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a b s t r a c t

Euler–Euler two-phase model simulations are usually performed with mesh sizes larger than the small-

scale structure size of gas–solid flows in industrial fluidised beds because of computational resource lim-

itation. Thus, these simulations do not fully account for the particle segregation effect at the small scale

and this causes poor prediction of bed hydrodynamics. An appropriate modelling approach accounting for

the influence of unresolved structures needs to be proposed for practical simulations. For this purpose,

computational grids are refined to a cell size of a few particle diameters to obtain mesh-independent

results requiring up to 17 million cells in a 3D periodic circulating fluidised bed. These mesh-independent

results are filtered by volume averaging and used to perform a priori analyses on the filtered phase bal-

ance equations. Results show that filtered momentum equations can be used for practical simulations but

must take account of a drift velocity due to the sub-grid correlation between the local fluid velocity and

the local particle volume fraction, and particle sub-grid stresses due to the filtering of the non-linear con-

vection term. This paper proposes models for sub-grid drift velocity and particle sub-grid stresses and

assesses these models by a priori tests.

1. Introduction

Gas–solid reacting circulating fluidised beds are used in many

industrial applications such as fluid catalytic cracking (FCC) in

petroleum refineries, and biomass pyrolysis or fossil combustion

in power plants. Correct prediction of the hydrodynamic character-

istics of gas–solid flows is crucial to improve performance and de-

sign of reactors and satisfy safety requirements. For such flows in

large scale of circulating fluidised beds (CFBs), an Euler–Euler

two-phase (two-fluid) model is commonly used to model the

hydrodynamics of beds (van der Hoef et al., 2008).

In Euler–Euler two-phase models, the phases are treated as

interpenetrating continua, which means that separate transport

equations of mass, momentum and energy for each phase have

to be solved. Unknown terms, such as velocity correlations or

interaction terms between fluid and solid phases, are accounted

for using constitutive laws. For a particulate phase, the constitutive

laws can be derived within the framework of the Kinetic Theory of

Granular Flow (KTGF) (for reviews, see Gidaspow et al., 2004; van

der Hoef et al., 2008). However, an Euler–Euler two-phase model

using a mesh size larger than small-scale structure size fails to pre-

dict the hydrodynamic characteristics of industrial applications

(Sundaresan, 2000; Wang, 2009). Several authors have investigated

the failures of the Euler–Euler two-phase model (O’Brien and

Syamlal, 1993; Agrawal et al., 2001; Yang et al., 2003; Heynderickx

et al., 2004; Andrews et al., 2005; Igci et al., 2008; Wang, 2009;

Parmentier et al., 2008). It has been shown that the existence of

meso-scale structures, such as streamers and clusters, can have

dramatic effects on the overall dynamic behaviours and they are

cancelled out by simulations using mesh sizes larger than meso-

scale structure size. The meso-scale structures have also been well

established by some experimental studies. Weinstein et al. (1984)

study on high-velocity gas–solid flow in a vertical pipe points out

that there are particle segregations over the cross section. The size

of the meso-scale structures are typically of the order of 10–100

particle diameters and they accumulate near riser walls and, in

some cases, a large region of high concentration exists in the centre

of a riser (Weinstein et al., 1984; Gidaspow, 1994). These struc-

tures continuously occur in risers because of local instabilities

due to the damping of particle random motion by the interstitial

gas and inelastic collisions (Agrawal et al., 2001) or the non-linear

dependence of the two-phase momentum coupling on the solid

volume fraction through the gas pressure gradient or the drag force
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correlation. The formation and breakage of meso-scale structures

can be captured by an Euler–Euler two-phase model on a small do-

main. However, in large industrial units, these structures cannot be

fully resolved due to the computational cost. The influence of the

mesh resolution on the macroscopic behaviour in circulating and

dense fluidised beds has been studied by several authors. Agrawal

et al. (2001) showed that if the mesh resolution is not sufficient to

predict all temporal–spatial structures in a fully periodic domain,

the drag force is overestimated. Parmentier et al. (2008) showed

that particle volume fraction predicted by very-coarse-mesh

numerical simulation of Geldart A particles in a 2D dense fluidised

bed was nearly homogeneous. Wang et al. (2009) performed highly

resolved three-dimensional simulations of a bubbling fluidised bed

at moderate superficial gas velocity. They concluded that the pre-

diction of bed height by Lagrangian simulation was in a good

agreement with that of the standard two-fluid model when mesh

resolution was sufficient.

Wang (2009) reviews constitutive laws to overcome the failure

of Euler–Euler model predictions for the hydrodynamics of large-

scale gas-fluidised beds of Geldart A particles. It is stated that al-

most all of the studies concentrated on the drag force. Almost

two decades ago, O’Brien and Syamlal (1993) and Boemer et al.

(1994) pointed out the need to have closure for the drag coefficient

in order to account for the effect of unresolved clusters. The corre-

lation of O’Brien and Syamlal (1993) obtained from an air-FCC sys-

tem with specific solid circulation fluxes gives reasonably good

predictions for some specific cases. McKeen and Pugsley (2003)

suggested using a scale factor between 0.2 and 0.3 for the drag

law to account for small structure effects on the global hydrody-

namics of a freely bubbling bed. Hosseini et al. (2009) proposed a

scale factor of 0.1. Gao et al. (2008) used a scale factor set at 0.04

for their numerical simulations.

Recently, the EMMS method developed by Li and Kwauk (1994)

has been used to predict steady flows inside circulating fluidised

beds. The EMMS method assumes that particles move in clusters

through a dilute phase composed of the surrounding gas and a

few randomly distributed particles. It was integrated into the Eule-

rian formalism in the form of a drag correction (Wang and Li,

2007).

In addition to these approaches, Agrawal et al. (2001) have

shown that the effect of meso-scale structures on the macroscopic

behaviour for practical simulations can be taken into account by

sub-grid scales through additional closure relations, which can be

derived by using a highly resolved simulation. Andrews et al.

(2005) proposed a deterministic and stochastic effective drag coef-

ficient for the simulation of a large-scale circulating fluidised bed

on a grid having a resolution that was relatively coarse compared

to the small-scale structure size. Their effective drag coefficient

was measured using the highly resolved simulations of periodic

flows obtained by Agrawal et al. (2001) and depended on the par-

ticle volume fraction. Following this study, Igci et al. (2008) and

Igci and Sundaresan (2011) proposed models for the effective drag

coefficient, the filtered particle phase pressure, and the filtered

particle phase viscosity. Igci et al. (2012) then validated numerical

simulations using the proposed models with experimental data.

In the present paper, we perform detailed numerical simula-

tions of locally instantaneous phase equations in the framework

of an Euler–Euler approach for a 3D periodic circulating fluidised

bed in order to study the influence of unresolved structures on

drag force and particulate phase stresses. We demonstrate that

the overestimation of the filtered drag is linked to the existence

of a sub-grid drift velocity that should be taken into account as

pointed out by Parmentier et al. (2012) for a 2D dense fluidised

bed. We propose functional and structural models constructed

for sub-grid drift velocity. Additionally, we propose closures for

particulate phase sub-grid stresses like those derived for single-

phase compressible turbulent flows. We test the predictability of

the models with a priori tests.

