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Context Modelling applied to the Intelligent Vehicle Navigation

Federico Faruffini, Hugo Pousseur, Alessandro Correa Victorino, Marie-Hélene Abel

Abstract— This paper faces the problem of intelligent vehicles
in interaction with their occupants and the environment, by
modelling the semantic context associated to the navigation.
With a semantically modelled context, an intelligent vehicle will
not only drive itself safely, but it will also be able to reason on
the situation and act accordingly. To do so, it is necessary to first
define the Context of Navigation, and then to set the inference
rules for it, in order to enrich the robot’s comprehension of
the situation. In this paper we propose our definition of the
Context of Navigation, based on the information that could
be needed by the vehicle’s controller. We split it into two
components: the Dynamic Context and the Static Context. In
this paper we will focus on the latter. We then model the Static
Context of Navigation of the autonomous driving - for instance
the passengers’ driving preferences - and to make the robotic
car adapt its behaviour to this new information in real time.
Finally, a short practical example of our proposition is shown
and discussed.

Index Terms— Human Factors, Assistive

Human-Machine Cooperation and Systems

Technology,

I. INTRODUCTION

The problem of autonomous navigation has been studied
for years now, and since the DARPA’s autonomous vehicles
challenges [1] many functioning solutions for it have been
proposed. State of the art techniques allow vehicles to reach
their goal while performing obstacle avoidance and respect-
ing the traffic laws. A field related to the one of autonomous
navigation is that of Advanced Driving Assistance Systems
(ADAS), electronic systems built to help the carman in tasks
as driving and parking. Their scope is to improve safety for
the passengers and the other road users by the use of different
sensors and/or cameras.

Even if many intelligent vehicle models and ADAS sys-
tems were proven to solve well the problem of navigation,
most of them don’t take into account the surrounding context
when taking decisions, or consider just a fraction of it.
Instead, we could be also interested in modelling the static
context, comprehending for instance the driving preferences
of the passengers, the presence of fragile or sick people
on board, or an emergency scenario. In these cases, the
vehicle should be able to modify its behaviour to adapt to
the current situation. We can use semantic representations,
called ontologies, to model the context of the navigation, in
order to let the car apply inference rules on it.
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II. PROBLEM STATEMENT

Until now, just a few studies tried to model the parts of
the Context of Navigation which aren’t closely related to
path planning, vehicle control or obstacle avoidance. This
way, unfortunately, the vehicle has a huge lack of contextual
information that are instead usually taken into account by the
human drivers. This leads the vehicle to behave in the same
way in different contexts, resulting in a less comfortable and
customizable ride.

We will hereby introduce a simple example to show the
limits of current solutions and to introduce the problem
we faced. In our scenario, we consider to have a pregnant
woman on board as a passenger, while the vehicle is driving
fully autonomously. The passenger may want it to drive in a
different way to feel safer, maybe avoiding sharp breakings
or taking smoother turns. However, current solutions would
not make any differences in the way the car behaves during
the trip. In this study we are going to propose a simple
way to add to the intelligent vehicle’s model new contextual
information, as in our example, through the use of semantic
structures. Before to illustrate our proposition, in the next
section we will see some of the most interesting works on
semantic modelling of the Context of Navigation.

III. RELATED WORK

Some ontology-based solutions were proposed in ADAS,
for example the ones from Zhao et al. to prevent the
driver from exceeding the speed limit [2] or to help him in
uncontrolled intersections [3]. The authors proposed to use
3 ontologies: the Map Ontology, the Control Ontology and
the Car Ontology. The first one is used to model the routes
of transportation, with their types (HighWay, OrdinaryRoad,
PrivateRoad etc) and their parts (as Roundabout, OneWay-
Lane and BusLane). The Control Ontology is used to repre-
sent the structure of the road, seen from the route planning
point of view, for example with the Classes LaneSegment
and IntersectionSegment. Finally, for the Car ontology they
proposed to model the different vehicles (for instance Bus,
SpecialVehicle and PassengerCar) and the components of a
car (e.g. the Engine and the different Sensors). In Fig. 1 we
can see the structure of Zhao’s Car Ontology.

Armand et al. in [4] modelled the inference rules for
an ADAS system with the objective to make it reason as
human-likely as possible. As an example, they propose three
scenarios, as in Fig. 2. If the person is far from a pedestrian
crossing as in Situation 1, the car should infer that he’s not
likely to cross, while in the second Situation the car should
infer the opposite. The authors showed how their method
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can be used to model such inference and be applied to more
complex scenarios. One example is the one of Situation 3:
the intelligent car perceives the leading car, the crossing and
the pedestrian, and infers that the car in front is going to
stop at the crossing.

