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The development of new models of biological tissues that consider cells in a discrete manner is becoming
increasingly popular as an alternative to continuum methods based on partial differential equations, although
formal relationships between the discrete and continuum frameworks remain to be established. For crystal
mechanics, the discrete-to-continuum bridge is often made by assuming that local atom displacements can be
mapped homogeneously from the mesoscale deformation gradient, an assumption known as the Cauchy-Born
rule (CBR). Although the CBR does not hold exactly for noncrystalline materials, it may still be used as a
first-order approximation for analytic calculations of effective stresses or strain energies. In this work, our goal is
to investigate numerically the applicability of the CBR to two-dimensional cellular-scale models by assessing the
mechanical behavior of model biological tissues, including crystalline (honeycomb) and noncrystalline reference
states. The numerical procedure involves applying an affine deformation to the boundary cells and computing
the quasistatic position of internal cells. The position of internal cells is then compared with the prediction of the
CBR and an average deviation is calculated in the strain domain. For center-based cell models, we show that the
CBR holds exactly when the deformation gradient is relatively small and the reference stress-free configuration
is defined by a honeycomb lattice. We show further that the CBR may be used approximately when the reference
state is perturbed from the honeycomb configuration. By contrast, for vertex-based cell models, a similar analysis
reveals that the CBR does not provide a good representation of the tissue mechanics, even when the reference
configuration is defined by a honeycomb lattice. The paper concludes with a discussion of the implications of
these results for concurrent discrete and continuous modeling, adaptation of atom-to-continuum techniques to
biological tissues, and model classification.

DOI: 10.1103/PhysRevE.87.042724

I. INTRODUCTION

Biological tissues are multiscale entities. Processes in-
volved in their functioning occur over a broad spectrum
of temporal and spatial scales. In tumor development, for
example, genetic and epigenetic modifications disrupt cell
homeostasis at the molecular level (DNA damage and mu-
tations), leading to anomalous behaviors at the cellular-level
(apoptosis and abnormal proliferation) and tissue-level (mor-
phogenesis and angiogenesis) growth. Within communities
of micro-organisms attached to solid or liquid interfaces,
micrometer-size microbes can form intricate millimeter-size
structures (or smaller) interspersed with submillimeter fluid
channels, termed biofilms. Furthermore, time scales may
vary from milliseconds, for flow or signal transduction, to
years, for significant tissue growth. Although there have
been significant advances in our computational capabilities,
simulating at the molecular scale over a period of several
years is currently infeasible. In order to address these issues,
a variety of theoretical approaches have been developed to
model biological tissues (see discussions in [1,2]), leading
to the emergence of two paradigms: discrete (cellular) and
continuum (tissular) representations. In the remainder of this
work, we will focus on passive (i.e., without growth) tissue
mechanics as described by these two paradigms.

Within a cellular representation, all cells are modeled
as discrete entities that can proliferate, migrate, die, and
interact with neighboring cells. This can be achieved in several
different ways, including on-lattice descriptions for which cells

and processes are represented on a fixed regular grid. Examples 
of on-lattice representations are cellular automata (see [3]) and 
cellular Potts models (also known as Graner-Glazier models; 
see [4]). By contrast, off-lattice models represent each cell by 
a set of points in space, independently of any grid. Examples 
of off-lattice models include center-based models where cells 
are represented by a single point (e.g., sphere-based models 
in [5] or tessellation-based models in [6]) and vertex-based 
models (see [7]) where cells are represented by their vertices. 
Further models, known as subcellular element models, where 
cells are comprised of a collection of points, are an extension 
to traditional center-based models (see [8]). These biological 
models share some similarities with discrete element methods 
(DEMs) (see, for example, [9]) used in material and soft matter 
sciences to describe, among other substances, granular matter, 
powders, foams, or fracturing solids. However, unlike material 
and soft matter sciences, constitutive relations for biological 
tissue mechanics are not well understood. An important 
consequence is that DEMs are elaborated on the basis of 
strong physical grounds, whereas cellular-scale biological 
models are treated in a simple conceptual manner (e.g., 
center-based spring forces). In this paper, we will focus on 
simple cellular-scale models and will not extend our results to 
more complicated DEMs.

With the continuum representation, the tissue is modeled 
via a system of partial differential equations (PDEs). The 
PDEs can also be discretized to allow for numerical solution 
but, in contrast with cellular-scale models, a typical mesh 
size will be much coarser than the characteristic length of
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a cell. Tissues are therefore described in an averaged sense, 
with properties evaluated between the cellular and tissular 
scales. Within this framework, tissue mechanics typically rely 
on linear or nonlinear elastic or viscoelastic theories and 
cellular growth is introduced through constitutive evolution 
laws for macroscale parameters. One such method is based 
on a multiplicative decomposition of the deformation gradient 
F = Fp · Fa , where Fa represents the imposed (active) growth 
and Fp is the (passive) mechanical response. Another approach 
relies upon an additive decomposition: the Piola-Kirchhoff 
stress tensor (see [10] for a detailed discussion of these 
models).

The two classes of models introduced above have their 
respective strengths and weaknesses. Cellular-scale descrip-
tions can incorporate a substantial amount of information 
that may be particularly relevant to medical and biological 
applications. In tumor development, for instance, initial 
mutations occur within individual cells, a phenomenon that 
can only be adequately understood using cellular-scale mod-
els. Obviously, the disadvantage of such resolution is the 
computational expense, which exceeds current capabilities 
when dealing with large numbers of cells, for example, when 
considering entire organs or even organisms (e.g., ≈1014 cells 
in the human body). Further, these models are often based 
on mathematical abstractions that can be difficult to relate 
to biophysically measurable properties associated with the 
problem of interest. Continuum-based approaches, in contrast, 
are less computationally intensive and provide a more intuitive 
framework in which parameters and operators can be adjusted 
to fit experimental observations. However, they describe only 
an average behavior of the tissue and have domains of validity 
that can be difficult to determine.