The paper is organised as follows. In Section 2, we introduce the

flow configuration, a 3D periodic circulating fluidised bed (PCFB)

where the mean gas–solid flow is periodically driven in the oppo-

site direction to gravity, and we review the previous works on ver-

tical riser flows. We demonstrate the mesh dependency of time-

domain averaged statistical quantities such as the mean relative

velocity, solid mass flux, and particle agitation (granular tempera-

ture) and discuss the mesh-independent results. Mesh-indepen-

dent results obtained in Section 2 are used for budget analyses of

filtered particle momentum and agitation equations. The effects

of additional terms due to the filtering procedure are investigated

in Sections , 3, and 4. After this, we carry out a priori tests on the

sub-grid contribution of drag force and sub-grid scale (SGS) stress

tensor of the particulate phase. In Sections 5 and 6, models for the

sub-grid drag contribution and SGS stress tensor are proposed and

several model coefficients are calculated from mesh-independent

results. The present study aims to identify sub-grid contributions

due to the filtering approach, then validate the modelling of these

terms by means of a priori tests.

2. Mesh-independent result

Gas–particle flows were simulated in a 3D PCFB by using the

Euler–Euler model formalism based on separate mean transport

equations of mass, momentum and energy for gas and particulate

phases. In Appendix A, we present the mathematical modelling of

gas–solid flow. For the momentum transfer between the gas and

particulate phase, we consider only the drag and the buoyancy

forces. The computational domain is shown by Fig. 1. For all the

cases presented in the paper, the initial velocity field for both

phases is set to zero and the initial solid volume fraction is taken

to be uniformly equal to 5%. The flow is driven in the direction

opposite to gravity by a uniform vertical pressure gradient. Simi-

larly to Agrawal et al. (2001), we write the gas pressure term in

Eq. (A.2) as

Fig. 1. Periodic circulating fluidized bed (PCFB).



Pgðx; tÞ ¼ ðzÿ z0ÞDPðtÞ þ P00
gðx; tÞ ð1Þ

The first term on the right-hand side represents the mean vertical

pressure drop due to the total mass of a two-phase mixture

(hydrostatic part) and the momentum loss through wall friction

(no-slip boundary condition for the gas phase). The second term

on the right-hand side is the computed gas pressure, which obeys

the periodic boundary conditions. Agrawal et al. (2001) tested

three different choices of boundary condition for the particulate

phase: no-slip, free-slip and partial slip (defined by a particle–

wall coefficient of restitution and a specularity coefficient) and

showed that the meso-scale structures occurred with all types

of boundary conditions. We chose to impose a free-slip condition

representing elastic bouncing of frictionless particles on a smooth

wall. For the reference case, particles (dp = 75 lm and qp = 1500 -

kg/m3) interact with air at standard conditions (qg = 1.186 kg/m3

and lg = 1.8 � 10ÿ5 Pa s). The normal restitution coefficient ec is

set to 0.9.

Agrawal et al. (2001) stated that statistical quantities over the

whole domain were strongly dependent on the mesh size but be-

came mesh-independent when mesh size was of the order of a

few particle diameters. In this work, a mesh refinement study is

carried out to ensure that the mesh resolution is sufficient and

all spatial and temporal scales of solid and gas phases are captured.

Fig. 2 shows instantaneous particle volume fraction fields in the

PCFB obtained by different mesh resolutions. As the mesh resolu-

tion increases, inhomogeneous structures are better resolved. For

the reference case, the coarsest mesh consists of approximately

110,000 cells (24 � 24 � 192, Dx = Dy = Dz = 1.145 � 10ÿ3 m with

inverse Froude number Frÿ1
D ¼ 0:175) and the finest mesh consists

of approximately 17 million cells (128 � 128 � 1024,

Dx = Dy = Dz = 0.215 � 10ÿ3 m with inverse Froude number

Frÿ1
D ¼ 0:032). As in previous studies (Agrawal et al., 2001; Igci

et al., 2008; Parmentier et al., 2012), the effect of the mesh size

is analysed with respect to the Froude number FrD defined as

FrD ¼
sStp
� �2

jgj
D

ð2Þ

where the Stokes relaxation time sStp is given by
qp

qg

d2p
18mg

and jgj is the
norm of the gravity acceleration. The characteristic velocity sStp jgj is

equal to 0.255 m/s and the characteristic length scale sStp
� �2

jgj is

0.0066 m approximately 3% of the column height, which ensures no

effect of the periodic boundary condition on the results (see Table 1).

To investigate the dynamic behaviour of particles in the PCFB,

we define the following statistical quantities spatially averaged

Fig. 2. Instantaneous particle volume fraction field in the periodic circulating fluidized bed for different mesh resolutions (top: 3D view, bottom: x–y plane). From left to right,

the mesh resolution is decreased. White level corresponds to ap = 0, and back level to ap,max = 0.64.



over the whole domain of volume V and over a time period T. A

time-averaged value hQit of a spatial-averaged quantity hQi is de-

fined as

hQit ¼ 1

T

1

V

Z

T

Z

V
Qðx; tÞdxdt ð3Þ

A discrete ensemble averaged value hQit;n over n time instants of the

spatial averaged quantity hQi is given by hQit;n ¼Pk¼n
k¼1hQi=n. The

time-spatial averaged relative velocity weighted by solid volume

fraction along the mean flow direction is given by

hapðUp;z ÿ Ug;zÞit . The time-spatial averaged solid mass flux along

the mean flow direction is calculated by dividing it into two parts:

downward and upward. It is calculated by hGsit ¼ hGs;þit þ hGs;ÿit
with downward and upward parts

hGs;þit ¼ hapqpUp;zit if Up;z > 0 ð4Þ
hGs;ÿit ¼ hapqpUp;zit if Up;z < 0 ð5Þ

respectively. For the sake of simplicity, we refer to the time-average

of any spatial-average quantity as the average value of the quantity

in the following sections. Each simulation was carried out for a long

duration to ensure that a statistically stationary state was reached

(225 dimensionless physical times with the reference time scale

set to the Stokes relaxation time sStp ). To obtain statistical quantities

for all mesh resolutions, an equivalent number of realisations can

be ensured by a number of samples calculated by multiplying the

number of cells by the dimensionless physical time. For the highest

mesh resolution, we carried out the simulation for 225 dimension-

less physical times to reach a statistically stationary state and then,

we calculated time-averaged value of a quantity over additional 225

dimensionless physical times. The total physical time for the coars-

est mesh simulation was 200 times the highest mesh resolution

duration.

After the flow had reached a statistically stationary state, the

averaged quantities were gathered. The mesh dependencies of

hapðUp;z ÿ Ug;zÞit and total vertical solid mass flux (with definitions

of hom: homogeneous case and conv: converged case) are shown

by Figs. 3 and 4. The homogeneous case is described by the falling

of solids with a homogeneous distribution and the settling velocity

sStp jgj. As mesh resolution or FrD number increases, inhomogeneous

structures are better predicted and it can be seen from Fig. 4 that the

influence of these structures on the averaged quantities are crucial

for solid hold-up in the bed. For the cases where the FrD number or-

der is 10, the relative velocity and solidmassflux change slightly and

converge to constant values. It can be seen from Fig. 5, that the aver-

age particle agitation also becomes independent ofmesh resolution.

