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Modeling and Estimation of Self-Phoretic Magnetic Janus
Microrobot with Uncontrollable Inputs

David Folio and Antoine Ferreira

Abstract—This study theoretically investigates the modeling
of spherical catalytic self-phoretic magnetic Janus microrobot
(MJR) evolving in uniform viscous flow. A two-dimensional (2D)
state-space representation of the MJR is developed, exhibit-
ing a state-dependent-coefficient (SDC) form. To evaluate the
consistency of the modeling formalism, a dual Kalman filter
(DFK) methodology is employed with respect to experimental
results when unknown parameters or uncontrollable inputs are
considered. Actually, the self-phoretic thrust mechanism and the
magnetodynamics of the MJR are not well-known. SDC-DKF is
implemented, and we find that there is good agreement between
the dynamics computed from our theoretical predictions and the
experimental observations in a wide range of model parameter
variations.

Index Terms—Janus particle, magnetic microrobot, modeling,
state-space representation, dual Kalman filtering

I. INTRODUCTION

SELF-propelled micro/nanorobots have demonstrated their
effectiveness for various tasks at the microscale [1]. They

are a promising nanotechnology for different applications such
as micromanipulation, biomedical or environmental remedia-
tion [2, 3]. Among proposed designs, one of the most attractive
is spherical catalytic nanomotor, also referred as Janus particle
(JP) [4–6]. The advantages of spherical JP microrobot are: i)
the ease of their manufacturing; ii) their cheap production; iii)
they can be fuctionalized; and iv) they have simple geometry,
where analytical models are easily carried out. In particular,
JPs have been reported to achieve self-propulsion [4–10].
Classically, a JP of radius r is composed by catalytic (e.g. Pt or
enzyme-triggered) and non-catalytic components, denoted as
C and N respectively. Fig.1 shows a scheme of such JP, where
a chemical reaction occurs on the C region that convert a fuel
A in its vicinity. This catalytic reaction ensures self-propulsion
of the JP, but still remains only partially understood. Studies
have identified precursory mechanisms of the propulsion: an
asymmetric gradient field, ∇f , arises between the two parts
N and C that self-propels the JP. The JP could be driven by
bubble propulsion mechanism [4]; but without obvious bubble
generation self-phoretic propulsion is basically assumed (e.g.
with radius r ă 5 µm) [5, 7, 8]. Furthermore, the propulsion
of JP is strongly influenced by Brownian diffusion, e.g. due to
thermal or steric forces [4]. The understanding of the dynamic
behavior of JP still remains challenging, especially to develop
more advanced and precise microrobotics tasks [1, 6]. A first
issue is to deal with the rotational diffusion which constantly
reorient the JP. A basic solution is to design JP with magnetic
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Fig. 1. Representation of Janus particle with catalytic (C) and non-catalytic
(N) parts: a scheme of the catalytic reaction with, here, an homogeneous
phoretic mobility µp, and a surface activity in the C region that (a) a ą 0
is producing A and (b) a ă 0 is consuming A, that induces a gradient field,
∇f , leading to a net swimming velocity, up;

layers together with the catalytic layers. In such case their
guidance is achieved by applying an external magnetic field
[5, 6, 10–13], and then the JP becomes a magnetic Janus
microrobot (MJR). Literature proposes numerous examples
of microrobotic system solely actuated by magnetic fields
[14], e.g. with broad biomedical applications [15]. Combining
magnetic guidance with catalytically powered microrobots
give rise to efficient control [5, 6]. Although reliable dynamic
models are already known for magnetic microrobots [14, 15],
there are only limited research works on the explicit modeling
and control of MJR [6, 9, 11, 13].