Although continuum and cellular-scale approaches have 
traditionally been used separately, there is evidence that they 
could be used in a complementary manner. Recent works have 
proposed such multiscale methods that aim to overcome issues 
with computational limitations without sacrificing precision. 
Hybrid concurrent discrete-continuous models, for instance, 
may be used for such purposes. Hybrid frameworks rely on the 
idea that, in many cases, a cellular-scale description is needed 
only in a limited region of the tissue where processes vary 
over short spatial or temporal scales. In the rest of the tissue, 
where characteristic times and lengths are significantly larger, 
continuum descriptions may be used. Kim and co-workers 
[11,12] applied this idea to tumor spheroids, using a continuum 
approach to model the necrotic and quiescent zones and a 
discrete cellular-scale model within the relatively small and 
active peripheral region. From a practical point of view, such 
models are extremely appealing because they resolve many 
of the issues found when each approach is used individually: 
the computational cost of pure cellular-scale models and the 
failure of continuum models to capture phenomena occurring 
on short scales. From a more fundamental perspective, how-
ever, there are a number of issues that require attention before 
this approach can be more widely used to develop models 
of biological tissues. The following are typical unresolved 
questions. What boundary conditions should be imposed on 
the interface between discrete and continuum regions? Where 
should the interface be positioned? How should it evolve over 
time?

Interestingly, similar problems have emerged in atom-to-
continuum (ATC) modeling where various multiscale
strategies have been developed to deal with large deformations
and dislocations in crystalline systems. Such multiscale meth-
ods include quasicontinuum (QC) [13], bridging scale [14],
hybrid discrete-continuum with blending [15], or nonlocal [16]
techniques. Blending techniques, for example, are used to
treat boundaries in hybrid discrete-continuum formulations.
Continuity conditions are imposed at the interface between
the two distinct regions by defining an overlapping volume
that is used to blend model variables, e.g., energy functionals,
forces, stresses, or displacements (see [17]). Another category
of models, termed QC methods (see [18] for a thorough
review of QC methods), aims to approximately solve the
atomic-scale problem. The technique uses adaptive meshing
and interpolation procedures inherited from finite element
methods, in conjunction with physical approximations that
allow for the reduction of the number of degrees of freedom
of the problem [localization, Cauchy-Born rule (CBR), strain
and stress criteria, and representative atoms]. Peridynamic
models are spatial nonlocal formulations that describe material
mechanics by using an integral formulation of momentum
transport, an approach that avoids issues associated with
cumbersome boundary conditions of concurrent models. For
all of these models, however, a means of bridging discrete
and continuum scales is needed in order to develop clear
relationships between both paradigms. With hybrid modeling,
for instance, the model used in the continuum region should
correspond, in some sense, to the continuum limit of the
discrete model and boundaries should be treated accordingly.

For cellular-scale models, this discrete-to-continuum con-
nection has been most widely studied in one spatial dimension
and is not yet available in higher-dimensional configura-
tions. For example, Murray et al. [19] derived a continuum
expression corresponding to a one-dimensional (1D) chain
of overdamped cells. In this approach, the limit of discrete
sums is considered to obtain differential operators that can be
combined into a single nonlinear diffusion equation for cellular
density. Bodnar and Velasquez [20] studied the mathematical
behavior of an integro-differential (nonlocal) equation for
the cellular density that can be interpreted as the continuum
limit of a 1D tissue model of overdamped particle interacting
via conservative forces. Fozard et al. [21] used asymptotics
to derive Darcy-like equations for momentum transport at
the continuum scale. These approaches pave the way for
future developments and provide insight into the large-scale
dynamics of cellular-scale models. However, their extension
to higher-dimensional systems is not systematic. To illustrate
the complexity inherent to higher-dimensional systems, let
us consider an off-lattice model with spring interactions
between closest neighbors and the connectivity determined
via a Voronoi tessellation. Compared to a finite volume
discretization of an isotropic elastic material, the cell-based
model ignores tangential (bending) forces. Therefore, even
this simple network of springs cannot be assimilated to an
elastic material and the continuum limit, if it exists, will depend
on many parameters, including the level of disorder in the
network, the average connectivity (see [22]), and the distri-
bution of prestress. Such 2D or 3D extensions are important
because they provide a solid basis for (i) relating the effective



tissue-scale parameters to cellular-scale properties, (ii) un-
derstanding the approximations associated with continuum 
models and establishing when continuum approaches are 
appropriate, (iii) developing appropriate boundary conditions 
for hybrid concurrent models or adapating other ATC strategies 
to the biological context, and (iv) creating classification 
methods for cellular-scale models via their continuum limit.

For crystal mechanics, this bridge can be obtained using 
the CBR. The CBR is an assumption that can be used to 
pass information through scales by linearly relating the local 
microscale displacement field to the mesoscale deformation 
gradient. In this study, our goal is to analyze numerically the 
validity of the CBR for cellular-scale models of biological 
tissues with honeycomb and disordered reference states. We 
will focus solely on passive tissue mechanics, i.e., we will 
not consider cellular growth. To this end, we will use an 
approach similar to that of Aghaei et al. [23] and Friesecke 
and Theil [24]. We will consider a representative region of the 
tissue, impose an affine deformation on boundary nodes, and 
calculate an average deviation from the CBR in the central 
region.

The remainder of this work is organized as follows. In 
Sec. II, we discuss in more detail the CBR and ideas underlying 
its application to cellular-scale models of biological tissues. 
In Sec. III, we present the modeling framework and the 
implementation of these models. In Sec. IV, we present 
results and their interpretation. Finally, in Sec. V, we discuss 
the implications of these results for discrete-to-continuum 
approaches, hybrid discrete-continuous modeling, and model 
classifications.

II. CAUCHY-BORN RULE

A. Definitions

The CBR was used by Cauchy [25] and Born [26] to
derive expressions for the elastic modulus of a crystalline solid
in terms of atomic-scale parameters. The rule is illustrated
in Fig. 1 and arises from the following considerations (see
detailed discussion in [27]). First, consider a homogeneous
crystalline material, characterized by the macroscopic length
scale L, and a unit cell for the crystal structure, characterized
by the microscopic length scale �. Suppose that a macroscopic
stress or strain with a characteristic time τM initiates a deforma-
tion of this material and that relaxation at the microscopic scale
is characterized by the time τμ. Now, impose the separation
of length scales L � � so that each unit cell can be treated
as a macroscopic point and the deformation gradient F can be
considered to be constant over each unit cell. Finally, assume
that there is a separation of time scales τM � τμ so that the
relaxation processes within each unit cell can be considered
quasisteady. The CBR states that all atoms within each unit
cell will be displaced homogeneously. In other words, if ri

(rj ) is the quasisteady position of atom i (j ) in the stressed
state and Ri (Rj ) is the position of atom i (j ) in the reference
configuration, then

rij ≡ ri − rj = F · (Ri − Rj ) = F · Rij . (1)

In conjunction with this relationship, a variety of methods can
be used to derive the macroscale continuum equations. For
example, methods based on discrete expressions of the Cauchy
stress tensor [28] or strain density energies may be used.