This leads it to slow down in advance, resulting in a safer
autonomous driving. Their ontology is easily scalable to add
more features.

As for intelligent vehicle navigation, Regele in [5] pro-
posed a simple way to create a high-level model to solve
standard traffic situations as overtaking or managing complex
intersections and roundabouts. At first, each lane is modelled
by an arrow, leading to the creation of a graph. Then,
each couple of close lanes is assigned a label: opposing,
conflicting, neighbouring or nearby. This way it is possible
to model simple inference rules to make the car follow right-
of-way rules. For example, the “conflicting” label is assigned
to merging lanes, for which the risk of an accident is high.
A car entering a lane which is in conflict with another will
look for cars in the second lane, and will give them right-of-
way if necessary. As stated by the author, it is important to
realize that, this way, the vehicle doesn’t need to know the
exact topology of an intersection, as from its perspective it
is just a merge of conflicting lanes.

In the field of autonomous driving, different solutions
have been proposed to solve the well-known problems due
to GPS sensor fails. One of these solutions was studied
by Lima and Victorino in [6] and was based on Visual
Servoing (VS). In particular, the authors proposed to use 2
controllers, one deliberative (VS) and one reactive (IDWA
- Image based Dynamic Window Approach). With that
controller they showed how they were able to let a physical
robotic car drive autonomously: in normal conditions the
control was computed through VS, while in precence of
obstacles the IDWA took over, letting the vehicle avoid
them and proceed safely. With their new controller, called
VS+IDWA, they managed to solve the issues related to the
GPS desyncronization in urban environments. The vehicle is

able to drive staying the center of the correct lane.

Finally, many studies were performed on the perception
the human passengers have of the acceleration/deceleration
rates and how these can affect the perceived safety of the
driving, which is part of our objectives for this study. A
common approach to enhance the passenger comfort consists
in the minimization of the jerk (the derivative of the acceler-
ation) acting on the passenger itself, as in [7]. Another study
by Werling [8] adapted the optimal planning of autonomous
vehicles in order to execute human-like trajectories, in order
to obtain a more familiar driving style. This would help the
passengers to feel less the presence of a robotic driver, a
factor that could instead affect their comfort for the drive.

All of the studies we just presented either didn’t consider
the static context of navigation, or considered just a small
portion of it, resulting in a loss of information to feed the
model. In this paper we are going to illustrate our proposition
on how to shape a semantic model of the context related to
autonomous navigation and we will show a small example
to verify its effectiveness. Since we too are going to use
ontologies to build the context and reasoning on it, we will
introduce them in the next section, as well as the reasons for
their choice as modelling technology.

IV. ONTOLOGIES

According to Studer et al. in [9], an ontology is “a formal,
explicit specification of a shared conceptualisation”, meaning
it is a way to represent a domain of interest in a way that is
both understandable by humans and computers.

But why the use of an ontology to model the context of
navigation? First things first, ontologies allow for reasoning
on themselfs, i.e. using rules to infer new information over
the asserted ones. This can be done through the use of a
piece of software called a Reasoner. Secondly, as said before
ontologies provide an easy-to-understand way to structure the
data, shared by humans and machines. A third reason could
be the advantages of ontologies over relational database
management systems (DBMS) to our scope. In fact, as
explained in [10], ontologies don’t require many of the
restrictions that databases impose, and also operate with the
open world assumption, which avoids the semantic loss of
using the close world assumption. Ontologies have also two
other big advantages over relational DBMS: their structure
can be updated in an easier way if data are already present,
and there is no waste of storage space in presence of null
data. In this case, in fact, a tuple having many null attributes
would still use all its required storage space, while ontology
triples with null values wouldn’t be created in the first place,
obtaining a structure in which no null information waste
space. Finally, since ontologies are a part of the Semantic
Web Technologies, they can also be easily shared online for
later reuse.

Ontologies are expressed as a Description Logic (DL)
knowledge-base, with two components: a terminological
component (TBox) and an assertional one (ABox).



A. The ontology TBox

The TBox contains the definitions of the concepts in the
domain of discourse, known as Classes. Classes have a
hierarchical order and can have different properties. These
can be of two types, object properties or data properties, and
allow a Class to be linked to other classes or data attributes.
Specific restrictions can be applied to properties, or relations,
in the scope of the definition of the context. Classes may also
be connected through rules or axioms. Rules are statements
in the form if-then to be used in inference on the ontology.
The Semantic Web Rule Language (SWRL) [11] allows us
to define rules based on the OWL language. Axioms are
assertions that, together, shape the theory of the modelled
domain, and comprehend rules.