The radial distributions of time-averaged variables are shown by

Figs. 6–10 for three mesh resolutions: moderate (32� 32� 256;

Dx ¼ Dy ¼ Dz ¼ 8:5� 10ÿ4 m; Frÿ1
D ¼ 0:128), fine (64� 64� 512;

Dx ¼ Dy ¼ Dz ¼ 4:25� 10ÿ4 m; Frÿ1
D ¼ 0:064) and finest (128�

128� 1024; Dx ¼ Dy ¼ Dz ¼ 2:125� 10ÿ4 m; Frÿ1
D ¼ 0:032). Fig. 6

shows the time-averaged solid volume fraction for different resolu-

tions. The case with moderate resolution predicts a symmetric dis-

tribution of solid fraction and accumulation of particles close to

the wall. When the mesh resolution is increased, more particles

are transported to the centre of the riser than in the moderate case.

Table 1

Simulation parameters and dimensionless numbers for different fluidized bed configurations.

Flow Configuration A-type A-type A-type A/B-type

(Ref. Case) (Case-2) (Case-3) (Case-4)

Bed length, L (m) 0.0275 0.0275 0.11 0.85

Bed height, H (m) 0.22 0.22 0.88 6.79

Initial solid vol. frac., aini 0.05 0.05 0.05 0.05

Particle diameter, dp (lm) 75 75 75 125

Particle density, qp (kg/m3) 1500 3000 3000 3000

Restitution coefficient, ec 0.9 0.9 0.9 0.9

Gas density, qg (kg/m
3) 1.186 1.186 1.186 1.186

Gas viscosity, lg (Pa s) 1.8 � 10ÿ5 1.8 � 10ÿ5 1.8 � 10ÿ5 1.8 � 10ÿ5

Frÿ1 0.106 0.053 0.053 0.024

Ar 22.7 45.4 45.4 210.4

qp/qg 1264.7 2529.5 2529.2 2529.5

L/dp 366.6 366.6 1466.6 6790

Characteristic velocity, sStp jgj ðm=sÞ 0.255 0.510 0.510 1.416

Ratio of characteristic length scale to bed height, sStp
� �2

jgj=H 0.03 0.12 0.03 0.03

Fig. 3. Influence of mesh size on the weighted gas–particle relative velocity

hapðUp;z ÿ Ug;zÞit . In the vertical axis, hom corresponds to the homogeneous case and

conv corresponds to the converged case, Frÿ1
D ¼ 0:032.

Fig. 4. Influence of mesh size on the total volumetric mass flux hGsit . In the vertical

axis, hom corresponds to the homogeneous case and conv corresponds to the

converged case, Frÿ1
D ¼ 0:032.



The time-averaged vertical gas velocities normalised by the settling

velocity sStp jgj are shownby Fig. 7. Formoderatemesh resolution, the

vertical gas velocity has positive values even close to the wall. With

higher mesh resolution, we obtain negative vertical gas velocity

close to the wall and a decrease in the mean flowmagnitude. Figs. 8

and 9 present negative, positive and total vertical solid mass flux

normalised by the uniform distribution of solid falling with settling

velocity sStp jgj. The core-annulus flow is obtained for moderate, fine

and finest mesh resolutions and they descend only in the vicinity

of the wall. The negative vertical solid mass flux decreases close to

the wall with increasing mesh resolution due to the better predic-

tion of flow mixing. Fig. 10 shows the variance of the solid volume

fractionnormalisedby the initial solid volume fraction. The variance

of solid volume fraction, which represents the clustering effect,

reaches its maximum value close to the wall. The finest mesh reso-

lution (128� 128� 1024; Frÿ1
D ¼ 0:032) results are then used to

construct a database of solid volume fraction, gas and particle veloc-

ities obtained on 10 time instants. These time instants were chosen

every 20 Stokes relaxation times sStp during the statistically-steady-

state period of the simulation. This database is called a Euler–Euler

Fig. 5. Influence of mesh size on the particle agitation hq2
pit . In the vertical axis, hom

corresponds to the homogeneous case and conv corresponds to the converged case,

Frÿ1
D ¼ 0:032.

Fig. 6. Radial profile of time-averaged solid volume fraction for three mesh

resolutions: moderate (32� 32� 256; Frÿ1
D ¼ 0:128), fine (64� 64� 512;

Frÿ1
D ¼ 0:064) and finest (128� 128� 1024; Frÿ1

D ¼ 0:032) (z = 0.11 m, y = 0).

Fig. 7. Radial profile of time-averaged vertical gas velocity for three mesh

resolutions: moderate (32� 32� 256; Frÿ1
D ¼ 0:128), fine (64� 64� 512;

Frÿ1
D ¼ 0:064) and finest (128� 128� 1024; Frÿ1

D ¼ 0:032) (z = 0.11 m, y = 0).

Fig. 8. Radial profile of time-averaged negative and positive vertical solid mass flux

for three mesh resolutions: moderate (32� 32� 256; Frÿ1
D ¼ 0:128), fine

(64� 64� 512; Frÿ1
D ¼ 0:064) and finest (128� 128� 1024; Frÿ1

D ¼ 0:032)

(z = 0.11 m, y = 0).

Fig. 9. Radial profile of time-averaged total vertical solid mass flux for three

mesh resolutions: moderate (32� 32� 256; Frÿ1
D ¼ 0:128), fine (64� 64� 512;

Frÿ1
D ¼ 0:064) and finest (128� 128� 1024; Frÿ1

D ¼ 0:032) (z = 0.11 m, y = 0).

Fig. 10. Radial profile of time-averaged variance of solid volume fraction for three

mesh resolutions: moderate (32� 32� 256; Frÿ1
D ¼ 0:128), fine (64� 64� 512;

Frÿ1
D ¼ 0:064) and finest (128� 128� 1024; Frÿ1

D ¼ 0:032) (z = 0.11 m, y = 0).



DNS database and consists of 180 million realisations of macro-

scopic variables. Then, we perform volume averaging on these

variables.

Fig. 11 shows the CPU times required to compute 1 s of the flow

for the reference case. CPU time increases almost linearly with the

mesh resolution. The computational time needed to reach statisti-

cally converged results is about 25 days on 512 processors1 for the

case with the finest mesh resolution. Due to computational limits

(see the CPU time required for the mesh resolution Frÿ1
D ¼ 0:032),

fully resolved simulations using the Euler–Euler model for industrial

size fluidised beds are unaffordable. For details of high-performance

computing with NEPTUNE_CFD, see Neau et al. (2010).

By following Anderson and Jackson (1967), Anderson and Jack-

son (1968), the independent dimensionless parameters governing

the fluidised bed dynamics are found by dimensional analysis of

the differential equations governing the fluid and particulate

phases. From a dimensional analysis based on Buckingham’s p-the-

orem, the possible set includes the inverse Froude number Frÿ1 ¼ffiffiffiffiffiffiffiffi
gdp

q
=Ug , solid loading Gs/qgUg, Archimedes number Ar ¼

qpqgd
3
pg=l

2
g , the density ratio qp/qg and the ratio of riser diameter

to particle diameter L/dp. Ug represents the superficial gas velocity

and Gs is the average solid mass flux. This set of variables can be

used to perform the mesh dependency studies of Geldart A and

A/B particle inventories in the 3D PCFB. In the present work, we

substitute the superficial gas velocity Ug by a single particle termi-

nal velocity sStp jgj. Additionally, the particle diameter is replaced by

a mesh size to show the mesh dependency of the solid mass fluxes

for different types of particles. The dimensionless parameters of

the numerical simulations are summarised in Table 1 and the char-

acteristic mesh sizes for different particle types are given in Table 2.