Actually, to define robust and predictable navigation strate-
gies for more advanced tasks at the microscale, the explicit
understanding of the MJR behavior is of prime importance
for implementation of advanced control strategy. Ideally, to
enable reliable biomedical applications, the controller should
be robust against thermal fluctuations, weak non-uniform
magnetic fields, complex shear flows... Previous works [6, 16]
have considered simple Proportional-Integral-Derivative con-
trol scheme of MJR. An optimal feedback-based particle
guiding method with active steering is proposed in [17]. A
switching controller alternates active Brownian motion and
rotation at time intervals using an optimal feedback control
algorithm. The main limitation of the feedback control loop
is that a numerical estimation of the Peclet number should
be calculated in real-time which is cumbersome for precise
localization. Model-based controllers are preferred considering
their robustness and stability performance against uncertain
model parameters, environmental disturbances and Brownian
noise at the micro/nano-scale. In [18, 19], a kinematic model
based feedback control was created based on data fitting
of experimental data. However, the controller was unable
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to yield satisfactory MJR performance due to uncertainties
from environmental factors. More advanced stochastic models
subjected to uncertainties from environmental factors have
been proposed as a solution [20]. However, such models
have proved to be limited when MJRs are swimming in non-
Newtonian fluids. These works demonstrate that the proposed
models are not well adapted to the nonlinear multivariable
motion of MJRs.

The main goal of the present work is to set out the model of
MJR evolving in viscous fluids and to assess its consistency.
We do not intend to focus on the self-phoretic motion, but
rather aims to address the global behavior of MJRs through a
continuum analysis, with a slight focus on future biomedical
applications. Thus, we study the understanding of the behavior
of MJR by analyzing data collected from the literature [5, 10].
Our goal is then twofold: i) to develop an adequate model that
properly describes the behavior of MJR; and ii) to evaluate
the proposed model according to experimental observations in
order to estimate some unknown parameters or uncontrollable
inputs. Indeed, common experiments with MJR mainly use
magnets without well-known properties (e.g. the field and
materials) which is important to characterize and control
them properly [5, 6, 10, 12, 13]. Furthermore, such design
parameters can vary significantly from one MJR to another.
Especially, from the collected data [5, 10] used to evaluate
our methodology, the magnetodynamics are not precisely
known. In addition, the self-phoretic thrust mechanism is only
partially understood and is subjected to Brownian diffusion.
Consequently, the system inputs are not fully known or even
uncontrollable. Such estimation problem is one of the most
important issues in control theory. Different methodologies
could be envisaged, such as considering the observer designs
[21] or the Bayesian frameworks [22]. Among them, those
founded on the Kalman Filter (KF) seems more relevant
because they are simple to implement and use on basic
Gaussian process frameworks [23–26].

To achieve these objectives, the paper is organized as
follows. First, Section II presents the theoretical background
which leads to a two-dimensional (2D) state-space representa-
tion of the MJR. In Section III, we propose a state dependent
coefficient (SDC) with dual Kalman filter (DKF) for state
and uncontrollable inputs estimation for the MJR’s ”pseudo-
linear” system. To evaluate the consistency of the modeling,
SDC-DKF algorithm is employed wrt. collected data given
in [5, 10] and their supporting information (SI). The results
demonstrate the consistency of the overall proposed approach
when comparing experimental and estimated results.

II. THEORETICAL FOUNDATIONS

A. Catalytic Magnetic Janus Microrobot Modeling

The motion of a magnetic Janus microrobot in a viscous
fluid is described by the following basic Newtonian dynamics
expressed in the workspace reference frame tO : x0, y0, z0u:

#

M 9v “ fp ` fd ` fext ` fa

J 9ω “ tp ` td ` text ` ta
(1)

Fig. 2. Self-phoretic propulsion: (a) self-diffusiophoretic driven by catalytic
reaction of the decomposition of the fuel from the surrounding medium as a
result of concentration gradient of species: ∇c; (b) self-electrophoresis from
catalytic redox reaction of active MJR capable of generating its own dynamic
electric field, E. The both propulsion mechanisms are able to induce a self-
thrust motion.

where M and J are the mass and the moment of inertia
of the MJR; v and ω are its linear and angular velocities;
fp and tp are related to the self-propulsion mechanism; fd
and td denote the hydrodynamic drag force and torque; fext
and text are the other external forces and torques; fa and
ta are the external action or controlled force and torque.
Fig. II-A4 depicts the relevant forces and coordinate systems.
The following paragraphs describe the relevant modeling parts
given in Eq. (1).

