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Vehicle Autonomous Navigation with Context Awareness

Federico Faruffini, Alessandro Correa Victorino, Marie-Hélène Abel

Abstract— Nowadays, many models performing global
robotic navigation exist, and they are capable to drive safely and
autonomously, and to reach their set destination. However, most
of them don’t take into account the information coming from
the context in which such navigation is occuring, resulting in
a severe information loss. Without Context-Aware Navigation,
it is not possible to build a model to let the vehicle adapt
its behaviour to the situation, in the way a human driver
spontaneously does. It is therefore needed a study on how
to connect the contextual information with the robot’s control
loop. For our solution we will use semantic structures known as
ontologies, that help the vehicle reason in real-time and change
its own behaviour in function of given contextual information.
After a definition of the Context of Navigation, in this paper we
propose an approach to the problem of encoding the Context
Awareness in the Autonomous Navigation’s controller. Finally,
such approach is put to the test in a simulator, to discuss the
results achieved.

Index Terms— Automation Systems, Intelligent Transporta-
tion, Autonomous Mobile Robots

I. INTRODUCTION

The problem of autonomous car navigation has been a
research topic for years now, and since the DARPA Grand
Challenges [1] a faster development in this field has begun.
Current state-of-the-art mathematical models are now able
to perform correctly the global navigation between two set
points in a safe way, performing obstacle detection if needed.
However, despite all these technological advancements in the
field, most of these models don’t take into account most
of the contextual information of the navigation. One of the
components of the Context of Navigation, for instance, is
represented by the passengers: they could have a preference
on the driving styles of the car or on the way overtaking
is handled, and so on. These are information that a human
driver usually takes into account while driving and adapts
his driving to. By missing the contextual information it
is not possible for the autonomous vehicle to fully adapt
to the situation, resulting in a behaviour that is always
the same, no matter the situation. A related problem is
that of perceived safety: standard mathematical models for
autonomous navigation don’t include human-like trajectories.
This leads to discomfort for the passengers, since the robotic
component is too much perceivable. Instead, as in [2], a robot
driving in a familiar way to the passengers could help them
to feel safer and more comfortable.
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(Heuristics and Diagnosis of Complex Systems), CS 60 319 - 60 203
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With the use of the Context of Navigation and a method
to reason over it, it is possible to solve both problems.

II. PROBLEM STATEMENT

As previously said, there exist just a few studies on the
interaction between the context modelling and the vehicle
control loop. This results in the impossibility to have a
context-aware control of the car, since many information
are not taken into account. A new solution to incorporate
these missing information is required in order to meet the
passengers’ needs and preferences, as well as to adapt the
driving style to an even safer one, for both the passengers
and the vehicle loads.

We will now introduce a simple example to show why the
contextual information is so important to the navigation.

Let’s consider an autonomous car with no driver and one
or more passengers. During its trip, the vehicle may approach
a speed bump or may need to overtake an obstacle in front
of itself. The passengers may have some preferences on the
driving style used by the car to perform these operations.
For example, they may want an acceleration that is smoother
than the standard one provided by the autonomous system.
Another example could be the desire to set the maximum
speed of the car to be below the maximum one permitted by
the traffic laws. In this paper we will see how it is possible
to modify the behaviour of the vehicle on the basis of these
information.

III. RELATED WORKS

In the field of autonomous cars, global navigation can be
handled in different ways. The first one is GPS-based, as
it exploits information from a GPS sensor to estimate the
current position of the car and enables it to drive to its
destination. This solution still presents some issues, being
highly expensive and being subject to GPS sensor fails, as
those depicted in [3]. A cheaper and more robust way to
handle global navigation is through Visual Servoing (VS).
This method is based on the images caught by cameras
placed on the car, and lets it proceed forward in the center of
its lane, even in the cases of turns or roundabouts. We will
see a more complex image-based VS algorithm proposed by
Lima and Victorino in [4] in Section V.