L

FIG. 1. Schematic representation of the CBR. The central picture shows the node positions in the reference (lattice) configuration. In the 
two other figures, forces applied at a macroscopic level induce deformation of the material. The bottom right configuration corresponds to 
displacements that satisfy the CBR, while the top left configuration describes displacements that do not, i.e., nodes are rearranging on an atomic 
length scale.



B. Noncrystalline reference state

The CBR does not generally apply to noncrystalline materi-
als because deformations occur inhomogeneously, i.e., stresses 
generate reorganization and relaxation of the (quenched) 
reference state on small length scales. However, it can be 
used to approximate amorphous solid continuum mechanics 
(see [29]), even though the calculation of effective properties 
may require the expression of the residual stresses in the 
reference state. In this work, the rationale for studying the 
validity of the CBR when applied to cellular-scale models of 
biological tissues is fourfold.

(i)  As discussed in [29], the validity of the CBR at the 
microscale translates the intuitive notion of solid behavior at 
the macroscale: Displacements about a stable equilibrium are 
locally homogeneous and do not generate node permutations, 
as is the case for fluids. In this sense, studying the validity of 
the CBR is similar to studying elastic continuum properties of 
biological tissues.

(ii) The affine displacement field may be considered as 
a reference state for tissue mechanics and comparisons with 
this reference may provide useful information. For instance, 
Goldenberg et al. [30] showed that, for a 2D Lennard-Jones 
glass, the nonaffine field may be characterized by a notion of 
local defects and a scalar noise.

(iii) We will focus on structured reference states for which 
the CBR may be used as a first-order approximation to calcu-
late homogenized continuum stresses and energies. Example 
tissues that exhibit spatially structured patterns include plants, 
wood, leaves, bones, ocular tissues, sponges, and epithelia (see,
e.g., [31]). Two of the most common patterns are foamlike and
honeycomb structures. Furthermore, the honeycomb reference
state has often been used for modeling purposes. Therefore,
honeycomb results can be used to study model mechanical
behavior in the continuum limit, for example to provide a
means of comparison between cellular-scale models.

(iv) Tissue mechanics and morphogenesis are governed by
a complex dynamical interplay between, e.g., extracellular
substances, fluids, cell membranes, cell cytoskeleta, and in-
tercellular protein junctions (see [32]). In these systems, large
networks of biopolymers generate intercellular interactions
that strengthen the elastic behavior of the tissue as a whole. In
particular, fiber networks are known to behave in a self-similar
(affine) manner in some regions of parameter space (see
[33,34]).

III. MODELING FRAMEWORK

A. Cellular-scale models and CHASTE

The computations presented in this paper were performed
using CHASTE (cancer, heart, and soft-tissue environment),
an open-source modeling framework developed in C++ by
the Department of Computer Science at the University of
Oxford. CHASTE includes a set of libraries and test suites for
cellular-scale models of biological tissues with on-lattice and
off-lattice descriptions. CHASTE also handles cellular growth
and provides various generic solvers for differential equations
and boundary value problems that can be used for coupling
cellular-scale models with systems of ordinary differential
equations and PDEs. Further information about the code can
be found in [35,36].

Vertex
Overlap

Center
Sphere

Delaunay

Center
Voronoi

(a) Center-based (b) Center-based (c) Vertex-based

Sphere-based Tessellation-based Fixed-connectivity

FIG. 2. Schematics of the different modeling frameworks.

In this work, we will use the 2D off-lattice cellular-scale
models of CHASTE; in particular we use two classes of models
that we characterize as follows. Center-based models (see [37])
simulate cell movement by concentrating mass at its center,
hence reducing computations to tracking a finite number of
nodes (cell centers). Vertex-based models (see [7,39]) view
cells as polygons that can be characterized by the positions
of their vertices. When considering center-based models,
we will distinguish between sphere- and tessellation-based
models, which differ in the way in which connectivity is
determined, i.e., how neighbors are defined. For sphere-based
models, connectivity is resolved via a radius of interaction
[see Fig. 2(a)]. For tessellation-based models, connectivity is
resolved using a Voronoi tessellation and the corresponding
Delaunay triangulation [see Fig. 2(b)]. For vertex-based
models, connectivity is defined by a network of connected
polygons [see Fig. 2(c)]. When considering vertex-based
models we will only consider cases for which connectivity
is determined by the initial configuration.

For each model, we assume that cell movement is over-
damped, so that applying Newton’s law of motion to each
node i supplies

ηi

dri

dt
= fi , (2)

where ηi is a damping coefficient or viscous drag that we set
equal to 1.0 nN h μm−1 for each node, ri is the position of node
i (μm), t is the time variable in hours, and fi is the force on
node i in nanonewtons. We discretize Eq. (2) using a forward
Euler method so that the position of node i at time t + �t is
determined from its position at time t via

rt+�t
i = rt

i + �t

η
fi . (3)

Stability of the explicit discretization method requires that
the time step is carefully chosen. Here we used �t = 1

120 h =
30 s for center-based models and �t = 1.8 s for vertex-based
models, which were found to exhibit a greater time step
sensitivity.

To complete our characterization of these cellular-scale
models, we must define constitutive laws for the forces fi .
For center-based models, we express these forces in terms of
the nondimensionalized overlap parameter

δ = 1

�
(‖rij‖ − �ij ), (4)

where �ij > 0 is the rest length of the spring that connects
nodes i and j , � is a characteristic length scale (which we set
equal to 10 μm), and δ can be interpreted as a measure of
the deviation from the rest length with a sign that determines
the nature (attractive or repulsive) of the force. Unless stated
otherwise, we assume that rest lengths are identical for all cells



TABLE I. Summary of the four models used in this paper. Each 
model is completely defined by a type (cellular or vertex based), a 
notion of connectivity (sphere based, tessellation based, or initially 
fixed), and a force (S, QS, NL, or NH).

Model Type Connectivity Force

1 center based tessellation based spring fS
i

2 center based sphere based quasispring fQS
i

3 center based sphere based nonlinear fNL
i

4 vertex based fixed Nagai-Honda fNH
i

within the population and equal to �. This may be written as
�ij = � for any pair i,j . For center-based models, we will use
a cutoff length �c = 1.1 × �, which enforces a finite distance
of interaction between cells. In the remainder of this paper,
we consider spring (S), quasispring (QS), and nonlinear (NL)
forces for center-based models and a Nagai-Honda (NH) force
for the vertex-based model. Details of all forces are given in the
Appendix and models are summarized in Table I. For clarity,
from here on, we will refer to each model by the number
assigned to it in this table.