In our problem example we could use Classes for the types
of person, the driving preferences and styles, the state of the
passengers and so on. Regarding the properties, we could
have for instance an object property relating a passenger
object with her passenger state, or a data property linking
her with her name. Finally, we could add a SWRL rule that
sets the driving style of the vehicle as the one preferred by
the passenger.

B. The ontology ABox

The ABox contains the individuals, that are the instances
of the TBox Classes. In the ABox it is possible to store the
real world data by linking to an individual other ones through
object properties, or to simpler data through data properties.

In our problem example, we could have an instance Emily
of class Person, which is linked to EmilyPregnantState,
which is another individual of Class PregnantState. This is
a subclass of PassengerState. The link just mentioned is ex-
pressed by an object property, let’s call it hasPassengerState.
In this case we obtain the following triple:

Emily hasPassengerState EmilyPregnantState

We will populate the TBox with real world data that are
considered in the Context of Navigation.

V. THE CONTEXT OF NAVIGATION

Many definitions for the Context can be found in literature,
but most are not really useful to our scope, being too vague
or too specific. Others are built for distinct use cases and
cannot be applied in ours. In [12] it was eventually decided
to base our definition of the Context of navigation on the
following definition of Context proposed by Dey in [13]:

Context is any information that can be used to
characterize the situation of an entity. An entity
is a person, place, or object that is considered
relevant to the interaction between a user and an
application, including the user and applications
themselves.

Using this definition as a guide line, we decided that the
Context of Navigation should be able to give information
about the the road the vehicle is driving on, with its speed
limits and regulations, as well as the right-of-way and traffic
rules, that may vary based on the country and time of day.

The path chosen to get to the destination should be part of
the context too, as the different kinds of obstacle our vehicle
may find in its trip. Finally, there is the need for information
on the intelligent vehicle itself, as the maximum number of
passengers, the type of carried load and information on the
passengers. Examples of the latter could be the passengers’
driving preferences, their current health state, the presence
of fragile passengers.
We give hereby our definition of the Context of Naviga-
tion:
The navigation context is any information that can
be used to characterize the situation of navigation
over a given period of time. Here, navigation is
a movement considered relevant to the interaction
between a driver and an application, including the
driver and the applications themselves.

We distinguish between 2 components of the Context of
Navigation: the Static Context and the Dynamic Context. The
Dynamic context contains all the information that can change
with respect to the vehicle during the navigation. The Static
Context contains all the information that don’t change with
respect to the vehicle during the navigation.

VI. CONTEXT MODELLING

As previously stated, many interesting propositions on
how to shape the Dynamic Context exist in literature, but
few studies exist for the modelling of the Static Context of
Navigation. We will therefore focus just on this part and on
how to use it to obtain an autonomous driving behaviour
more suited for the various preferences the passengers could
have. For the sake of completeness, however, we will briefly
state the other components of the Context.

A. Dynamic Context

The first part of the context contains all the external
information that are not static with respect to the navigation.
It consists of georeferenced data that could have an impact on
the navigation. These can be of two types: the ones obtained
by the Web and the ones obtained by the car’s sensors.
Examples of the first group could be the presence of long
queues, accidents or road works. Examples of the second
group may include temporary obstacles as other vehicles or
pedestrians. A way to handle obstacle avoidance at control-
level is the one by Lima and Victorino [6], which works by
computing the free space around the obstacle and the best
linear and angular speeds that allow the car to avoid it, if
any. Another way, which is ontology-based, was proposed by
Schlenoff et al. in [14]. After the detection of the obstacle, its
type and estimated speed are computed. These information
are fed to a software that simulates the impact with the
vehicle and the damage dealt to it, its passengers and its
load. The output of the simulator is used by the planner to
decide if to avoid the obstacle or not.

B. Static Context

This part of the context contains all its components which
are static with respect to the navigation. These comprehend
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Fig. 3. The Ontology Classes in our Context

external information and information regarding the car and
the passengers. Examples of external information could be
the max speeds allowed on the different kinds of road. The
Map Ontology presented in [2] could be taken as a reference,
considering that specific country regulations can be linked
to these information as done by Buetchel et al. in [15].
The data could be shaped as proposed and taken from open
source websites as OpenStreetMap [16], as done in many
past studies as [2], [4], [17]. Another component of the
Static Context comes from the car itself, its load and its
passengers. It contains all the information that don’t change
during the current section of the trip, for instance the number
of passengers, their driving preferences and the kind of load
carried. It is important to notice that a vehicle’s ride could be
composed of many smaller trips, and the Static Context may
vary between them, after a stop. For example, after some
time a new passenger may enter the car. This modifies the
Static Context, that however won’t change until a future stop,
being constant during the driving.