Regarding the context, many studies on the navigation
have been published, mainly on the aspects of the context
that are dynamic to the navigation itself. Examples can be
the other vehicles, the obstacles, the sections of the path
to reach the goal and so on. Some of these studies exploit
semantic structures known as ontologies, which allow to



store real world data and reason on them, inferring new
information. Shlenoff et al. in [5] propose to use ontologies
to aid the navigation planning, in the case of the detection
of a possible obstacle. In particular, they show how such
structure would allow for reasoning on the possible effects
of the collision with it, and for a decision on how to handle
it. For example, a collision with a newspaper would not be
avoided, while one with a big metallic cylinder would be,
since it would probably produce an extensive damage to the
vehicle, its passengers and its load. Regele in [6] proposed a
way to use ontologies to model traffic laws, in particular at
difficult intersections. In his work, he models the road as a
directed graph, and through the use of labels he defines the
relationship among them. For instance, two merging lanes
are marked as conflicting so that, when the car is in one
of them, it knows it has to be careful for possible vehicles
coming from the other lane. Regele’s proposition is simple
and reduces the information the car needs to process in
real time, since it is not required for it to know the full
topology of the intersection, but just the parts related to
its movement. Finally, Armand et al. in [7] proposed an
extremely simple way to implement a human-like driving
behaviour in autonomous cars. This study too is based on
ontologies and deals with the inference the car can make
when travelling in presence of other cars or pedestrians.
A human-like behaviour of the car could also enhance the
perceived safety by the passengers, as familiar manouvers
could make them more comfortable with the idea of a robotic
driver, as depicted by Elbanhawi et al. in [8].

As previously said, these studies didn’t consider - or
considered just a small fraction of - the context of navigation,
resulting in a huge information loss.

IV. CONTEXT MODELLING

To do our semantic modelling of the Context of Navigation
we used a semantic technology tool called ontology. Before
talking about the Context of Navigation for our tests, we will
briefly introduce ontologies and the reasoning over them.

A. Ontologies

An ontology is a way to represent a domain of discourse,
in such a way that it is understandable by both humans
and computers. In other words, it provides a structure to
store real world data in an organized way. Ontologies have
some differences from standard relational databases, and
some advantages to our scope. The main advantage is the
possibility to reason on them, inferring new information
over the asserted one. This operation is done by pieces of
software called Reasoners. A popular language for ontologies
is OWL, the Web Ontology Language, and its standard editor,
Protégé [9], was developed by the Stanford University. Each
information in an OWL ontology is stored as a triple, in the
form Subject - Predicate - Object, for example in our context
we could have the following triples:

MyCar hasPassenger Emily (1)

MyCar hasMaxSpeed 50 (2)

With all the triples in our storage we build a graph, called
the Knowledge Graph, and we obtain our Knowledge Base.
OWL Ontologies make the Open World Assumption [10], for
which the statements that are not explicitly said to be true are
not assumed to be false, and this allows for a better reasoning
over them. Ontologies have 2 components: a terminological
component (TBox) and an assertional one (ABox).

The TBox contains the Classes for our Context. For
example, we could have a class called EgoVehicle, and
another one called Obstacle. In the TBox we find also the
relationships between Classes, called Object Properties, or
between a Class and some data, called Data Properties. We
have an example of Object Property in (1) and of Data
Property in (2).

The ontology ABox contains the instances of the Classes
defined in the TBox and the real world data assigned to
them: following our example, MyCar is an instance of the
class EgoVehicle.

B. Reasoning over the ontology information

A first level of reasoning and inference is done, at run-
time, by the ontology itself. This is the case of Defined
Classes. We have an example in Fig. 1a: Infant, OldPerson,
Passenger and Toddler are Defined Classes. They all are
of type Person, but satisfy different other conditions, for
instance the Toddler class is defined as having the age value
between 1 and 4. The good thing about Defined Classes is

(a) Defined Classes
examples

(b) Inferred Class
membership

Fig. 1: Inference over Defined Classes

that we don’t need to specify them while creating an instance,
since they are inferred by the system at run-time. So, if we
create an instance Ginny of type Person and assign it the age
value 2, at run-time the system will infer that Ginny is also
of type Toddler, as we can see in Fig. 1b.