The time- and spatial-averaged solid fluxes with respect to the in-

verse Froude number Frÿ1
D based on the mesh size are shown by

Fig. 12. As expected, the mesh resolution needed for Euler–Euler

DNS of type A/B particles is significantly smaller than for type A

particles. However, it can be seen that Frÿ1
D is not a universal

dimensionless number describing the mesh dependency of differ-

ent particles and this outcome has to be taken into consideration

for the modelling of the effective drag force.

3. Budget analysis of filtered particulate momentum equation

Mesh-independent results obtained in the previous section are

now used for budget analyses of the filtered particle momentum

and agitation equations. The derivation of filtered Euler–Euler

two-phase model is given in Appendix B. Additional terms (Eqs.

B.18, (B.19)–(B.22)) arising due to volume filtering require closure

models. These budget analyses allow us to examine the contribu-

tions of additional terms and to neglect some of them depending

on their importance. To obtain better insight into the influences

of additional terms in the filtered momentum equation of the par-

ticulate phase, filtered and sub-grid contribution terms are calcu-

lated for different filter widths D. The average of the filtered

particulate momentum balance along the mean flow reads

0 ¼ ÿ �ap
@ePg

@z

* +
t;n ÿ usgs

p;z


 �
t;n þ

�apqp

~sp
eUg;z ÿ eUp;z

� �� �
t;n

þ Isgsp;z

D E
t;n ÿ @

@xj
eRp;zj

� �
t;n ÿ @

@xj
Rsgs

p;zj

� �
t;n

ÿ @

@xj
qp

�apr
sgs
p;zj

� �
t;n þ �apqpgz

D E
t;n ð6Þ

Eq. (6) states the global equilibrium of fluidised particles consider-

ing buoyancy force (gas pressure gradient), drag force, particulate

stress and gravity contributions. The first and second terms repre-

sent the filtered and sub-grid buoyancy force. The third and fourth

terms are the filtered and sub-grid drag force. The second line

shows the filtered, sub-grid particulate kinetic stress tensor and

the sub-grid contribution of particle phase velocity fluctuations.

The last term is the gravity contribution.

The filtered and the sub-grid contributions of each term norma-

lised by the gravity term for inverse Froude numbers Frÿ1
D based on

the filter width D are shown by Figs. 13 and 14. It can be seen that

drag and gravity forces are the main contributions of the filtered

momentum equation. This result is consistent with the findings

of Zimmermann and Taghipour (2005). The sub-grid contribution

of the drag force increases dramatically as filter width increases.

The filtered drag force increases with the similar behaviour and

the sum of filtered and sub-grid contribution of drag force remains

constant (see Fig. 13). The drag term is overestimated if the sub-

grid contribution is not taken into account. This outcome is in

agreement with those of Agrawal et al. (2001) and Parmentier

et al. (2012). The order of the sub-grid contribution of buoyancy

force without the hydrostatic part (mean vertical gas pressure drop

Fig. 11. CPU times required to simulate 1 s of the flow using the kinetic theory

based Euler–Euler model for the reference case.

Table 2

Mesh resolutions of different fluidized bed configurations.

Frÿ1
D

Ref. Case 0.1722 0.1291 0.1033 0.0861 0.0645 0.0430 0.0322

Case-2 0.0430 0.0322 0.0258 0.0215 0.0161 0.0107

Case-3 0.1722 0.1291 0.1033 0.0861 0.0645 0.0430

Case-4 0.1722 0.1291 0.1033 0.0861

Fig. 12. Influence of mesh size on the total vertical solid mass flux hGsit for different
type of Geldart particles (for details, see Table 1). In the vertical axis, hom

corresponds to the homogeneous case and conv corresponds to the converged case.

1 The simulations were performed on Bi-Xeon E5472 processors running at 3 GHz.



set to balance of total mass on the riser) is the same as that of the

filtered buoyancy for intermediate and large filter widths. The fil-

tered particulate stress contribution is independent of filter width

and the sub-grid contribution can be negligible (see Fig. 14). The

sub-grid stress tensor contribution increases asymptotically as fil-

ter width increases and it is expected to reach the value of the fil-

tered particulate stress contribution for large filter widths. Zhang

and VanderHeyden (2002) and De Wilde (2005) state that the

buoyancy term has to be taken into account for simulations with

coarse meshes. However, we observe that the sub-grid contribu-

tion of the drag force is much greater than that of the buoyancy

term. Several studies have been devoted to the influence of

meso-scale structures on the sub-grid stress tensor. Dasgupta

et al. (1994) solved unsteady fully developed flow in a vertical riser

with a Reynolds averaging equation model based on the mixing

velocity in the framework of turbulence modelling. The additional

transport equations of the turbulent kinetic energy k and the tur-

bulent rate of dissipation � were coupled with mixture mass and

momentum balances. They revealed that particles were driven to

regions having a low intensity of particle-phase velocity fluctua-

tions from regions of high intensity at rates proportional to the gra-

dients in the intensity of fluctuations. Hrenya and Sinclair (1997)

applied Reynolds decomposition to the gas and particulate equa-

tions separately and described the Reynolds stresses for the partic-

ulate phase with a turbulent viscosity assumption. It was found

that the turbulent viscosity of the particulate phase significantly

flattened mean variable profiles. Considering the consequences of

previous studies with our analyses, here, we pay attention to drag

and particle sub-grid stress tensor terms to investigate their influ-

ence on the clustering effect.

3.1. Analyses of sub-grid and filtered contributions in drag term

We state that, if the sub-grid contribution of the drag force is

not taken into account, the resolved drag force may be over-pre-

dicted, leading to poor prediction of the overall fluidised bed

behaviour. The filtered drag force is written as

apqp

sp
V r;i ¼

�apqp

~sp
eUg;i ÿ eUp;i

� �
þ Isgsp;i ð7Þ

where Isgsp;i is the sub-grid contribution of the drag force. By following

Ozel et al. (2010) and Parmentier et al. (2012), the filtered drag force

can be approximated by the following expression:

apqp

sp
V r;i ’

qp

~sp
apV r;i ð8Þ

with the filtered relaxation time ~sp given by

~sp ¼
4

3

qp

qg

dp

C�
DjeVr j

ð9Þ

The filtered drag coefficient C�
D is

C�
D ¼ 24

Re�p
1þ 0:15 Re�p

� �0:687� �
�aÿ1:7
g ð10Þ

with the filtered particle Reynolds number Re�p given by dp jeV r j
mg

. The

correlation coefficients2 between the left- and right-hand sides of

Eq. (8) are around 99% for each direction, even for a large filter width.