B. CBR tests

For ATC problems, the validity of the CBR has been studied
in various systems. For example, Friesecke and Theil [24]
studied analytically the behavior of a network of atoms,
initially positioned on a 2D square lattice and interacting via
harmonic springs. By prescribing an affine deformation on
boundary nodes of a unit cell and studying the response of
central nodes, they showed that particle locations predicted by
the CBR are a minimizer of the net energy only in a limited
region of parameter space. In particular, the validity of the CBR
is restricted to relatively small deformation gradients. Aghaei
et al. [23] studied the validity of the CBR numerically on
a lattice of atoms interacting via the Sutton-Chen many-body
potential. They also imposed a deformation on boundary atoms
and observed the response of central atoms. By examining
deviations from the CBR in the strain and stress domains, they
could determine domains of validity. In this paper, we will
apply a similar strategy to the cellular-scale models discussed
above. In Fig. 3 we illustrate how we distinguish between
boundary and central nodes for a tessellation-based model.

Herein, positions are resolved within a Cartesian coordinate
system that has its origin at the center of mass of the cell
population. The x and y axes are oriented along natural
horizontal and vertical directions (see Fig 3). Boundary nodes
are displaced from positions Ri in the reference state to ri by
introducing a mesoscale deformation gradient F so that

ri = F · Ri . (5)

Further, tension and compression and shear deformations
are applied by using the following two tensors FT,C and FS:

FT,C ≡
[

1 0
0 αT,C

]
(6)

and

FS ≡
[

1 αS

0 1

]
. (7)

Delaunay triangulation (connectivity) Voronoi tessellation (cells)

FIG. 3. (Color online) Example population of center-based
tessellation-based cells. The Delaunay triangulation is plotted on the
left-hand side and the corresponding Voronoi tessellation is plotted
on the right-hand side. Boundary cells to which displacements are
applied are colored in yellow. Central cells that are used to study
deviations from the CBR are colored in gray. We remark that there is
a top-bottom reflection symmetry but no left-right symmetry.

Here the deformation constant α sets the amplitude of
the deformation. We remark that with these notations, the
reference configuration is given by αT,C = 1 for tension and
compression and αS = 0 for shear.

For a given target value of α, boundary nodes were
displaced by small increments �α = 2 × 10−3 for center-
based models and �α = 1 × 10−3 for vertex-based models.
For center-based models, the system was assumed to be at
equilibrium when either the average velocity over all nodes
reached the critical value 10−7 μm �t−1 or the total time
for relaxation of this α increment reached 10 h. For vertex-
based models, the system was assumed to be at equilibrium
when either the average velocity over all nodes reached the
critical value 10−10 μm �t−1 (vertex-based models exhibited
a greater sensitivity to the α increment) or the total time
for relaxation of this α increment reached 10 h. Although
results are not presented here, tests for convergence were
performed by repeating the simulations using fractions of these
time steps and α increments. In some cases, presented below,
we also imposed small perturbations, i.e., random motion
of the cells, to further explore the stability of our results.
This method was implemented by selecting, for each time
step, a random direction and enforcing a small jump of the
node in this direction with a velocity of 10−1 μm h−1, i.e., an
amplitude of ≈8.3 × 10−4 μm for a time step �t = 1

120 h.
For simplicity, we refer to such random displacements as
Brownian, although they are not meant to describe Brownian
motion but to address the sensitivity of our results to small
perturbations. For simulations without random displacements,
we will use the term non-Brownian.

The validity of the CBR was evaluated by comparing, in
the strain domain, the computed positions of the central nodes
with the predictions of the CBR [see Eq. (1)]. Deviation was
measured via the expression

(deviation) ≡ 1

�N

N∑
i=1

∥∥ri − rCBR
i

∥∥ = 1

�N

N∑
i=1

‖ri − F · Ri‖,

(8)

where N is the total number of nodes, ri is the computed
position of node i, and rCBR

i is the position of node i predicted
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FIG. 4. (Color online) Series of plots showing how model 1
(center based and tessellation based) deviates from the CBR as the
deformation parameter α varies for (a) shear and (b) tension and
compression deformations. For each plot, three sizes of tissues are
presented (10 × 10, 15 × 15, and 20 × 20 cells) for Brownian (B)
and non-Brownian (NB) cases. Results were obtained by computing
Eq. (8) in the central region for displacements prescribed on the
boundary nodes using Eqs. (5)–(7). These plots show that (i) the CBR
is valid only in the limit of small deformations; (ii) the domain of
validity is independent of the size of the tissue for the non-Brownian
case; (iii) for the Brownian case, the domain of validity of the CBR
slightly decreases with an increase in the size of the tissue; and (iv)
domains of validity are relatively robust to perturbations.

by the CBR. We remark that different measures are available,
in particular in the stress domain. We limit our analysis to
the strain domain because it yields a natural estimate of this
deviation and does not rely on a cumbersome definition of the
discrete stress tensor.

IV. RESULTS

A. Center-based models: Models 1, 2, and 3

In this section, we focus on center-based models 1, 2, and 3
(see Table I) and study the validity of the CBR for three sizes
of tissue 10 × 10, 15 × 15, and 20 × 20 cells.

1. Honeycomb

Here, nodes are arranged on a honeycomb lattice, similar
to the one shown in Fig. 3 for a tessellation-based model.
This situation corresponds to a stress-free configuration with
constant rest lengths imposed between connected pairs of
nodes throughout the population.
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FIG. 5. (Color online) Series of plots showing how model 2
(center based and sphere based) deviates from the CBR as the
deformation parameter α varies for (a) shear and (b) tension and
compression deformations. For each plot, three sizes of tissues are
presented (10 × 10, 15 × 15, and 20 × 20 cells) for Brownian and
non-Brownian cases. Results were obtained by computing Eq. (8)
in the central region for displacements prescribed on the boundary
nodes using Eqs. (5)–(7). These plots show that (i) the CBR is valid
only in the limit of small deformations; (ii) the domain of validity is
independent of the size of the tissue for the non-Brownian case;
(iii) for the Brownian case, the domain of validity of the CBR
slightly decreases with an increase in the size of the tissue; and
(iv) domains of validity are relatively robust to perturbations.