When a more complex level of inference rule is required,
we can use SWRL, the Semantic Web Rule Language [11].
It allows to define rules that may contain computations of
the composition of other higher-level boolean operations. A
SWRL rule has two parts: an antecedent and a consequent.
We can read a SWRL rule in this way: if the antecedent is
true, then the consequent is also true. We can define really
useful rules to our scope, for example in the following rule

EgoVehicle(?v)∧hasPassenger(?v,?p)∧Person(?p)∧
hasLocalRoadDrivingPre f erence(?p,?pre f )→

hasLocalRoadDrivingStyle(?v,?pre f )

we define a simple rule to let the ontology suggestions adapt
to the driving style on local roads to the one preferred by the



passenger. Atoms with just one parameter, as EgoVehicle(?v)
are true if the object used as parameter has the specified
Class: in this case, the atom will be true only for all ?v
belonging to the EgoVehicle OWL Class, false otherwise.
Atoms with two parameters, as hasPassenger(?v,?p) are true
for each case in which there is a Property (in this case, an
Object Property) that holds. Since all the components of the
antecedents are put in a logic AND relationship, just one
false value between them will stop the rule from triggering.
This rule was taken as example, but we have to notice that
it is not able to give a correct result in the case multiple
passengers are present, since it will be triggered one time for
each of them. This will result in inferring possibly different
driving styles for the same car.

Another SWRL rule in our ontology is the following:

EgoVehicle(?v)∧hasPassenger(?v,?p)∧Person(?p)∧
hasPassengerState(?p,?passengerState)∧

In juredState(?passengerState)→
hasDrivingStyle(?v,EmergencyLocalRoadDrivingStyle)

It is used to encode that, when our ego vehicle has at least an
injured passenger, its driving style changes automatically an
emergency one. In the rule is presented only the version with
the local road, but similar rules are possible to be applied to
highways and other roads.

A SWRL rule can also use another one as part of its
antecedent, allowing for more complex layers of reasoning.
For example, the next rule needs the last one to be true in
order to be triggered:

EgoVehicle(?v)∧
hasDrivingStyle(?v,EmergencyLocalRoadDrivingStyle)→

canUseEmergencyLane(?v, true)

C. The Context of Navigation

In order to apply the contextual information to the au-
tonomous navigation, we had to define the Context in which
the vehicle is operating, by selecting the useful information
to our scope. Following the definition of Context by Dey
[12], we gave our definition of Context Of Navigation [13]:

The navigation context is any information that can
be used to characterize the situation of navigation
over a given period of time. Here, navigation is
a movement considered relevant to the interaction
between a driver and an application, including the
driver and the applications themselves.

Furthermore, we define the 2 components of the Context
of Navigation. The first component is the Dynamic Context,
that comprehends all the information that change with respect
to the car’s navigation. The second component is the Static
Context, and it contains all the information that don’t vary
with respect to the car’s navigation.

If we want to model the driving preferences of the
passengers, we are interested in the Static Context. Since
a complete Context would be too much complex to model
from scratch, we will stick to its parts that are needed for the
sake of our example. In Fig. 2 we can see the OWL Classes in

Fig. 2: The Ontology Classes in the Context of Navigation

our ontology, in the Protègè editor. We can see examples on
contextual information, as the possibilities to have different
driving styles for each kind of road or to approach different
obstacles. This way, we have the possibility to encode the
driving preferences of specific passengers, and not just to
create a single behaviour for the same kind of situation. For
instance, we could have the following triples in our ontology:

MyCar hasPassenger Emily
Emily hasDrivingStylePreference Emily SBDS

Emily SBDS hasMaxSpeed 5

(please notice that, for the sake of readability, the name of
the instance Emily SpeedBumpDrivingStyle was shortened to
Emily SBDS). In this example we have the information that
Emily prefers overcoming speed bumps at a speed not higher
than 5km/h. This example helps to realize how the different
contexts could be modelled, as for another passenger we
could have different preferences. The Static Context of

