [26].
This method consists in generating a set of independent and identically distributed samples of U, performing the
trajectory optimization in order to compute the integral of interest by the following formula :

PMCS
f = 1

S

S
∑

i=1
1
∫
tf
t0
1runvis(t,ui)dt>1

(70)

with S the simulation budget and ui, i = 1,… , S the drawn samples. Unfortunately, for rare event probability estima-
tion, when the simulation budget is limited with regard to magnitude of the probability of interest, this method can be
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Figure 22: Ground tracking for Ariane 5 GTO trajectory [1]

Figure 23: Generated trajectories and visibility cones of ground stations

inaccurate as it can be proven that the relative error of the estimation varies in the following way [27] :

�P
MCS
f

Pf
= 1

√

S

√

Pf − P 2f
Pf

(71)

Thus, to estimate of probability of 10−2 with a relative error of 10%, 104 samples are needed. Thus, as the proba-
bility of interest is expected to be very low, it cannot be estimated with using the limited size Monte Carlo Simulations
that has been used to learn the surrogate model.

One method to estimate this probability accurately is to generate a large number of samples of uncertain variables
and then computing the failure criterion using the surrogate model learnt using the limited size DoE samples (Figure
23). In Table 4, the probability of interest has been estimated usingS = 104 samples on the learnt model. A parametric
analysis with respect to the size of the initial limited size DoE is achieved (Figure 24). As it can be seen, for 200 samples
in the DoE, the probability of interest is about 2.7×10−2 whereas the probability decreases to 1.7×10−2 for 500 points
in the DoE and 8.0 × 10−3 for 1000 points. These discrepancies can be partly explained by the fact that the reliability
analysis using this kind of model needs to be accurate in the tails of the distribution, where the event of interest (here
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Table 4
Probability of non visibility for different sizes of the training set (estimated with 105 samples)

Probability of interest DoE size
2.7 × 10−2 200
1.7 × 10−2 500
8.0 × 10−3 1000

the non visibility by ground stations) is located. Unfortunately, few samples relevant to this region are included in the
initial DoE. In order to improve the probability estimation, adaptive refinement of the surrogate model needs to be
achieved and constitutes an interesting perspective (see discussion in the conclusion). With 105 samples, the relative
MCS error of this estimation is about 3% but no information is available on the validity of the surrogate model in the
failure regions (compared to the central regions, see discussion in Section 3.3.2) that is why a dedicated refinement
strategy is needed.

Figure 24: Generated trajectories for different DoE sizes

3.6. Sensitivity analysis
Another valuable analysis for understanding the impact of uncertainties in the trajectory can be to carry out time

dependent sensitivity analysis of a quantity of interest (e.g., acceleration) with respect to the input uncertain variables.
Indeed, such an analysis can provide the designer with precious information to understandwhich parts of the trajectories
are impacted by the uncertainties, in order to prescribe model refinement or trajectory modification to make it less
sensitive to the considered uncertainties. These sensitivity analyses can also be used either for screening purpose
(fixing the uncertain variables that are the less influential to a nominal value), either for understanding the interaction
of the uncertainties that leads to a high variability in the output (e.g., by analyzing high order Sobol’indices).

Following the Sobol’ indices derivation in Section 2.5.4, using the 1000 MCS samples to train the proposed surro-
gate model, it is possible to determine the resulting Sobol’ sensitivity indices for the acceleration of the launch vehicle
during the accent phase with respect to the input uncertain variables. The acceleration is a valuable state variables in
order to perform time related sensitivity analysis because of the direct effect of forces on the acceleration.

Figure 25 presents the first order Sobol’ indices as a function of the percent of first stage flight duration for the
different input uncertain variables (be careful to the scale color that is different in order to display the differences along
the trajectory). The input uncertainty variables Uq1 (mass flow rate stage 1) and Um2 (dry mass stage 2) are the most
influential variables among the different input variables at different instants of the first stage trajectory. It can be seen
that Uq1 is not the most influential variable all along the first stage trajectory, it is highly sensitive in the first 60% of
the first stage trajectory. On the contrary, Um2 is mostly influential at the end of the first stage trajectory (above 80%).
Considering UCD (aerodynamic drag coefficient), it can be seen that it is not an influential variable compared to the
other variables however, its highest influence is for instants between 30% and 50% of duration of first stage flight which
corresponds to the instants at which the launch vehicle crosses the highest density of the atmosphere at a large velocity
(highest dynamic pressure), corresponding to altitude between 5km and 12 km in Figure 26.

Similarly for the flight of the second stage, for the Sobol’ indices presented in Figure 28, Uq2 (the mass flow rate of
the second stage) and Um2 (the dry mass of the second stage) are the most influential variables followed by UIsp2 (the
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specific impulse of the second stage). The dry mass of the second stage is mostly influential at the end of the second
stage flight duration (above 80% of flight). As expected, the variables related to the first stage (dry mass, specific
impulse, mass flow rate and CD) are the less influential on the second stage acceleration (almost no influence).

Eventually, it is possible to estimate the total order Sobol’ indices as explained in Section 2.5.4. These indices give
the part of the acceleration variance explained by all the effects in which an input variable plays a part. For instance
considering Um2 , Figure 27 presents the total order Sobol’ index as a function of the percent of second stage flight
duration. It can be seen that the total order Sobol’ index is higher than the first order Sobol index for Um2 , therefore itindicates that the variable interacts with other variables to contribute to the acceleration variance.
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Figure 25: First order Sobol’ indices as a function of the % of first stage flight for the different input uncertain variables
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Figure 26: Altitude of launch vehicle as a function of percent of duration of first stage flight

Figure 27: Total order Sobol’ index for Um2 as a function of the percent of second stage flight duration
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Figure 28: First order Sobol’ indices as a function of the % of second stage flight for the different input uncertain variables
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4. Conclusions
In this paper, a methodology to propagate uncertainties for launch vehicle trajectory optimization based on a surro-

gate model technique has been presented in order to tackle the numerical cost of uncertainty quantification studies for
coupled multidisciplinary problems involving trajectory optimization. The proposed four steps approach starts with a
limited sizeMonte Carlo simulation (MCS) with the solving of the exact optimal control problem for theMCS samples.
Then, a Karhunen-Loève (KL) decomposition is carried out to decompose the state variable stochastic processes. Then,
using Polynomial Chaos Expansion of the random variables involved in the KL expansion, it is possible to define a sur-
rogate model that relates the input uncertain variables to the optimal state variables under uncertainty of the trajectory.
This surrogate model may be used in a final step for uncertainty quantification studies. The proposed methodology has
been applied on a two-stage-to-orbit launch vehicle test case. A discussion on the accuracy of the KL decomposition
and the obtained surrogate model as a function of the number of initial Monte Carlo samples highlighted the trade-off
between the surrogate model accuracy and the associated computational cost. Then, uncertainty quantification studies
have been carried out to estimate state variable statistical moments, quantiles to determine flight envelops, reliability
analysis to ensure the visibility of the launcher along its trajectory and eventually sensitivity analysis to estimate the
influence of the input uncertain variables on the acceleration of the launch vehicle all along its trajectory.

In terms of future works, in order to ensure the accuracy of the surrogate model especially for reliability analysis,
an active learning strategy could be proposed to refine the surrogate model near the failure regions with the highest
probability content. It would allow to improve the surrogate model accuracy by adding specific realizations of the
stochastic process determined by a refinement criterion. Moreover, the proposed surrogate model approach could be
extended to account for design variables in order to solve Uncertainty-based Multidisciplinary Design Optimization
problem for launch vehicle design.
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