For model 1, the deviation Eq. (8) is plotted as a function
of the deformation parameter α for shear in Fig. 4(a) and for
compression and tension in Fig. 4(b). Results are presented
for different sizes of tissue and with (B) or without random
motion (NB). Equivalent plots for model 2 are presented in
Figs. 5(a) and 5(b). These results show that both models exhibit
qualitatively similar behaviors. We remark that the domain of
validity of the CBR is limited to the small deformations regime,
i.e., relatively small values of α. This result is compatible
with theoretical analyses obtained for simpler harmonic spring
networks (see [24]). We note also that (i) for the Brownian
case, the domain of validity of the CBR slightly decreases
with an increase in the size of the tissue, which is primarily
due to the appearance of higher deformation modes and was
also observed in [23]; (ii) for the non-Brownian case, the size
of the tissue does not affect the domain of validity of the CBR,
which results from the homogeneity of the geometry; (iii) the
amplitude of the average deviation increases with an increase
in the size of the tissue in the large deformation regime,
when the CBR fails to describe node locations accurately; and



(a) Shear αS = 0.1 (b) Shear αS = 0.4

FIG. 6. (Color online) Sequence of events corresponding to a
shear deformation applied to a non-Brownian cell population (15 ×
15 cells) described using model 1 for (a) αS = 0.1 and (b) αS = 0.4.
The CBR is valid in the limit of small deformations and fails if
αS exceeds a critical value (here αS ∼ 0.2) at which strains in the
narrowed corners become large enough.

(iv) bifurcation of results for Brownian tension experiments
occurs primarily in the large deformation regime where the
CBR fails. This shows stability to small perturbations in
domains of CBR validity for this configuration.

To understand further why the CBR fails in the large
deformation limit, node positions for the tests described above
are illustrated for shear experiments, in Fig. 6 for model 1
and in Fig. 7 for model 2. In both cases, the tissue deforms
homogeneously [Figs. 6(a) and 7(a)] until α reaches a critical
value at which the strain induced in the narrowed portion of
the tissue becomes sufficiently large to create local dislocations
[Figs. 6(b) and 7(b)]. The dislocations induce a rearrangement
of the nodes and their connectivity, leading to failure of the
CBR. As α is increased through this critical value, the deviation
from the CBR grows approximately linearly, as the size of the
dislocations grows.

The spatial organization of nodes for the tension and
compression experiments for model 1 are presented in Fig. 8.
In the compressive regime, we observe that when αS reaches a
critical value, cellular connectivity is altered. Cells positioned
in a given layer are influenced by cells up to two layers away
because of how the model is set up, i.e., if cells from distant
layers get close enough a new spring connection will link them.
This is visible in the Delaunay triangulation representation
Fig. 8(a), where the initial connectivity is altered and

(a) Shear αS = 0.1 (b) Shear αS = 0.4

FIG. 7. (Color online) Sequence of events corresponding to a
shear deformation applied to a non-Brownian cell population (15 ×
15 cells) modeled using model 2 with (a) αS = 0.1 and (b) αS = 0.4.
The CBR is valid in the limit of small deformations and fails if
αS exceeds a critical value (here αS ∼ 0.2) at which strains in the
narrowed corners regions become large enough.

(a) Non-Brownian tension, αT,C = 0.6 (b) Non-Brownian tension αT,C = 1.5

(c) Non-Brownian tension αT,C = 1.15 (d) Brownian tension αT,C = 1.15

FIG. 8. (Color online) Sequence of events corresponding to com-
pression and tension deformations of Brownian and non-Brownian
cell populations (15 × 15 cells) described by model 1 with (a) αT,C =
0.6 non-Brownian tension, (b) αT,C = 1.5 non-Brownian tension,
(c) αT,C = 1.15 non-Brownian tension, and (d) αT,C = 1.15 Brownian
tension. The CBR is valid in the limit of small deformations and fails
if αT,C exceeds a critical value at which either cell connectivities are
modified or dislocations appear.

some (gray) central nodes interact with the second layer of
(yellow) boundary nodes. This reorganization destabilizes
the homogeneous configuration, causing the CBR to fail.
Under tension, the tissue is stretched homogeneously until the
vertical connections between internal and boundary cells reach
their cutoff length. Incrementing α further causes the distance
between the nodes to exceed the cutoff length, generating
dislocations [see Fig. 8(b)]. Thereafter, the deviation from the
CBR increases approximately linearly with αT,C as the size of
the dislocations grows. We remark that the slope of this linear
dependence is weakly dependent on the Brownian perturba-
tion. Indeed, small perturbations dominate tissue behavior at
the onset of plasticity when even the slightest changes in node
positions can lead to the appearance of dislocations and the
loss of tissue symmetry [compare Figs. 8(c) and 8(d)].

Figure 9 reveals that a similar situation occurs for model
2. Under tension, the qualitative behavior replicates that seen
for model 1. Figure 9(a) shows the position of the nodes after
the appearance of the dislocation, while Fig. 9(b) shows how
symmetry breaking is induced by Brownian perturbations. The
main difference between models 1 and 2 is assessed within
their response to compressive loading. Figure 9(d) shows
that the CBR fails for model 2 when αT,C ≈ 0.6, but that
further compression takes the average deviation back to zero
[see Fig. 9(c)]. This behavior is due to the implementation
of the sphere-based models. In our model, the radius of
interaction of each cell is fixed initially and does not depend on
loading. Therefore, under sufficient compression, interactions



(a) Non-Brownian tension αT,C = 1.5 (b) Brownian tension αT,C = 1.5

(c) Non-Brownian compression αT,C = 0.5 (d) Non-Brownian compression αT,C = 0.62

FIG. 9. (Color online) Sequence of events corresponding to
compression and tension deformations applied to Brownian and
non-Brownian cell populations (15 × 15 cells) described via model
2 with (a) αT,C = 1.5 non-Brownian tension, (b) αT,C = 1.5 Brow-
nian tension, (c) αT,C = 0.5 non-Brownian compression (rescaled
for visualization), and (d) αT,C = 0.62 non-Brownian compression
(rescaled for visualization). The CBR is valid in the limit of small
deformations and fails if α exceeds a critical value for which either
cell connectivities are modified or dislocations appear. (c) and (d)
illustrate the peculiar behavior of sphere-based models with constant
radii of influence for which the CBR fails for a finite range of values
of α before becoming valid again in the limit of large compression.

are not limited to closest neighbors. In this limit, internal
nodes will also interact with both layers of boundary nodes
and these additional forces will force homogeneity of cell
displacements. Although this model is physically unrealistic,
it results from simplifications made in many sphere-based
models and is representative of their mechanical behavior
under large compressive loading.