Fig. 3: Scenario 1: the car must drive over a speed bump

Fig. 4: Scenario 2: the car must avoid a static obstacle

Navigation contains also the information related to the load
of the vehicle, as in the class VehicleLoad in Fig. 2. This
is useful because the objects being transported could affect
the behaviour of a human driver, and so should affect the
autonomous one too. For instance, with a fragile load, the
vehicle must avoid sharp accelerations or decelerations -
when possible - to avoid damaging it.



Fig. 5: Block diagram of the IDWA controlled vehicle [4]

In Fig. 3 we can see one of the possible scenarios we can
encode in our Context of Navigation: the vehicle proceeds
towards a speed bump and has to overcome it. As said before,
depending on the on-board passengers and the load we may
want to have different behaviours. By the use of triples in
sec. IV-C we can force the car to have a specific behaviour.
In Fig. 4 we have a second scenario, in which the car has to
overcome a static obstacle (a cluster of obstacles in this case)
on its path, by changing lane. This can be done, again, by
setting a specific preference for the passenger or the carried
load in this specific case. We will see this scenario in Sec.
VII. Of course, many more scenarios can be thought, as
intersections or other more complex situations. These will
be left for future studies.

V. AUTONOMOUS NAVIGATION SYSTEM

Lima and Victorino in [4] proposed a vision-based hybrid
control approach. It is composed by 2 parts: a VS one and
a dynamic window approach (DWA) one, and it takes the
name of Image-based Dynamic Window Approach (IDWA).
The VS controller, more robust than the second, is used as
deliberative controller to drive the car correctly in its lane.
The DWA component is used as a reactive controller when an
obstacle is perceived. In this case, all the acceptable couples
(v,ω) of longitudinal and angular speed are computed, and
through an optimization process the best couple is selected to
perform the obstacle avoidance. The optimization objective
is the maximisation of:

α ·heading(v,w)+β ·dist(v,w)+ γ · velocity(v) (3)

where α , β and δ are real-valued parameters to be properly
tuned. After the successful obstacle overtaking, the control
is brought back to the VS component to continue the
navigation. Finally, in the case there is no acceptable couple
(v,ω) to safely avoid the obstacle, the vehicle is stopped.
The DWA component is obtained by minimizing the sum
of three components with related parameters. By modifying
these parameters’ values, the authors were able to set the
response time and the hardness of the steering of the vehicle
while driving. The block diagram of the system using the
IDWA controller is in Fig. 5: the feedback given by the
Vehicle to the IDWA is the road perception, composed of
the front image and the laser scans of the forward area. This
way it is possible for the VS component to compute the
control over the image data, and for the DWA component to
start avoiding one obstacle, if present.

This control model was eventually tested on a real au-
tonomous car and was proven to have better performances

than those of a standard dynamic window approach.

VI. IMAGE-AND-CONTEXT-BASED DYNAMIC WINDOW
APPROACH

We will now present a more complex proposal, called
ICDWA (Image-and-Context-based Dynamic Window Ap-
proach). It is based on IDWA, and a new component is added
to the objective function, which becomes:

ICDWA(v,w) = α ·heading(v,w)+β ·dist(v,w)+

γ · velocity(v)+δ · context(v,w)
(4)

with δ ∈ R. Now, the problem is how to define the context
component. We want our reasoner to provide a suggestion
from the Context of Navigation of a max longitudinal and
rotational speed (vCN ,wCN). Then, we want the context
component in (4) to give a cost which depends on these
values and the real ones (v,w). The values of v and w can be
considered separately in two different cost functions which
can be added to form the context component, let’s call them
contextv and contextw:

context(v,w) = ε · (contextv(v)+ contextw(w)) (5)

The parameter ε ∈ [0,1] in the equation is used to express
and control how much we want to trust and rely on the
contextual suggestion. For timing reasons, for the moment
we just implemented a working solution for the first, keeping
the second at a value of 0 in each case. We studied two
implementations of ICDWA. In the first one we have, as in
the IDWA solution, a brute force computation of (4) to find
the better couple. In the second solution we implemented
gradient descent to speed up the optimization process.