We propose to write the mean relative velocity as

apV r;i ¼ �apðeUp;i ÿ eUg;i ÿ eV d;iÞ ð12Þ

by introducing the sub-grid drift velocity eV d;i. Thus, the sub-grid

drift velocity is defined by

�ap
eV d;i ¼ apUg;i ÿ �ap

eUg;i ð13Þ

and the sub-grid contribution of the drag force may be modelled as

Isgsp;i ’
�apqp

~sp
eV d;i ð14Þ

The sub-grid drag force contribution is then directly proportional to

the sub-grid drift velocity which is, by definition, the difference be-

tween the filtered gas velocity weighted by the particle volume

fraction and the filtered gas velocity weighted by the gas volume

fraction. This definition is consistent with the study by Zhang and

VanderHeyden (2002). The sub-grid drift velocity physically ac-

counts for the correlation between inhomogeneities of solid volume

fraction and gas velocity inside the volume filtering. The sub-grid

drift velocity eV d;i cannot be directly obtained from the kinetic-the-

ory-based numerical simulation and needs a specific closure.

3.2. Analyses of particle sub-grid scale stress tensor contribution

The particle SGS stress tensor is defined in Eq. (B.4) as

rsgs
p;ij ¼ gUp;iUp;j ÿ eUp;i

eUp;j ð15Þ

In incompressible single-phase flow, the trace of the sub-grid

stress tensor is not modelled but is incorporated into the filtered

pressure. In the context of dispersed phase, the trace of rsgs
p;ij has

Fig. 13. Filtered and sub-grid contributions drag force and gas pressure gradient

without hydrostatic part normalised by the gravity term for different inverse

Froude numbers Frÿ1
D based on the filter width D.

Fig. 14. Filtered and sub-grid contributions of particulate and sub-grid stress terms

normalised by the gravity term for different inverse Froude numbers Frÿ1
D based on

the filter width D.

2 Pearson correlation coefficients between fields A and B are given by

rðA;BÞ ¼ hABi ÿ hAihBiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhA2i ÿ hAi2ÞðhB2i ÿ hBi2Þ

q ð11Þ



the dispersive characteristic and it is crucial to the obtention of a

better prediction of particle segregation (Moreau et al., 2009).

Then, the particle sub-grid stress tensor rsgs
p;ij is divided into devia-

toric and spherical parts:

rsgs
p;ij ¼ r�

p;ij þ
1

3
rp;kkdij ð16Þ

The sub-grid correlated energy is given by 1/2rp,kk and shown for

inverse Froude numbers Frÿ1
D based on the filter widthD (Fig. 15). As

expected, the sub-grid correlated energy increases almost linearly

with the filter width (as in single-phase turbulent flows). Fig. 16

compares the sub-grid correlated energy and the filtered particulate

stress tensor trace ePp ÿ ~kp
@eUp;m

@xm

� �
. Both terms are conditionally

averaged by filtered solid volume fraction. It is revealed that the

sub-grid correlated energy is larger than the filtered particulate

stress tensor trace, especially for larger filter widths. The deviatoric

part of the particle sub-grid stress tensor can be studied at the scalar

level (dissipation) by multiplying the tensor by the particle velocity

gradients. The sub-grid dissipations by the correlated and filtered

particulate stress tensors are given by respectively r�
p;ij

@eUp;i

@xj
and

~mpeS�
p;ij

@eUp;i

@xj
where eS�

p;ij ¼
@eUp;i

@xj
þ @eUp;j

@xi
ÿ 2

3

@eUp;m

@xm
dij is the trace-free strain-

rate tensor. The conditional averages of these terms by filtered vol-

ume fraction are shownbyFig. 17. It is clear that sub-grid dissipation

is larger than thefiltered particulate stress dissipation. It can be con-

cluded that the sub-grid correlated energy 1/2rp,kk and dissipation

due to sub-grid stress r�
p;ij

@eUp;i

@xj
has to be taken into account for simu-

lations with mesh sizes larger than the small-scale structure, and

sub-grid contributions of kinetic-theory-based stresses can be

ignored.

4. Budget analysis of filtered transport equation of particle

agitation

By following the budget analysis of the filtered particulate

momentum equation, the contributions of additional terms in the

filtered transport equation of particle agitation are calculated for

different filter widths. The particle agitation balance is defined as

follows:

0 ¼ @

@xi
�apqp

eK kin
p þ eK coll

p

� � @~q2
p

@xi

� �� �
t;n þ @

@xi
qpKi

� �� �
t;n

ÿ eRp;ij

@ eUp;j

@xi

* +
t;n ÿ hVit;n ÿ 1

3
1ÿ e2c
ÿ � �apqp

~sc
~q2
p

� �
t;n

ÿ hEit;n ÿ 2
�apqp

~sp
~q2
p

� �
t;n ÿ hSit;n ÿ hQit;n ð17Þ

Fig. 15. Averaged sub-grid correlated energy 1/2rp,kk for different inverse Froude

numbers Frÿ1
D based on the filter width D.

Fig. 16. Filtered particulate stress tensor trace ePp ÿ ~kp
@eUp;m

@xm
and sub-grid correlated

energy 1=2�apqprp;kk conditionally averaged by filtered volume fraction for inverse

Froude numbers Frÿ1
D ¼ 0:16 and Frÿ1

D ¼ 0:48 based on the filter width D (norma-

lised h�apiqp sStp jgj
� �2

).

Fig. 17. Filtered particulate stress dissipation ~mpeS�
p;ij

@eUp;i

@xj
and sub-grid dissipation

�apr�
p;ij

@eUp;i

@xj
conditionally averaged by filtered volume fraction for inverse Froude

numbers Frÿ1
D ¼ 0:16 and Frÿ1

D ¼ 0:48 based on the filter width D (normalised

h�apiqp sStp jgj
� �2

).

Fig. 18. Filtered and sub-grid contributions of production and destruction of the

particle agitation, as given in Eq. (17), normalised by qp sStp
� �3

jgj2 for different

inverse Froude numbers Frÿ1
D based on the filter width D. Production;h: filtered and

j: sub-grid, Destruction; M: filtered and O: sub-grid, Interaction with fluid; s:

filtered and �: sub-grid (symbols O and � are overlapping and close to zero).



Eq. (17) states the global equilibrium of particle agitation between

transport by velocity fluctuations, production mechanism, destruc-

tion by inelastic collisions, and interaction with the gas. The first

and second terms represent the filtered and the sub-grid kinetic

and collisional diffusivity. The third and fourth terms are the fil-

tered and the sub-grid contribution of the production of agitation

by the filtered particle velocity gradients. The loss of energy due

to collisions on the filtered and the sub-grid terms are accounted

for by the fifth and the sixth terms. The seventh and eighth terms

represent the filtered and sub-grid interaction of agitation with

gas phase. The last term is the sub-grid particle agitation flux.

Fig. 18 shows that the sub-grid contributions of destruction by

interaction with the fluid and the sub-grid contribution of dissipa-

tion can be negligible. In contrast, the sub-grid contribution of pro-

duction is significant. For coarse grid simulation, these terms are not

taken into account and this leads to underestimation of the produc-

tion of particle agitation. The rates of production are smaller for

coarse grid simulations due to diminished clustering non-unifor-

mity and smaller magnitudes of velocity gradients. Agrawal et al.

(2001) determined domain-averaged values of the production term

and the same consequenceswere obtained for dilute gas–solid flow.

The sub-grid contribution of diffusivity of particle agitation and the

SGS particle agitation flux can be neglected (see Fig. 19).