To explore further this effect of radius, we studied the
response of the model for a smaller value of the cutoff
length, which is equal to the rest length. Results are plotted
in Fig. 10(a) for non-Brownian tests. We remark that, in
this case, the CBR is not valid under tension because we
have eliminated attractive forces. In addition, it seems that
the behavior described above persists only for the smallest
tissues (10 × 10 and 15 × 15 cells) and is not observed for
the larger ones (20 × 20 cells) for which boundary effects
are less important. This suggests that the dominant effect is
indeed due to the nonlocal interactions between internal and
boundary nodes. This was further confirmed by studying the
effect of the force using a different nonlinear force, model 3,
with a cutoff length of 1.1. The results presented in Fig. 10(b)
are similar to those obtained with the quasispring force under
compressive loading and show that the QS and NL forces,
although different, exhibit equivalent behavior on the tissue
scale. This corroborates the conjecture that the anomalous
behavior is induced by nonlocal interactions with boundary
nodes and not by the nonlinear nature of the forces.
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FIG. 10. (Color online) Series of plots showing how (a) model 2
(center based and sphere based) with �c = � = 10 μm and (b) model
3 deviate from the CBR as the deformation parameter α varies under
tension and compression. (a) Three sizes of tissues are presented
(10 × 10, 15 × 15, and 20 × 20 cells) for the non-Brownian case. (b)
One size of tissue is presented (10 × 10 cells) for the Brownian and
non-Brownian cases. Results were obtained by computing Eq. (8) in
the central region for displacements prescribed on the boundary nodes
using Eqs. (5)–(7). These plots show that (i) the peculiar behavior of
sphere-based models with constant radius of interaction disappears
as either the size of the tissue is increased or the radius of interaction
is reduced; (ii) for �c = �, the CBR is invalid under tension; and
(iii) using the NL or QS forces for a sphere-based population does
not modify the qualitative deviation from the CBR.

2. Disordered reference structures

In the previous section, the honeycomb (stress-free) ref-
erence configuration was obtained by using constant values
of the rest lengths for intercellular forces. To investigate
the effect of disorder in the reference state on the validity
of the CBR, we consider a case for which the rest lengths
are chosen from a normal distribution. We set the mean of
this Gaussian distribution to be � = 10 μm and investigate
how the standard deviation influences the average deviation
from the CBR. The simulated tissue is generated by placing
cells on a honeycomb lattice and allowing it to relax to a
stable equilibrium before applying any deformation. For each
value of the standard deviation ( σ

�
= 0.03, 0.06, and 0.09),

three replicate experiments were performed to account for
the stochasticity of the simulations. Results for models 1
and 2 are presented in Figs. 11 and 12, respectively. More
detailed statistics were obtained by performing larger-scale
shear calculations for model 1 on a tissue of size 50 × 50 =
2500 cells, with 20 replicates. In this case, the calculations
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FIG. 11. (Color online) Series of plots showing how model 1
(center based and tessellation based) deviates from the CBR as the
deformation parameter α varies for (a) shear and (b) tension and
compression. Three values of the standard deviation ( σ

�
= 0.03, 0.06,

and 0.09) were used for the non-Brownian case and one size of tissue
(10 × 10 cells). For each value of standard deviation, three replicates
are plotted. Results were obtained by computing Eq. (8) in the central
region for displacements prescribed on the boundary nodes using
Eqs. (5)–(7). These plots show that (i) the CBR may not be valid
when the reference configuration is an irregular lattice and (ii) for the
lowest value of the standard deviation σ

�
= 0.03, the CBR may still

provide a good approximation to the displacement field.

were limited to small-amplitude deformations to avoid large
computation times. Results are presented in Fig. 13 and an
example simulation in Fig. 14. We remark that the qualitative
behavior of the larger 50 × 50 = 2500 cells tissue and the
10 × 10 = 100 cells tissue are similar, but the amplitude of
the deviations was significantly larger for the 50 × 50 = 2500
cells tissue. Although an interesting problem, it is beyond the
scope of this paper to explore further the impact of the modes
on the CBR deviation and the size dependence of the repartition
of prestress in the initial relaxed configuration.

For both models and tissue sizes, our results show that
the CBR is not exactly satisfied, even in the limit of small
deformations. To understand why the CBR does not provide
a good leading-order representation of the deformations, it is
important to realize that the energy functional characterizing
the mechanics of the cell population is sensitive to modifica-
tions in the standard deviation. In particular, although cells
are initially in stable equilibrium, the number of nodes in
the reference state that are close to bifurcation from local
energy minima and the amount of prestress increase with σ .
The system is, in some sense, in a metastable configuration.
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FIG. 12. (Color online) Series of plots showing how model 2
(center based and sphere based) deviates from the CBR as the
deformation parameter α varies for (a) shear and (b) tension and
compression. Three values of the standard deviation ( σ

�
= 0.03, 0.06,

and 0.09) were used for the non-Brownian case and one size of tissue
(10 × 10 cells). For each value of standard deviation, three replicates
are plotted. Results were obtained by computing Eq. (8) in the central
region for displacements prescribed on the boundary nodes using
Eqs. (5)–(7). These plots show that (i) the CBR is not valid when the
reference configuration does not follow a regular lattice and (ii) for
the lowest value of the standard deviation σ

�
= 0.03, the CBR may

still represent a good approximation of the displacement field.
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FIG. 13. (Color online) Series of plots showing how model 1
(center based and tessellation based) deviates from the CBR as the
deformation parameter α varies for shear. Three values of the standard
deviation ( σ

�
= 0.03, 0.06, and 0.09) were used for the non-Brownian

case and one size of tissue (50 × 50 cells). For each value of the
standard deviation, 20 replicates were computed and the following
statistics are presented: arithmetic mean (points), standard deviation
(error bars), and min-max boundaries (uniformly shaded gray, red,
and blue areas).



FIG. 14. (Color online) Voronoi tessellation corresponding to a
shear deformation applied to a non-Brownian cell population (50 ×
50) cells using model 1 with αS = 0.058 and σ

�
= 0.09.

Under such conditions, even the slightest displacement of the
boundary nodes may trigger rearrangement on cellular length
scales (e.g., node permutations) and lead to failure of the
CBR. These cellular-scale phenomena cannot be captured by
solid-continuum models, even with higher-order or nonlocal
theories. In this sense, the CBR provides a reliable measure of
solidlike elastic behavior.

Such immediate changes in the topology upon application
of strain or stress may be reduced by annealing (see [38]).
This process consists of applying large-deformation
tension-compression cycles to the initial relaxed state, so
that the system is set into a lower-energy configuration and
prestress is reduced. Further, disordered systems with no initial
prestress may be obtained by modifying cell connectivities, as
is done in [40]. It is unclear, however, whether prestress forms
an integral part of biological tissue mechanics or should be
neglected. This issue will not be addressed in the present work.