A. Unoptimized ICDWA
As for the IDWA algorithm, our first solution aims to find

the values (v,w) which maximise (4). The implementation
of contextv relies on the sigmoid function, so we will now
recall it and its derivative:

σ(x) =
1

1+ e−x (6)

σ̇(x) = σ(x) · (1−σ(x)) (7)

Let’s call x the speed difference between the one being
evaluated and the maximum proposed by the reasoner:

x = v− vCN (8)

then, we can implement contextv as:

contextv =

{
−σ(x), if x≤ 0
−(σ(0)+ σ̇(0) · x), otherwise

(9)

Since the values of σ(0) and σ̇(0) can be computed respec-
tively from (6) and (7), we can give a final definition of our
contextv component:

contextv =

−σ(x), if x≤ 0

−1
2
− 1

4
x, otherwise

(10)

This behaviour is shown in Fig. 6, where we can see how
the cost is higher for values v < vCN , and how it decreases
linearly when v > vCN .



Fig. 6: The cost as in (10)

B. Optimized ICDWA

We also studied an optimized version of our solution, in
which the search for the best (v,w) couple is found with
gradient descent. Also, the optimization objective in this case
was the minimization of (4). For this to be possible, we just
inverted the sign for our contextv component, obtaining its
new equation:

contextv(v) =

σ(x), if x≤ 0
1
2
+

1
4

x, otherwise
(11)

Its behaviour is the opposite of the one shown in Fig. 6, as
it increases as v gets bigger than vCN . The equation in (11)
is continuous, derivable and convex, thus it can be used in
the optimization by gradient descent.

VII. TESTS

To model our ontology we used the Protégé editor [9] with
the Pellet reasoner [14]. To simulate the scenarios we used a
professional simulator called SCANeR Studio1, but since it
doesn’t have an interface for Java (the language for ontology
servers) we had to run the ontology using a Python library
called owlready2 [15]. For our simulations we assumed to
have precise input from our sensors, as frontal cameras and
lidars, since the problem of correct obstacle detection is not
being faced in this paper.

The scenario we simulated is the one of an autonomous
car that has to avoid three static obstacles in its lane, by
temporarily switching to the other lane, as in Fig. 4. Also,
there is a passenger on board which prefers a slower speed
than the maximum one, which was set to 10km/h for this first
tests. A SCANeR Studio screenshot taken from a simulation
is shown in Fig. 7.

A. Unoptimized algorithm

We firstly put to the test our unoptimized version of the
ICDWA algorithm. The first 3 parameters in (4) were set
to α = 1, β = 1.5, γ = 0.1. We can see in Fig. 8 the

1AVSimulation, SCANeR Studio, https://www.avsimulation.com/catalog/

Fig. 7: Simulation in SCANeR Studio

results on a test with ε = 0 and one with ε = 1,vCN =
5km/h,δ = 0.75. The first test is the one in which we
don’t take into consideration the contextual component of
(4), and the autonomous car proceeds just driven by IDWA.
We can see clearly its behaviour pattern: as an obstacle is
perceived, the car quickly breaks, then it overcomes it at a
safe speed and finally it accelerates again. The second test
lets us see the behaviour of ICDWA with a speed which is
half of the max one of the car. We can see how the car’s
speed is generally much lower than in the other test, and
that only in some instants the max suggested speed is not
respected, as the objective function probably gave it less cost
than to the other components. The car proceeded avoiding
the obstacles correctly, as well as keeping in the center
of the lane when in absence of obstacles. It is interesting
to notice that for some values of δ we had much worse
performance, as the contextual suggestions were taken too
much in consideration with respect to the other components.
This led to reducing too much the max distance kept from
the obstacles, or interfering with the lane following.