5. Modelling of effective drag force

Theanalogy canbe constructedbetweenSGS scalar flux in single-

phase turbulent flows and the sub-grid drift velocity defined by Eq.

(13). The modelling of the SGS scalar flux in single-phase turbulent

flows is presented briefly below and the capabilities for modelling

the sub-grid contribution of the drag force are investigated. The

sub-grid drift velocity can bemodelled by a Smagorinsky-typemod-

el, as also referred to as the functional model, and structural models

such as the Gradient and the Scale Similaritymodels (Sagaut, 2004).

The Smagorinsky model is based on the eddy viscosity concept and

accounts for the sub-grid scale scalar flux in terms of the resolved

strain-rate tensor and the scalar gradients. The Gradient model as-

sumes that the SGS scalar flux can bemodelled as a function of a ten-

sor which is the product of the filtered scalar gradient and the

filtered velocity gradient Clark et al. (1979), as follows:

hi ¼ CgrD
2 @n

@xj

@ eU i

@xj
ð18Þ

where D is the filter width, Cgr is the model constant to be deter-

mined by comparison with the DNS database, hi is the SGS scalar

flux, eU j is the j component of the Favre averaged flow velocity

and n is the averaged scalar.

The Scale Similarity model assumes that the full structure of the

velocity field below D is similar to that at scales above D (Bardina

et al., 1983). This model introduces a second filter having a given

scale cD, with cP 1. The SGS scalar flux is modelled as propor-

tional to the difference between the re-filtered product of filtered

velocity and the scalar, and the product of the re-filtering of the fil-

tered velocity and the scalar:

hi ¼ Css
d
neU i ÿ bn beU i

� �
ð19Þ

where ^ is the second filter and Css is a given constant. The origi-

nal model was proposed by Bardina et al. (1983) and c was set to

1. Various versions of this model have been proposed, such as that

by Liu et al. (1994) in which c was set to 2. The Gradient and the

Scale Similarity models can be directly applied to model the sub-

grid drift velocity where the solid volume fraction is introduced as

a scalar. However, the interactions between resolved and unre-

solved scales have not been well-established, in contrary to the

Smagorinsky model for single-phase turbulent flows. Intensive

correlation analyses between the sub-grid drift velocity and fil-

tered variables have to be performed to prescribe the sub-grid

contribution of drag in terms of filtered quantities for the Smago-

rinsky-type sub-grid model. The sub-grid drift velocity models will

be evaluated here with a priori tests. The mesh-independent re-

sults, which have sufficient spatial resolution to allow the deter-

mination of sub-grid quantities, are filtered, the models are

applied to the filtered data and then the model estimates are com-

pared with actual values determined directly from the filtered

mesh-independent results. Volume averaging, as described in

Appendix B, is used for the filtering process.

The primary interest is the accuracy of the sub-grid drift veloc-

ity models, which can be assessed by computing a correlation coef-

ficient between model predictions and exact values calculated

from mesh-independent results. The correlation coefficient r, com-

puted as in Eq. (11), shows the a priori predictability of basic model

assumptions by quantifying the degree to which the structure of
�ap
eV d;i is captured by the models. Meanwhile, to quantify the statis-

tical accuracy of the models, we define the relative error as

e � model-measured

hðmeasuredÞ2i1=2
ð20Þ

and the mean squared error as

E � hðmodel-measuredÞ2i1=2

hðmeasuredÞ2i1=2
ð21Þ

5.1. Functional model

Correlation coefficients were calculated between �ap
eV d;i and fil-

tered variables for different inverse Froude numbers Frÿ1
D based on

the filter width D along the mean flow direction. They are shown

by Fig. 20. �ap
eV d;z is strongly related to �apðeUg;z ÿ eUp;zÞ for larger filter

widths. We have a more uniform flow structure and the gas veloc-

ity and particle volume fraction are not strongly correlated for lar-

ger filter widths. The dependency of �ap
eV d;z on the variable

�apðeUg;z ÿ eUp;zÞ for different inverse Froude numbers Frÿ1
D can be

seen on the scatter plots (see Fig. 21).

Because of the difficulty of displaying plots of all the data, �ap
eV d;z

and �apðeUg;z ÿ eUp;zÞ were randomly sampled. Based on the correla-

tion analysis on the sub-grid drag term, we propose to model
�ap
eV d;i (see Ozel et al., 2010; Parmentier et al., 2012) as

�ap
eV d;i ¼ gijðD�; �apÞ�ap

eUg;j ÿ eUp;j

� �
ð22Þ

Fig. 19. Filtered and sub-grid contributions of particle diffusivity term and sub-grid

particle agitation flux, as given in Eq. (17), normalised by qp sStp
� �3

jgj2 for different

inverse Froude numbers Frÿ1
D based on the filter width D. Kinetic diffusivity; h:

resolved j: sub-grid, N: Sub-grid particle agitation flux.



where gij, the drag correction tensor, is a function of the dimension-

less length scale D⁄ and the filtered particle volume fraction �ap. We

assume that gij is diagonal (gij = 0 if i – j) and gxx = gyy = k gzz in the

specific frame where the mean flow direction (zÿ) is aligned with

the direction of gravity acceleration. The function gðD�; �apÞ can be

calculated from the mesh-independent results for a given flow con-

figuration with different filter widths by the following relation:

gðD�; �apÞ
h�ap
eV d;zj�apit;n

�apðeUg;z ÿ eUp;zÞ
h i����ap

D E
t;n

ð23Þ

�ap
eV d;z and �apðeUg;z ÿ eUp;zÞ are conditionally averaged by the filtered

solid volume fraction. In a general form, the proposed model can be

written

�ap
eV d;b ¼ KbbgðD�; �apÞ�ap

eUg;b ÿ eUp;b

� �
ð24Þ

where b = x,y,z and b is used to indicate that there is no implicit

summation. The model constant Kbb is case-dependent and dynam-

ically adjusted by following the methodology of Germano et al.

(1991), Lilly (1992) and Parmentier et al. (2012). Then, the effective

drag term can be written as

apqp

sp
V r;b ¼

qp

~sp
1þ KbbgðD�; �apÞ
� �

�ap
eUg;b ÿ eUp;b

� �
ð25Þ

This definition is consistent with the studies by Zhang and Van-

derHeyden (2002), Heynderickx et al. (2004), Andrews et al.

(2005), and Igci et al. (2008). An effective drag coefficient be was

introduced by these authors to express the filtered drag force term

as

apqp

sp
V r;i ¼ be

eUg;i ÿ eUp;i

� �
ð26Þ

Heynderickx et al. (2004) and Andrews et al. (2005) write the

effective drag coefficient as a function of the filtered particle vol-

ume fraction, while Igci et al. (2008) suggest that this coefficient

is a function of the filter width. Igci and Sundaresan (2011) pro-

posed an extended model with a function of both the filtered vol-

ume fraction and the filter width. McKeen and Pugsley (2003),

Hosseini et al. (2009) and Gao et al. (2008) suggested using a con-

stant scale factor for the effective drag coefficient. However, the

predictability of this model based on a constant scale factor is case

limited.