1) Self-propelled Spherical Janus Micromotor : Basically,
catalytic MJR draw their fuel A, such as water, hydrogen
peroxide (H2O2), urea, glucose and so on to convert it in
a thrust mechanism with swimming velocity, up. For all
such catalytic MJRs, their self-propulsion is ensured with no
external energy supply. It is admitted that self-propelled MJR
is set into motion due to the imbalance of phoretic effects (e.g.
electrophorectic and diffusiophoretic) within the solid/liquid
interfacial structure at its surface that cause a net fluid motion
around it [7, 27, 28]. The resulting flow is most conveniently
described by an effective slip velocity of the liquid past the
solid, defined by [7, 27]:

uf prq “ µpprq pI ´ nnq ¨ ∇fprq (2)

where n is the local normal to the surface, I is the identity
tensor, and µpprq is the local ”phoretic mobility”. ∇fprq refers
to the main phoretic effect, that is:

a) Diffusiophoresis: We note ∇f “ ∇c for diffusio-
phoresis when there are concentration gradients, of chemical
species around the MJR [7, 27], as depicted in Fig. 2.b. The
slip velocity is then usually expressed as [8]:

ufdp “ µdppζpq∇c, (3)

where µdppζpq is known as the “diffusiophoretic mobil-
ity”. This phoretic mobility expression differs depending on
whether an ionic or non-ionic solute is considered.

b) Electrophoresis: Similarly, when there are concentra-
tion gradients ∇f “ ∇Φ “ E of chemical species around the
MJR, the electrophoresis occurs when the MJR is subject to a
gradient of electric potential [27, 28], as depicted by Fig. 2.a.
This effect leads to the well-known Helmholtz-Smoluchowski
equation [8]:

uf ep “ µeppζpqE, (4)
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where µeppζpqis referred as the “electrophoretic mobility”, that
is related to the zeta-potential, ζp, of the particle.

When both electrophoresis and difffusiophoresis are ob-
served, the net effective slip velocity is the superposition of
the two phenomena:

uf “ uf ep ` ufdp. (5)

Let us also notice, that in some cases thermophoresis effect
could also contribute in the self-phoretic propulsion. However,
such thermal aspect is out of the scope of the present work,
and could usually be neglected.

Next, the slip flow, uf , around the MJR is used to deduce
its swimming velocity, up. Golestanian et al. [7] express the
relation between the slip motion, uf , on a sphere of radius
r to its net velocity, up, with the following relation over the
MJR’s active surface S:

up “ ´
1

4πr2

ĳ

S

dr uf prq (6)

2) Hydrodynamics of Spherical Particles: Classically, the
hydrodynamic behavior of a rigid body is modeled using the
Navier-Stokes equations. Assuming that the steady viscous
fluid is incompressible with low Reynolds number, the drag
force, fd, and torque, td, on a spherical MJR of radius r is
basically expressed as follows:

fd “ ´6πηr v “ ´df v (7)

td “ ´8πηr3 ω “ ´dt ω (8)

where η is the dynamic viscosity of the fluid medium.
Without the others forces, and with the sole swimming

velocity up, at equilibrium we basically get: fp ` fd “ 0,
that is fp “ df up [4].

3) External Disturbances: In the MJR dynamics given
by Eq. (1), the external disturbance force, fext, and torque,
text, can embed any relevant nanoforces, such as van der
Waals, electrostatic, steric, thermal actions and so on. In the
proposed framework, the motion of a single MJR is assumed
to be perturbed only by random fluctuations, that could be
considered as Brownian. To model a Brownian motion the
Langevin equation is commonly employed, leading to:

fext “ tξ (9)
text “ rξ (10)

tξ and rξ denote the stochastic force and torque due to
random fluctuations. These noise terms are assumed to be
white Gaussian probability distribution (xt,rξy “ 0), with the
following correlation function:

@

tξipt1qtξjpt2q
D

“ 2kbT df δijpt1 ´ t2q (11)
xrξipt1qrξjpt2qy “ 2kbT dt δijpt1 ´ t2q (12)

with kb “ 1.38 ˆ 10´24 J{K the Boltzmann constant; T the
effective absolute temperature; γij the Kronecker delta with
the subscript ij referring to the respective components, and
x¨y denotes the noise average.

fExt

(drag)
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Thrust ex
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y
z

b
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O x0
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Fig. 3. Representation of forces acting on a magnetic Janus microrobot (MJR)
submitted to an external applied magnetic field b.