Conversely, we see that for relatively small values of the
standard deviation, particularly when σ

�
= 0.03, the CBR may

provide an approximate representation of node displacements.
We may thus extend the validity of the CBR, with a notion of
quasivalidity in the limit of small deformations and low-level
disorder. In such cases, elastic models derived using the CBR
may adequately describe tissue mechanics. We remark that
the concept of quasivalidity would be difficult to determine
using an analytical approach and numerical simulations of
cellular-scale models are, in this case, helpful in understanding
model behavior.

B. Vertex-based model: Model 4

We now apply the same techniques to investigate the
validity of the CBR for vertex-based tissue models. For model
4, the deviation (8) is plotted as a function of the deformation
parameter α for shear in Fig. 15(a) and for compression and
tension in Fig. 15(b). Results are presented for a tissue of size
10 × 10 both with (B) and without random motion (NB).

The results presented in Fig. 15 reveal that the behavior
of the vertex-based model is markedly different from that of
the other models. In particular, Fig. 15 shows that the CBR
is never satisfied, even approximately. In the limit of small
deformations, the average deviation increases linearly with
the deformation constant, starting from zero in the reference
configuration. This is evident both under shear [Fig. 15(a)]
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FIG. 15. (Color online) Plots of the deviation from the CBR
for model 4 (vertex based and fixed connectivity) as a function
of the deformation parameter α for (a) shear and (b) tension and
compression experiments. For each plot, a tissue of size 10 × 10 cells
was used for the Brownian and non-Brownian cases. Results were
obtained by computing Eq. (8) in the central region for displacements
prescribed on the boundary nodes using Eqs. (5)–(7). They show that
(i) the CBR is not valid for vertex-based models even when the
reference configuration follows a honeycomb lattice and (ii) there are
two distinct regions, under compressive loading, of slow linear and
fast nonlinear growth of the average deviation.

and under tension and compression [Fig. 15(b)]. The cause of
this linear deviation is apparent from the spatial distribution
of the nodes (see Fig. 16, where we have used αS = 0.3 to
facilitate interpretation): The internal nodes slowly drift away
from boundary nodes as they resist shape modification. To
understand this phenomenon, recall that positions of vertices
are determined by minimizing deformation (surface area of
the cells) and interaction (boundaries of the cells) energies.
While cell size in the internal region is constrained by the
number of cells and the overall area of the region, cell edges
or vertices are positioned via minimization of the interaction
energy, a procedure that favors regular hexagons. Therefore,
internal cells adopt a shape intermediate between that of the
boundary cells and regular hexagons. This is also compatible
with the idea that vertex-based models can be used for

FIG. 16. (Color online) Linear drift corresponding to a shear
deformation αS = 0.3 applied to a non-Brownian cell population
(10 × 10 cells) described via model 4.



(a) Compression αT,C = 0.95 (b) Compression αT,C = 0.9

(c) Tension αT,C = 1.14 (d) Shear αS = 0.149

FIG. 17. (Color online) Sequence of events corresponding to
shear and compression and tension deformations applied to a
non-Brownian cell population (10 × 10 cells) described via model
4, with (a) compression αT,C = 0.95, (b) tension αT,C = 1.14,
(c) compression αT,C = 0.9, and (d) shear αS = 0.149. These plots
illustrate (i) the linear growth of the average deviation corresponding
to a small drift of the central cells and (ii) the onset of instability
corresponding to the nonlinear growth of the average deviation.

complex viscoelastoplastic rheology of foams (see, e.g., [41]).
Interestingly, even though the CBR does not hold in this
situation, the linearity of the deviation for small values of α

and the spatial homogeneity of the cell behaviors suggest that a
continuum model might still provide a good representation of
the tissues mechanics as a whole. These results show that the
CBR is not a necessary condition for continuumlike behavior,
but rather acts as a measure of elastic, solidlike behavior.

We remark further that, under compressive loading, two
different regimes can be identified. When the deformation
constant is small, the deviation grows linearly with increasing
α (see previous discussion) [Figs. 15(b) and 17(a)] until
an instability occurs when αT,C ≈ 0.9 [see Fig. 17(b)]. This
figure illustrates the inhomogeneous relaxation of vertex
positions when α reaches the critical value of instability.
We see that the deviation grows linearly with α until the
shape incompatibility between internal and boundary nodes
generates a reorganization of intermediate vertices. For larger
values of α, the deviation is induced by an inhomogeneous
drift and becomes nonlinear.

V. CONCLUSION AND DISCUSSION

In this paper, we have studied the validity of the CBR
when applied to different cellular-scale models of biological
tissues. We have found that the CBR holds for center-based
models in the limit of small deformations. If the nodes in
the reference configuration lie on a stress-free regular lattice,
then we have shown that the CBR is exactly satisfied for the

center-based models 1 (tessellation based with spring force),
2 (sphere based with quasispring force), and 3 (sphere based
and nonlinear). If this is not the case, for example, if the
rest lengths for intercellular forces are selected from a normal
distribution, then the CBR can still provide a good approx-
imation of node positions for low-disorder reference states
and a domain of quasivalidity may be defined. If, however,
the disorder is too large, most cells undergo inhomogeneous
local rearrangements and a continuum solid description of
the system is not possible. In this sense, the CBR provides a
measure of continuum solidlike behavior.

In contrast, the vertex-based model is based on a different
paradigm and does not satisfy the CBR, even for a lattice
reference state in the limit of small deformations. In this case,
cells are represented via vertices and cellular connectivity is
fixed ab initio. For this model, we found that central cells
deform more slowly than the boundary cells, leading to linear
growth of the deviation from the CBR as α increases. We also
remark that the homogeneous nature of the drift suggests that,
even though the CBR fails, a continuum behavior may exist.
This suggests that the CBR can be thought of as a measure of
solidlike behavior, but may not be necessary for continuum
behavior. Further, this suggests that the CBR will provide
a good measure of continuumlike behavior in cases when
deviation from the CBR is due to cellular-scale perturbations
[i.e., Fig. 17(b)], but not when it is due to a homogeneous
deviation of the whole tissue [i.e., Figs. 17(a), 17(c), and
17(d)].