The function gðD�; �apÞ for different inverse Froude numbers Frÿ1
D

based on the filter width D along the mean flow direction are

shown by Fig. 22. The normalised function

gðD�; �apÞR
gðD�; �apÞd�ap

ð27Þ

is nearly independent of D⁄ (see Fig. 23). Then, introducing the

function f ðD�Þ ¼
R
gðD�; �apÞd�ap, we decompose gðD�; �apÞ as

gðD�; �apÞ � f ðD�Þhð�apÞ ð28Þ

The function hð�apÞ accounts for the volume fraction dependence of

the model. The function f(D⁄), which represents the filter depen-

dence of the model, will be constructed in detail later. The func-

tion hð�apÞ is nearly equal to zero for values of �ap greater than

0.62 and this means that the correction for drag force is not

needed. For the intermediate values of �apð0:2 < �ap < 0:4Þ, the

function hð�apÞ reaches a maximum value. Thus, the maximum va-

lue of the drag correction coefficient occurs in this interval. The

form suggested by (Parmentier et al., 2012) is also shown by

Fig. 23. We recall that these authors performed the fully resolved

simulation of gas–solid flow in a 2D dense fluidised bed. For the

intermediate values of �apð0:2 < �ap < 0:35Þ, both functions have

the same values. For �ap smaller than 0.2, fully developed 3D PCFB

simulation shows less drag correction. This is reasonable as the

gas passes through 3D meso-scale structures more easily than

through 2D meso-scale structures. This is also discussed by Igci

and Sundaresan (2011) for 2D and 3D flows in periodic domains.

However, for values �ap larger than 0.4, PCFB simulation shows a

larger drag correction than that found by Parmentier et al.

(2012). This probably occured because of an insufficient number

of realisations in this interval. Therefore, we propose the following

modification of Parmentier et al. (2012)’s function hð�apÞ for �ap

smaller than 0.2 as:

Fig. 20. Correlation coefficients between Isgsp;z=
qp

~sp
and filtered variables for different

inverse Froude numbers Frÿ1
D based on the filter width D : þ : �apsStp jgj;

� : sStp
� �3

jgj2 @�ap
@z

; � : sStp
� �4

jgj2jjr �apjj @
eUg;z

@z
; : sStp
� �4

jgj2 @�ap
@z

@eUp;z

@z
; j : �apðeUp;z ÿ eUg;zÞ.

Fig. 21. Scattering plot of Isgsp;z=
qp

~sp
with respect to �apðeUg;z ÿ eUp;zÞ for intermediate and

large inverse Froude numbers Frÿ1
D based on the filter width D : � :

Frÿ1
D ¼ 0:224; � : Frÿ1

D ¼ 0:288; þ : Frÿ1
D ¼ 0:416 (top) and � : Frÿ1

D ¼ 0:544;

� : Frÿ1
D ¼ 0:618; þ : Frÿ1

D ¼ 0:683 (bottom).



hð�apÞ ¼ ÿtanh
�ap

Ch;1

� � ffiffiffiffiffiffiffiffiffiffiffiffi
�ap

ap;max

s
1ÿ

�ap

ap;max

� �2

� 1ÿ Ch;2

�ap

ap;max

þ Ch;3

�ap

ap;max

� �2
 !

ð29Þ

with constants Ch,1, Ch,2 and Ch,3 having the values 0.1, 1.88, 5.16,

respectively. The maximum volume fraction of solid phase ap,max

is set to 0.64 and the function is shown by Fig. 24. After determina-

tion of the function hð�apÞ, we calculate the function f(D⁄) that can be

evaluated by

f ðD�Þ �
�ap
eV d;z

D E
t;n

hð�apÞ�apðeUg;z ÿ eUp;zÞ
D E

t;n

ð30Þ

for different filter widths D. The following form is proposed

f ðD�Þ ¼ D�2

Cf ;1 þ D�2 ð31Þ

with the constant Cf,1 equal to 0.15 and D⁄ given by

D� ¼ D

~spjeVr j
ð32Þ

where ~sp is the filtered relaxation time, jeVrj is the magnitude of the

filtered relative velocity and D is the filter width. The exact and pro-

posed functions f(D⁄) are shown by Fig. 25. It can expected that the

clusters will not grow beyond some critical size and the effective

drag coefficient will be independent of filter width when the latter

is sufficiently large. For larger filter widths, the function f(D⁄)

reaches a constant value, which is equal to 1. Additionally, we note

that the shape of the function f(D⁄) could be sensitive to the filtering

procedure and the numerical scheme of the solver.

The proposed model is constructed on the separation of the cor-

relation of the gas velocity and the solid volume fraction by a cor-

rection, which is a the function of filtered solid volume fraction,

filter width, filtered relative velocity, filtered relaxation time and

the model constant Kbb. Most of industrial applications are con-

ducted in channel flow and it is well known that the gas–solid flow

is highly anisotropic. To take account the effect of anisotropy on

the effective drag force into account, the dynamical adjustment

proposed by Parmentier et al. (2012) is applied to calculate the

model constant Kbb depending on direction and flow (see Appendix

C for the dynamic adjustment of the model constant Kbb). In addi-

tion, the dimensionless length scale of the model remains an open

question. Parmentier et al. (2012) proposed the mesh dependency

as a function of the bed length. Here, we propose the model as a

function of the filtered relaxation time, filtered relative velocity

and filter width. Mesh-independent results for different PCFB con-

figurations, detailed in Section 2, will be used for further studies

and the proposed methodology can be applied to validate studies

of mesh dependency. It is worth noting that this model might be

incapable of predicting a transient regime in circulating fluidised

beds and the transient regime cannot be investigated by fully

developed PFBC simulations.

5.2. Structural models

The proposed functional model has several parameters, such as

the particle properties, the solid volume fraction and the filter size

dependencies. These parameters were obtained by using a

Fig. 22. The function gðD�; �apÞ for inverse Froude numbers Frÿ1
D ¼ 0:288; 0:416 and

0.544 based on the filter width D.

Fig. 23. The function hð�apÞ for inverse Froude numbers Frÿ1
D ¼ 0:288; 0:416 and

0.544 based on the filter width D.

Fig. 24. The proposed function hð�apÞ.

Fig. 25. The measured and proposed function f(D⁄) where D� ¼ D=ð~spjeVr jÞ with the

filtered relaxation time ~sp , the magnitude of the filtered relative velocity jeVr j and
the filter width D.



particular fluidised bed and the predictability of the proposed

model may be restricted for some applications. For of this reason,

we looked for an alternative method, which led to some structural

models. As has already mentioned, the interactions between re-

solved and unresolved scales has not been well established and,

for structural models, it is not necessary to have prior knowledge

of the nature of the interactions between the sub-grid scales

(Sagaut, 2004).