4) External Actuation Control: MJR driven by magnetic
fields are one of the most promising approaches compared to
other propulsion mechanisms [5, 6, 29]. The basic principle of
magnetic actuation is to control the magnetic field b to induce
a magnetic force and torque on the magnetized material,
commonly defined by:

fa “ fm “ Vm pm ¨ ∇qb (13)
ta “ tm “ Vm pm ˆ bq (14)

with m “ pmx,my,mzqJ the MJR’s magnetization (A{m);
b “ pbx, by, bzqJ is the external magnetic field (T); and Vm

the volume of the magnetic material.

B. MJR Dynamics Model

1) Assumptions: The considered MJR is axisymmetric: it
possesses two distinguishable hemispheres; and with no loss
of generality and for the sake of simplicity, we reduce the
modeling to a two-dimensional (2D) problem in the x-y
plane (see Fig. 3). Therefore, the configuration of the MJR
is described by px, y, θqJ, where px, yq is its location and θ
is the orientation of its easy axis, ex, as shown in Fig. 3. The
motion of the MJR is obtained from the translational velocity
v “ pvx, vy, 0qJ and the rotational velocity ω “ p0, 0, ωzqJ.
This work considers that the magnetic field, b, is used only
for directional control (i.e. the magnetic gradient is negligible
at least in the vicinity of the MJR) and does not affect the
(self) propulsion mechanism. We consider an homogeneous
particle where the magnetization vector will coincide to the
thrust vector. In this context, the controlled magnetic torque
Eq. (14) contains only its z-axis component, and is reduced to:
tmz “ Vmpmybx ´mxbyq. We also assume that the embedded
magnetic material reveals a magnetic anisotropy. The magnetic
moment is considered, here, always aligned along the MJR
main axis, that is: m “ m ¨ ex, with }m} “ m.

Next, if an azimuthally symmetric MJR with a single
catalytic hemisphere (see Fig. 1), with a uniform phoretic
mobility, µp, is considered, the swimming velocity Eq.(6) can
be reduced to [7]:

up “ u0 ¨ ex (15)

where the stationary velocity: u09µpapcAq{D, is mainly
related to the diffusion coefficient D “ kBT {df , and the
”surface activity”: apcAq9cA, with cA the concentration of
the fuel A (see Fig. 1).
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2) 2D State-Space representation: From the above assump-
tions, the 2D dynamic model of MJR can be expressed with
the following state-space representation:

pSxq

"

9x “ vx
9vx “ ´αxvx ` αx cospθqu0 ` ξx

(16)

pSyq

"

9y “ vy
9vy “ ´αyvy ` αy sinpθqu0 ` ξy

(17)

pSθq

"

9θ “ ω
9ω “ ´αω ω ` β psinpθqbx ` cospθqbyq ` ξθ

(18)

with αx “ αy “
df

M , αω “ dt

Jzz
, β “ Vm

Jzz
m, and the inertia1

of spherical body: Jzz “ 2
5Mr2.

It should be noted that the inertia contribution is mainly
relevant for exhibiting the transient MJR behavior. When
the inertia is neglected, the dynamic model becomes then a
simple kinetics model. In such a case, the translational velocity
v “ pvx, vy, 0qJ and the rotational velocity ω “ p0, 0, ωzqJ

are no longer in the state vector. Neglecting the inertia can
then be seen as a simplification of the proposed dynamic
model. This can be useful for the case where the self-phoretic
remains globally unchanged, or when the magnetic control is
not changing too fast. But for other applications (e.g. the fuel
concentration may change significantly or using soft-magnetic
materials) taking into account the full dynamics may become
important.