In our example, the pregnant passenger affects the Static
Context. Given the state of her pregnancy, she could be
allowed to take the car only for smaller trips or could not
have any restrictions at all. Also, in this last case she could
have her own driving preferences, for example a smoother
and slower driving style. Our intelligent vehicle should be
able to adapt to these situations for a better and safer
experience of the passenger.

VII. CONTEXT BUILDING

Since in this paper we are mostly interested in the Static
Context, we will assume to get reliable information from
the sensors of our car, i.e. GPS, stereo cameras and lidars.
We assume to have access to the precise position of car and
to be able to locate precisely any other object on the path,
with a 100m range. At first, we had to declare a Class for
the reasoning autonomous vehicle, since it will have all the
standard attributes and axioms of a Vehicle and some more.
We call it EgoVehicle. Since the Toyota car ontology (in Fig.
1) already contains most of the information we need, we will
make our EgoVehicle a kind of Car, including their ontology
in our work. Then, we added a Class of the driving styles:

= owl:topDataProperty = owl:topObjectProperty

= hasAge = hasDrivingStyle

= hasBabyCondition = hasDrivingStylePreference
=hasCurrentNumberOfPassengers - =hasLoad

= hasCurrentSpeed = hasPassenger

= hasDistanceFromEgoVehicle = hasPassengerState

= hasFragileLoad

= hasFragilePassenger
=hasLicencePlateNumber

= hasMaxNumberOfPassengers
= hasMaxSpeed

=hasName
=hasNumberOfPregnancyWeeks
=hasSeatbeltOn

= hasSickPassenger
=jsCrossable

=jisFragileLoad
=prefersNotOvertaking

= hasPregnantPassenger
=hasSuggestedPassengerSeat
=isPassengerOf

Fig. 4. The object and data properties in our ontology

it has many subclasses to adapt to the different roads and
obstacles. For the sake of simplicity, we show just a few
of them in Fig. 3. Also, classes for Person, Obstacle and
VehicleLoad are created. The class PassengerState is used
to add information to a Passenger: in our example, Emily
will have her own Instance of PregnantState, we will call it
EmilyPregnantState.

In Fig. 4 we show some of the data and object properties
in our ontology. In our example, we set
EmilyPregnantState hasNumberOfPregnancyWeeks 20 and
EmilyPregnantState  hasBabyCondition =~ “Healthy”. Of
course, all the other properties were set as well, before
starting the reasoning. The other Individuals in our ontology
are an EgoVehicle, a SpeedBump (of class Obstacle), a
Crystal Glasses Set (of class VehicleLoad), and the Standard
and Custom driving styles for different kinds of road and
for the fragile carried loads.

We then proceeded by building our SWRL rules and we
will here briefly illustrate a couple of them. The first one
will let the EgoVehicle infer that it is currently carrying a
fragile object:

hasLoad (v, 1) A\ VehicleLoad (1) N EgoVehicle(?v) A
isFragileLoad(?l,true) — hasFragileLoad(?v,true)

while the next one will let the EgoVehicle use the preferred
LocalRoadDrivingStyle by the passenger:

EgoVehicle(?v) A hasPassenger(?v,?p) A Person(?p) A
hasLocalRoadDrivingPre ference(?p,pref) —
hasLocalRoadDrivingStyle(?v, pref)

Finally, SPARQL (SPARQL Protocol and RDF Query Lan-
guage [18]) queries were built: in the following example we
have the update query to set a new maximum speed in real
time for the ego vehicle. As we can see, the triple storing the
maximum speed is firstly deleted, than reintroduced with a
different value (in this case, 30), which can be set via code.
In this query we can see that the information defined in the
custom ontology has to be addressed with its ontology prefix,
in our case contextOntology.



DELETE {

?egoVehicle contextOntology:hasMaxSpeed ?oldMaxSpeed}
INSERT {

?egoVehicle contextOntology:hasMaxSpeed 30}

WHERE {

?egoVehicle a contextOntology:EgoVehicle.

?egoVehicle contextOntology:hasMaxSpeed ?oldMaxSpeed.

}

VIII. VALIDATION TEST
A. Test setup

We modelled our static context in the Protégé 5.5.0
software [19] as shown in the previous section. We chose
the Pellet [20] reasoner, as it is able to infer new data
from SWRL rules too. The third-party software used in
the simulation was SCANeR Studio 1.81, a professional car
simulator for automotive and research. We can see in Fig.
5 a screen capture from the simulator for our test. The
ontology inference was run in a Python environment using
the owlready?2 library [21]. The output of the interaction was
then simulated too in order to obtain the behaviour of the
car, through the use of scripts internal to SCANeR Studio.
Anyway, in the future developements of this work we will
code the missing connection.