Fig. 8: Test result of unoptimized ICDWA

B. Optimized algorithm

For this tests, we used the following values for the first
3 parameters: α = 1, β = 0.3, γ = 0.1. As we said before,
the optimized version of the ICDWA controller uses gradient
descent to quickly find the optimal values of (v,w), instead
of brute-forcing all the combinations. We can see in Fig. 9
3 tests we made with this method. The first one represents
the case in which we don’t have interest in the contextual
information. Even if the positions of the obstacles are the
same as before, we can see how the car behaves differently,



with smoother acceleration/deceleration rates. The other two
tests were done with two different vCN values, and we can
see how this time the maximum speed suggested was not
exceeded by the car. Again, in these tests we have smoother
variations with respect to those of Fig. 8. With this approach
too, the car was able to avoid obstacles and proceed in the
center of the lane when possible, so the tests were again
successful. As in the first tests, we found out that a proper

Fig. 9: Test result of optimized ICDWA with different
parameters

tuning of the parameters is needed, as for some values of
ε or δ the performance of the system could decrease, even
if in a minor way if compared to that of the unoptimized
solution.

VIII. CONCLUSION AND FUTURE WORK

In this paper we showed how a simple ontology-based
Context of Navigation can be used to make autonomous
car trips more comfortable for the passengers, by trying to
adapt to their preferences. We have seen a starting example
of OWL ontology that is applicable to this situation, and
proposed how to model the interaction between its output
and the control loop’s. In particular, we proposed the Image-
and-Context-based Dynamic Window Approach, giving its
first component for the longitudinal speed v. We developed
two versions of it, which differ on the presence of an
optimization algorithm. Finally, we simulated the results
in a professional simulator showing promising results, and
confirming the superiority of the optimized version over the
standard unoptimized one, which followed the DWA method.

Future works will study the way to handle the jerk and
angular speed component of ICDWA, in order to complete
the algorithm. The Context of Navigation must be expanded
with a modular paradigm in order to let it contain all the
possible information of interest, and the related reasoning
structure. Also, there is the need for a more complete
ontology in order to take into account the characteristics of
the car. This way it will be possible to obtain more a realistic
reasoning, based on the physical capabilities of the car: in
the final end, a small car and a bigger one, with the same
exact context and scenario, could react differently to the same
input. Another key problem to be faced in future studies is
the choice of the values for the parameters. As it was shown,

a proper tuning of α , β , γ and δ is needed to avoid problems
in lane keeping and obstacle avoidance. Also, the real-time
estimation of the parameter ε will be addressed to obtain a
better adaptability to different scenarios, not only based on
the traffic conditions.

Future works will consider the interaction of the au-
tonomous car with other entities, in the field of study
of Vehicle-to-Vehicle communication (V2V) and Vehicle-
to-Infrastructure communication (V2I). These aspects will
be crucial in order to improve the safety of the trip, as
well as the overall performance of the system of systems
comprehending all the road users.

Finally, as much information related to the vehicle, the
destination, the load and the passengers will have to be
stored and processed, data ethics and security will have to
be considered at early stages of the project.
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sité - Labex MS2T.

REFERENCES

[1] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron,
J. Diebel, P. Fong, J. Gale, M. Halpenny, G. Hoffmann, et al., “Stanley:
The robot that won the darpa grand challenge,” Journal of field
Robotics, vol. 23, no. 9, pp. 661–692, 2006.

[2] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory
generation for dynamic street scenarios in a frenét frame,” in 2010
IEEE International Conference on Robotics and Automation, pp. 987–
993, 2010.

[3] M. Buehler and K. Lagnemma, and S. Singh, “Special issue on the
2007 DARPA urban challenge, Part I,” J. Field Robot, vol. 25, pp. 423–
566, 08 2008.

[4] D. Alves de Lima and A. Corrêa Victorino, “A hybrid controller
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