Let x “ px, vx, y, vy, θ, ωq
J denotes the state vector;

u “ pu0, bx, byq
J defines the control inputs; y “ px, y, θqJ is

the measured outputs; and ξ “ p0, ξx, 0, ξy, 0, ξθq
J is a white

Gaussian noise computed from the Brownian motion. The 2D
state-space representation of the system can be rewritten as:

9x “ A x ` Bpxq u ` ξ (19)
y “ Cx ` v (20)

where the system matrices are defined by:

A “ diag

„ˆ

0 1
0 ´αx

˙

,

ˆ

0 1
0 ´αy

˙

,

ˆ

0 1
0 ´αω

˙ȷ

(21)

Bpxq“

¨

˚

˚

˚

˚

˚

˚

˝

0 0 0
αx cospθq 0 0

0 0 0
αy sinpθq 0 0

0 0 0
0 β sinpθq β cospθq

˛

‹

‹

‹

‹

‹

‹

‚

(22)

C “ diag
“`

1 0
˘

,
`

1 0
˘

,
`

1 0
˘‰

(23)

and v „ N p0,Rq is the observation noise which is assumed to
be zero mean Gaussian white noise with covariance matrix R.

3) System Analysis: The MJR model (16)-(18) may at
first glance appears as a nonlinear system. Specifically, its
dynamics is represented by a linear structure (19)-(20) having
state-dependent coefficient (SDC) form, and it is then said
”pseudo-linear”. Basically, SDC parametrization is not unique,
and must be chosen wrt. the system and control objective [30].
A first key issue is to analyze the property of the SDC

1In most cases, at low Reynolds number the inertia effects can be neglected.
But to get the velocities and the transient behaviors, it should be kept in the
model.
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Fig. 4. Scheme of the SDC-DKF algorithm: the prediction and update steps
are based on common KF formalism.

parametrization. Recalling that KF is used to evaluate the
modeling suitableness, the SDC observability matrix, Opxq,
has to be investigated. As in the linear theory, the matrix is
defined as:

Opxq fi
“

C CA CA2 . . . CA5
‰J

(24)

If Opxq has full rank (i.e. rank tOpxqu “ 6) for the entire
domain for which the system is to be observed then the system
is observable [30]. It can be shown that the considered pseudo-
linear system (19)-(20) is fully observable @x P R6.

C. Kalman Filter for State and Input Estimations

To evaluate the consistency of the proposed model wrt.
experiments, Kalman filtering (KF) approach is envisaged. As
stated, the control inputs, u, are assumed unknown and have
to be estimated. Indeed, we consider here that the magnetic
field, b, and the stationary thrust, u0, are not available or
not well-known. Literature reports different methods to cope
with the lack of such information [21–26, 31]. The KF is
chosen for its simplicity of implementation and its ability
to deal with stochastic systems. Based on this framework,
two strategies are commonly considered for parameters or
uncontrollable inputs estimation issue: build an augmented
Kalman filter (AKF) which embed both the states, x, and the
unknown parameters or uncontrollable inputs [25]; or use a
dual Kalman filter (DKF) [23]. However, the AKF is known
to be prone to numerical instabilities due to unobservability
issues of the augmented system matrix [25]. In contrast, the
DKF outperforms the AKF at the cost of a more complex
implementation [26]. Furthermore, recalling that the MJR’s
dynamics belongs to the class of ”pseudo-linear” systems,
SDC filtering, which is based on the state-dependent Riccati
equation (SDRE), must also be treated [32, 33]. The solution
of the SDRE represents the error covariance, and can be used
to update the error covariance matrix similarly to common KF
formulation. In this study, a modified DKF based on the SDC
parametrization is used. Indeed, to the authors’ knowledge,
this work is a first attempt to use DKF with the SDC form,
that is referred as SDC-DKF.