In the simulated scenario we have an intelligent car, using
a control algorithm as [6], which is driving on a straight
road at 50km/h speed, and that perceives the presence of a
speed bump, forward, located at 100m distance in its lane.
This obstacle is the only object which isn’t part of the
static context of navigation to be present in the example.
An automatic gearbox car was chosen as subject of the test.
In the first test we chose to simulate the case in which

[

Fig. 5. The vehicle approaching the speed bump in SCANeR Studio

the car doesn’t break after perceiving the bump, in order
to make the proper comparisons with the following tests.
In the second one we have a pregnant woman on board,
whose DrivingPreference with respect to speed bumps is to
start breaking a lot in advance, in order to have a smoother
deceleration and overpassing.

In the third test, we add the information that a set of fragile
crystal glasses is is being carried by the car.

' AVSimulation, SCANeR Studio, https://www.avsimulation.com/catalog/

B. Test results and discussion

Fig. 6 represents the speed profile of each of the three
tests, and the dotted vertical line represents the position of the
speed bump (100m from the starting position of the car). The
dark continuous line represents our first test: the car keeps
a constant speed approaching the speed bump, and has a
little interference when crossing it. Of course, this behaviour
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Fig. 6. The different speed profiles in the 3 tests
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Fig. 7. The z-axis acceleration at the impact with the speed bump

isn’t acceptable, as we can see from Fig. 7, representing the
acceleration on the z-axis at the instant of the impact and in
the following seconds. Not only the impact without context
awareness isn’t comfortable, but it could also be dangerous
for the pregnant passenger’s child. In our second test we
have set the DrivingStylePreferences for Emily such that the
car starts decelerating in the moment the bump is detected,
with the objective to cross it at a speed close to Skm/h.
This is shown by the dashed line in Fig. 6. In the third test
the SWRL rule hasFragileLoad is triggered, setting an even
lower maximum speed in order to need a less sharp breaking
in the case of the location of an obstacle. The rule also sets
a specific behaviour for the car, clearly visible in Fig. 6.
Firstly, its maximum speed is reduced to 40km/h to reduce
the possibility of damaging the load with sharp breakings
during the trip. For the same reason, the speed to overcome
the bump is set close to 3.5m/s. Finally, after the obstacle is
surpassed, the acceleration to return to v =40km/h is slower
than the one of the second case.



IX. DISCUSSION

Our tests show how easily new contextual information
can be added to the Context of Navigation to modify the
behaviour of the vehicle. In this paper we showed just simple
ontologies and rules, but it is possible to extend them to much
more complete models with the proposed approach. For
instance, we could be interested in modelling the preferred
paths for the different passengers, or their preferences in
overtaking. Also, emergency cases could be modelled with
different levels of severity, letting the car, for instance, use
the emergency lane. Finally, the most interesting addition
would be to define a better and more complete interaction
with the car’s control loop, in order to let it implement
rules more complex than if-then ones: an example could
be the setting of the preferred maximum steering speed, to
implement smoother turns for some passengers. This could
also be applied to the case in which there is a nauseated
passenger, to avoid worsening her sickness. Really different
kinds of static information could be taken into account, for
example during the day the roads close to schools could
be semantically marked in order to increase the overall
security of the road users, including pedestrians crossing
the road far from a proper crossing. Also, the passenger
degree of comfort could be enhanced with proper tuning of
the maximum jerk, and with the introduction of it in the
DrivingStylePreference. It is also to be said that the kind of
car should be taken into account by the reasoner, as it could
have a great impact in the final result: a bigger car normally
handles impacts as the one of our example better than a littler
one.

As many more examples could be thought of, it is clear
how a semantic modelling of the Static Context could
improve the autonomous vehicle future developments.

X. CONCLUSION AND FUTURE WORK

In this paper we presented a simple way to add contextual
information to the intelligent vehicle navigation, in order to
improve it on the passenger side. We have run a little test on
a simulator, combining the car’s dynamics and an ontology-
based inference system, and seen how promising the results
are.

That being said, it is clear how a more complete Static
Context has to be developed, and how finer interactions
with the car’s control loop rules must be studied. Since the
navigation is a real-time task, the time performance of the
system is vital to its safety, so this aspect will have to be
investigated, in the case of a much bigger Static Context. Of
course, this much data have to be stored in some way, and
this opens to problems of ethics and security, that will have
to be addressed in the future. Also, since the information
coming from the context could modify the input given to
the controller of the car, safety will be a key point of future
research.
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