These results open alternative perspectives in terms of
hybrid and concurrent modeling of biological tissues. Indeed,
approaches similar to that proposed in [11] imply that a
clear connection exists between the discrete and continuum
frameworks. As discussed in the Introduction, this connection
is typically investigated in one dimension and seldom in two
or three dimensions. Herein we have shown that in some
situations, this connection can be made via the CBR. This
bridge can be used to create a clear and explicit connection
between continuum and discrete models, for instance, using
a discrete virial expression of the stress tensor. Following
this idea, hybrid blending over a boundary region could be
used in a biological context. For instance, one could develop
adaptive models that automatically switch between discrete
and continuum descriptions on the basis of limit strain or stress
criteria. Further, other atom-to-continuum methods could be
adapted to tissue mechanics, such as adaptive quasicontinuum,
bridge scale, or peridynamic methods. When compared with
hybrid models, an advantage of such one-domain formulations
is that cumbersome boundary conditions are not needed.
The drawback, however, is that discretization of nonlocal
formulations typically gives rise to dense matrices that are
more difficult to invert than the sparse matrices produced by
discretizing local models.

We have also demonstrated that the tissue-scale behavior of
cellular-scale models involves a complex, nonlinear interplay
between the model type (center based and vertex based), the
cell connectivity, the forces, the set of parameters chosen,
and even the nature of the deformation. For instance, if
the cutoff length between nodes is set to be equal to the
rest length, then attractive forces are completely eliminated
and the CBR fails to describe node positions in the tension



regime. Paradoxically, we have also shown that very different 
constitutive laws for forces may behave similarly when 
compared via domains of validity of the CBR. Because of 
this complexity and nonlinearity, reliable classifications of 
cellular-scale models do not yet exist and are generally difficult 
to establish. Such classifications are desirable because of the 
increasing number of cellular-scale models in the literature 
and the difficulty in predicting their behavior. Interestingly, 
Murray et al. [42] proposed the classification of 1D forces 
via their behavior in the continuum limit by comparing 
nonlinear diffusion coefficients for cell density. This approach 
provides remarkable insight into the dynamics of tissue 
mechanics, but it is unclear how to generalize these 1D 
results to higher-dimensional systems. Therefore, here we 
suggest that this classification could be obtained by studying 
numerically the behavior of representative portions of tissue 
undergoing mechanical loading. In particular, we propose 
that the CBR could be used as a mechanical classification 
method for cellular-scale models, i.e., to test if models exhibit 
a macroscale solidlike behavior. A simple example of one such 
classification could be (a) models that conform with the CBR 
in the small-deformation limit, (b) models that approximately 
conform with the CBR in the small-deformation limit, or 
(c) models that do not conform with the CBR at all. With 
this idea, the classification method is adaptive and context 
dependent. For instance, model 2 with a cutoff length equal to 
the rest length is a member of (c) for tension deformation, while 
being a member of class (a) or (b) under compressive leading.

Future work should focus on (i) comparison with exper-
imental data on tissue deformation, (ii) developing theories 
that apply to nonaffine situations, (iii) developing a complete 
classification method for cellular-scale models mechanics,
(iv) exploring the influence of the reference state upon the 
macroscale mechanical properties of the tissue in more details 
(in particular, the impact of prestress), (v) adapting the CBR 
to account for homogeneous cellular growth, (vi) imple-
menting hybrid concurrent models of biological tissues, and
(vii) adapting other ATC strategies to the biological context.

In conclusion, this work has attempted to develop accurate
continuous representations of cellular-scale models of biolog-
ical tissues in more than one spatial dimension. Moreover,
this approximation has allowed the comparison of different
cellular-scale models, suggesting categories for such models.
We anticipate that this work will eventually allow larger
biological systems to be simulated more realistically using
hybrid, discrete-continuum models.
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APPENDIX

In this Appendix, we detail the intercellular forces that are
used throughout this paper, starting with the spring force. On
node i, this force may be written as

fS
i =

∑
j

fS
ij ≡

{
λ

rij

‖rij‖δ� for δ � �c

�

0 for �c

�
< δ,

(A1)

where
∑

j is the sum over the neighboring nodes, �ij > 0 is
the rest length of the spring that connects nodes i and j , and �

is a characteristic length scale (which we set equal to 10 μm).
Unless stated otherwise, we assume that �ij = � for any pair
i,j . Further, δ is the nondimensionalized overlap parameter
defined by

δ = 1

�
(‖rij‖ − �ij ). (A2)

We also use a quasispring force defined by

fQS
i =

∑
j

fQS
ij ≡

⎧⎪⎪⎨
⎪⎪⎩

λ
rij

‖rij ‖� ln(1 + δ) for δ � 0

λ
rij

‖rij ‖δ� exp(−kδ) for 0 < δ < �c

�

0 for �c

�
< δ.

(A3)

In Eqs. (A1) and (A3), λ is the stiffness parameter, k is an
adjustable parameter (representing cell-cell attraction), and �c

is the cutoff length. Here we set k = 0.5, λ = 15.0 nN μm−1,
and �c = 1.1� = 11 μm and all distances are expressed in μm.
We remark that in the limit δ � 1, we have

fQS
ij = fS

ij + O(δ2), (A4)

which means that quasispring and spring forces are equivalent
at leading order in the limit of small overlap. The quasispring
force is used to avoid possible instabilities encountered when
using sphere-based models (for details see [37]).

We also consider a more complex description of cell
mechanics using the nonlinear force

fNL
i =

∑
j

fNL
ij ≡

{
FA

ij + FE
ij + FC

ij for δ � �c

�

0 for �c

�
< δ.

(A5)

In this expression, FA
ij is the force component describing

adhesive interactions between cells, FE
ij is a force associated

with the elastic properties of the cells, and FC
ij is associated

with compressibility effects. These forces are all conservative,
so they can be uniquely defined via energy functionals. In this
paper, we employ the forces used in [43] and the reader is
referred to this paper for further details.

For vertex-based models, we consider only one type of
conservative force that combines surface and volume energies,
as described by Nagai and Honda [7] and Honda et al. [39].
We refer to this force as the Nagai-Honda force. It is defined as

fNH
i = ∇iU, (A6)

with

U =
∑
〈ij〉

σαβ |ri − rj | +
∑

α

κ
(
Sα − S0

α

)2
, (A7)

where i and j are vertices, α and β are cells, distances are
expressed in μm, σαβ = 10 nN is the boundary energy per
unit length between cells α and β, κ = 100 nN μm−1 is a
deformation parameter, Sα is the surface area of cell α, and
S0

α is the equilibrium value of the surface area of cell α.
For a more detailed description of these forces, the reader is
referred to Fig. 1 and Eq. (6) in [7].
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