III. RESULTS

A. State Dependent Coefficient – Dual Kalman Filter

The proposed SDC-DKF estimator scheme is reported in
Fig.4, and the detailled algorithm is given in Appendix A.
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SDC-DKF is based on a dual stages DKF for state and input
estimations where the system matrices are state-dependent.
First, the continuous time system (19)-(20) is discretized at
each time-step wrt. the sampling time of the system. As the
MJR’s model (16)-(18) is defined through a pseudo-linear
state-space representation (19)-(20), the discretized matrices
are evaluated with the state-dependent parameters. The struc-
ture chosen to manage the state dependent-terms is notably
based on the similarity between the error covariance solution
of the SDRE and that of the common KF.

Next, the SDC-DKF relies on the use of a common DKF
algorithm to predict/update the input, puk|k and its covariance
matrix, uPk|k, with a fictitious process equation; and use
this input estimation to predict/update the state, pxk|k and its
covariance matrix xPk|k.

Assessment of stability of the SDC-DKF for a general
pseudo-linear system representation, is still an open research
problem, particularly due to the SDC parametrization. But, let
us notice that for the SDRE to have solutions, the system
should be observable in the pseudo-linear sense, that is if
the SDC observability matrix (24) has full rank [30, 33],
which is the case here. Moreover, in the MJR model (16)-(18),
the orientation (θ) is the sole state-dependent term which is
used to evaluate the input matrix Bk´1pθq. This orientation is
obtained from measurement data, but the filtered value from
the estimated state can also be considered.

Finally, as one can see, the MJR’s model (16)-(18) can be
decoupled into 3 pseudo-linear subsystems pSxq, pSyq and
pSθq. Each subsystem can be then estimated separately with
the SDC-DKF. Especially, pSθq can be first estimated to get
pθk|k that can be used to compute the SDC-DKF for pSxq

and pSyq.

B. Applications

The proposed model and the SDC-DKF is evaluated on two
MJRs developed by Baraban et al. [5] and Ma et al. [10]
that are presented hereafter. The overall results are obtained
by analyzing data collected by the referenced authors. Table I
reports the relevant parameters provided in Baraban et al. [5]
and Ma et al. [10].

1) Spheroidal Catalytic Janus Magnetic Microrobot: To
validate the proposed dynamic model, this paper first considers
the work carried out by Baraban et al. [5]. The authors have
fabricated MJR that are based on a spherical silica (SiO2)
particle of radius r “ 2.5 µm. The sphere is capped with a
sputtered layer of 2 nm Pt, plus a deposited ultrathin multilayer
of magnetic material rCop0.4 nmqPtp0.6 nmqs5, and finally a
15 nm Pt layer covers the whole to protect from oxidation
and enables the catalytic reaction. Such common composition
allows the decomposition of hydrogen peroxide fuel; and
exhibits a perpendicular magnetic moment, m, pointing out
outwards to its surface. In the considered collected data, the
MJR is immersed in 10 % aqueous solution of H2O2, leading
to a mean swimming velocity of about u0 « 8 µm{s. The
parameter set considered is reported in the Table I.a.

From the data provided by Baraban et al. [5], the positions
px, yq and orientations, θ, of a MJR are extracted and used

TABLE I
PARAMETERS COLLECTED (A) FROM BARABAN ET AL. [5] AND (B)

FROM MA ET AL. [10]

Params. Value Descriptions
r 2.52 µm MJR radius
η „1mPa s fluid viscosity for 10wt% of H2O2
u0 „8 µm{s swimming velocity for 10wt% of H2O2
m 1 (normalized) magnetic moment
}h} ă800A{m magnetic field strength
SiO2 bead (r “ 2.5 µm) ` Pt(2nm)rCop0.4 nmqPtp0.6 nmqs5Pt(15nm)

(a)

Params. Value Descriptions
r 1.16 ˘ 0.015µm MJR radius
η „1mPa s viscosity of aqueous solution of urea
u0 „10 µm{s stationary swimming velocity
m N/C magnetic moment
}b} „ 100mT magnetic field
Janus hollow mesoporous particle ` Fe(10nm)Au(3nm)

(b)
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Fig. 5. Measured and tracked path of a spherical MJR using SDC-DKF, from
experimental data carried by Baraban et al. [5].

as measurements data, y. SDC-DKF is applied to track the
MJR while estimating the unknown input pu. The measured
and the tracked path is shown in Fig. 5. As one can see, the
SDC-DKF fits suitably the observed path. Fig. 6 presents the
error between the measured output y and its estimation py.
The root-mean-square error (RMSE) of the tracking for x, y
and θ are RMSEpxq “ 0.52 µm, RMSEpyq “ 0.53 µm and
RMSEpθq “ 1.62 deg. It can be noticed that the proposed
tracking methodology together with the developed modeling
provide a reasonable estimate of the state px of the MJR.
Fig. 7 shows the unknown input estimation pu. The estimated
swimming velocity has a mean value of xu0y “ 7.03 µm{s and
RMSEpu0q “ 7.05 µm{s, that are consistent with the velocity
of 8 µm{s reported by Baraban et al. [5]. Let us notice that, as
only normalized data on the magnetic properties of the MJR
are available, βbx and βby only can be estimated from the
observed data. Fig. 7 depicts their normalized values. These re-
sults validate the consistency of the proposed dynamics model
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Fig. 6. The estimation error of the position (|p ´ pp|, with p “ px, yq), and
of the orientation, |θ ´ pθ| of the spherical MJR. The ta-td refer to the time
when the direction is changing also annoted in Fig.5.
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Fig. 7. The estimated input pu “ pu0, βbx, βbyq from the observed
experimental data using SDC-DKF. (top) The red-line shows the mean
swimming velocity of u0 « 8 µm{s reported by Baraban et al. [5]. (bottom)
normalized value of the field βbx and βby .

to describe the behavior of MJR, while allowing accessing to
the uncontrollable inputs.

2) Urea-powered Biocompatible Spherical Hollow Mag-
netic Microrobot: The main drawback of using MJRs based
on Pt/H2O2 relies on their biocompatibility issues for future
biomedical applications. Different researches investigate bio-
compatible micro/nanorobots [10]. Among proposed designs,
MJR based on a Janus hollow particle powered by biologically
available urea is a promising solution. To validate the proposed
model, this paper considers the Janus hollow magnetic particle
developed by Ma et al. [10]. Their MJRs are based on Janus
hollow mesoporous particle covered with enzyme urease to
trigger the bio-catalytic decomposition of urea into CO2 and
NH3. The MJR can be coated with Fe(10 nm)/Au(3 nm) for
external magnetic control. However, details of the self-phoretic
motion is not fully addressed at present, and the swimming
velocity (15) should be further investigated. The parameter
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Fig. 8. Measured and tracked path of a spherical hollow MJR using SDC-
DKF, from experimental data carried by Ma et al. [10].

set considered is reported in the Table I.b.
SDC-DKF is employed to estimate px and pu, from MJR’s

observations y provided in experiments realized by Ma et al.
[10]. The measured and the tracked path is shown in Fig. 8.
Once again, the SDC-DKF follows properly the observed
path. Fig. 9 presents the error between the measured output
y and its estimates py. The error statistics are RMSEpxq “

1.10 µm, RMSEpyq “ 1.11 µm and RMSEpθq “ 2.35 deg.
Fig. 10 shows the input estimation pu. The estimated swim-
ming velocity has a mean value of xu0y “ 9.75 µm{s and
RMSEpu0q “ 10.06 µm{s, that are consistent with the velocity
of about 10 µm{s given by Ma et al. [10]. These results also
validate the consistency of the proposed approach to describe
the behavior of MJR, while accessing to the uncontrollable
inputs. Nevertheless, the estimations have, here, a slightly
larger discrepancy than the previous case. This is reasonably
due to: i) a divergence in the spherical shape of the hollow
particle with its surface coated with enzyme urease; ii) some
difficulty to measure properly the orientation, θ, of the MJR;
and iii) a decrease of the particle’s size and an increase of its
dynamics.

C. Discussion

When the MJR’s direction θ changes significantly the es-
timation errors increase. This is asserted with the appearance
of some significant peaks in the position estimation error (e.g.
at times ta..tc in Fig. 6). Further investigation assumes that
a poor measure θ or estimate pθ also degrade significantly
estimation of the magnetic field. Consequently, the estimation
errors tend to be accumulated. SDC-DKF then requires a
good knowledge of orientation θ to provide correct state and
unknown input estimations of MJR. This dependence is related
to the fact that θ is a state-dependent term necessary for the
evaluation of the input matrix Bpxq.
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Fig. 10. The estimated input pu “ pu0, βbx, βbyq from the observed
experimental data. (top) The red-line shows the mean thrust velocity of
u0 « 10 µm{s reported by Ma et al. [10]. (bottom) normalized value of
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IV. CONCLUSION

In this study, we demonstrated that the behavior of magnetic
Janus catalytic microrobot can be estimated through an SDC-
DKF even if the inputs are unknown. We find that there is
good agreement between the estimations computed from our
theoretical predictions and the experimental observations in a
wide range of model parameter variations. The proposed MJR
modeling offers an analytic description that opens the way to
explicit and more advanced control strategies. Similarly, the
SDC-DKF is a first attempt to combine SDC parameterization
with a common DKF methodology. Indeed, there is a strong
analogy between the DKF dealing with uncontrollable inputs
and with those for parameters estimation. In this paper favored
to deal with the uncontrollable inputs problem. Obviously,
a combined problem of estimating state-input-parameters can
also be defined. Further extents could then be envisioned. For
instance, the proposed MJR’s model can be extended to differ-
ent micro/nanomotors such as nanorod or conical microjet by

adapting the swimming velocity (6), and the hydrodynamics
(7)-(8) analytical expressions. However, the dynamic model
expression should be even more non-linear, and the proposed
SDC-DKF further extended. Actually, despite some robustness
against design parameters is observed with the SDC-DKF, its
efficiency is strongly sensitive to the good knowledge of the
state. Up to now very few works have investigated the medical
imaging of MJR, and more generally the medical imaging
of micro/nano-robot that remains an open issue that should
be further investigated. In particular, the determination of the
orientation of spherical MJR is a challenging problem. Finally,
in the considered experiments the Brownian diffusion remains
globally low. This associated with inputs that can not always
be assumed as Gaussian stochastic processes, more advanced
and robust stochastic filtering should be envisaged.

APPENDIX

The state dependent coefficient dual Kalman filter (SDC-DKF)
algorithm goes as follows:

‚ First prediction stage for the a priori state

qxk|k´1 “ Ak´1pxk´1|k´1 (25)

‚ Prediction stage for the a priori input

puk|k´1 “ puk´1|k´1 (26)
uPk|k´1 “

uPk´1|k´1 `
uQ (27)

‚ Update stage for the input
– Calculation of Kalman gain for input:

uKk “
uPk|k´1D

T
k´1

´

Dk´1
uPk|k´1D

T
k´1 `

uR
¯´1

,

(28)
– Correction of predictions of a posteriori input estimate

puk|k “ puk|k´1 `
uKk

`

yk ´ Ck´1qxk|k´1 ´ Dk´1puk|k´1

˘

(29)
uPk|k “

uPk|k´1 ´
uKkDk´1

uPk|k´1 (30)

‚ Prediction stage for the state with the estimate input

pxk|k´1 “ qxk|k´1 ` Bk´1puk|k (31)
xPk|k´1 “ Ak´1

xPk´1|k´1A
T
k´1 `

xQ (32)

‚ Update stage for the state
– Calculation of Kalman gain for state:

xKk “
xPk|k´1C

T
k´1

´

Ck´1
xPk|k´1C

T
k´1 `

xR
¯´1

(33)
– Correction of predictions of a posteriori state estimate

pxk|k “ pxk|k´1 `
xKk

`

yk ´ Ck´1pxk|k´1 ´ Dk´1puk|k´1

˘

(34)
xPk|k “

xPk|k´1 ´
xKkCk´1

uPk|k´1 (35)
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