5.2.1. Germano’s decomposition
�ap
eV d;i can be decomposed by following Germano (1986) as

�ap
eV d;i ¼ Li þ Ci þRi ð33Þ

where the Leonard, Li, Cross, Ci, and Reynolds, Ri, terms are defined

by:

Li ¼ �ap
eUg;i ÿ �ap

eeU g;i ð34Þ

Ci ¼ �apU
00
g;i ÿ �ap

fU00
g;i þ a0

p
eUg;i ÿ a0

p

eeU g;i ð35Þ

Ri ¼ a0
pU

00
g;i ÿ a0

p
fU00

g;i ð36Þ

with the fluctuation of volume fraction a0
p ¼ ap ÿ �ap and the fluctu-

ation of the gas velocity U00
g;i ¼ Ug;i ÿ eUg;i. The averages of the

decompositions along the mean flow direction are shown by

Fig. 26. Leonard terms are good approximations for �ap
eV d;z up to

Frÿ1
D ¼ 0:16. Between Frÿ1

D ¼ 0:16 and Frÿ1
D ¼ 0:32, �ap

eV d;z can be rep-

resented by the sum of Leonard and Cross terms and Reynolds

terms are negligible. However, Reynolds terms make the main con-

tribution to �ap
eV d;z for intermediate and larger filters Frÿ1

D > 0:32
� �

.

If Frÿ1
D is greater than 0.64, hLz þ Czi reaches a constant value and

hRzi increases linearly. Fig. 27 shows Reynolds terms along the

mean flow and radial directions. Reynolds terms along the mean

flow direction are one order greater than those in radial directions.

Parmentier et al. (2012) performed a Taylor expansion of �ap
eV d;i gi-

ven by:

�ag�ap
eV d;i ¼

D2

12

@ap

@xj

@Ug;i

@xj
ð37Þ

where 1/12 is a theoretical value and varies depending on the filter

type. The derivation in this study was carried out by expanding ser-

ies, with taking high order terms into account (for details, see

Appendix D). �ap
eV d;i can be modelled by

�ap
eV d;i ¼

D2

12

@ap

@xj

@Ug;i

@xj
ÿ D4

576

@2ap

@xjxk

@2Ug;i

@xjxk
þOðD6Þ ð38Þ

The combination of Leonard, Li, and Cross, Ci, terms leads to the first

term on the right-hand side:

Li þ Ci ¼
D2

12

@ap

@xj

@Ug;i

@xj
ð39Þ

Eq. (39) is referred to as the Gradient model by analogy with single-

phase turbulence modelling by Clark et al. (1979). The Reynolds

terms Ri appear only as fourth-order terms:

Ri ¼
D4

576

@2ap

@xj@xk

@2Ug;i

@xj@xk
ð40Þ

5.2.2. Gradient model (tensor diffusivity model)

By neglecting the fourth-order term, �ap
eV d;i can be modelled by

the following equation:

�ap
eV d;i ¼ AjkD

2 @�ap

@xj

@ eUg;i

@xk
ð41Þ

Ajk is a second-order tensor dependent on filter type. This model

shows good performance in terms of correlation coefficient, because

it represents the first term in the Taylor series expansion. It is as-

sumed that Ajk is diagonal (Ajk = 0 if j– k) and Axx = Ayy = kAzz in

the specific frame where the mean flow direction (zÿ) is aligned

with the direction of acceleration due to gravity. We propose a gen-

eral form of the Gradient model as

�ap
eV d;b ¼ AbbD

2 @�ap

@xj

@ eUg;b

@xj
ð42Þ

The model coefficients were determined using a least-squares

method from the Euler–Euler DNS database. The model coefficient

Azz for mean flow direction is close to the theoretical value of 1/

12 and model coefficients Axx, Ayy for transverse and longitudinal

directions increase linearly with filter width (see Fig. 28). Vreman

et al. (1996) investigated the Gradient model for the turbulent

stress tensor to see if it was applicable for compressible turbulent

flows. It was revealed that the model gave rise to instabilities for

a weakly compressible turbulent temporal mixing layer and led to

a blowup in calculations. Vreman et al. (1996) performed a linear

stability analysis of Burger’s equation supplemented by the Gradi-

ent model to clarify the nature of the instability and showed that

the growth-rate of the instability was infinite. Eyink (2006) pointed

out that the deconvolution operator to re-build unresolved scales

by a resolved field was unbounded in the natural function space

for velocity and scalar fields. Vreman et al. (1996) added an eddy-

viscosity part to stabilise the model. In the following section, we

present an extension of this model taking the high-order terms into

account. Another reason to extend the model is that the OðD4Þ term
is not small. For rapidly fluctuating variables, such as the solid

Fig. 26. Averaged Germano’s decomposition terms along the mean flow direction

for different inverse Froude numbers Frÿ1
D based on the filter width D.

Fig. 27. Averaged Reynolds terms along the vertical (zÿ) and radial (xÿ,yÿ)

directions for different inverse Froude numbers Frÿ1
D based on the filter width D.



volume fraction, this term cannot simply be omitted. As shown by

Fig. 26, Reynolds terms of �ap
eV d;i are dominant for large filter widths

and therefore have to be taken into account. From the numerical

point of view, the high-order term would preferably be OðD4Þ but

in practice, the high-order term is evaluated by OðD2Þ when the

numerical scheme produces the same order errors, which is the case

for second-order accurate schemes.

5.2.3. Full Tensor model

From the consequences of Germano’s decomposition (Fig. 26), it

was pointed out that Reynolds term was significant for large filter

widths. The Gradient model does not take this term into account

by assuming that the resolution of the Leonard and Cross terms

is sufficient for the modelling of the drag force sub-grid contribu-

tion. Following the analytical expansion, �ap
eV d;i can be modelled as

�ap
eV d;i ¼ BjkD

2 @�ap

@xj

@ eUg;i

@xk
þ CjklmD

4 @2�ap

@xj@xk

@2 eUg;i

@xl@xm
ð43Þ

Bjk is a second-order tensor and Cjklm is the fourth-order tensor.

They are dependent on filter type. We assume that Bjk and Cjklm
are diagonal tensors and the Full Tensor model in general form

can written

�ap
eV d;b ¼ BbbD

2 @�ap

@xj

@ eUg;b

@xj
þ CbbD

4 @2�ap

@xj@xk

@2 eUg;b

@xj@xk
ð44Þ

The constants Bbb and Cbb can be determined by performing multi-

variate linear regression. Let Ei be the error in Eq. (39)

Eb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ap
eV d;b ÿ BbbD2Mb þ CbbD4N b

ÿ �q
ð45Þ

where Mb ¼ @�ap
@xj

@eUg;b

@xj
and N b ¼ @2�ap

@xjxk

@2eU g;b

@xjxk
. Bbb, Cbb can be obtained by

setting @Eb=@Mb ¼ 0 and @Eb=@N b ¼ 0. The coefficients along the

mean flow direction are shown by Fig. 29. As expected, values of

Czz are very small compared with Bzz, especially for small filter

widths, and the constant Bzz is independent of filter width. Czz is

negative and increases dramatically with respect to the filter width.

5.2.4. Mixed model

In 5.1, we stated that �ap
eV d;i could be predicted in terms of

�apðeUg;i ÿ eUp;iÞ for large filter widths. Afterwards, the structural Gra-

dient model was proposed and it was stated that the Gradient

model predicted �ap
eV d;i correctly on the basis of theoretical repre-

sentations of the Leonard and Cross terms for small filter widths.

Here, we present the Mixed model, which can be constructed to

take advantages of both the above models. In the decomposition

of �ap
eV d;i, the part representing Reynolds terms can be modelled

by the functional model as

�ap
eV d;b ¼ DbbD

2 @�ap

@xj

@ eUg;b

@xj
þ Ebbhð�apÞ�apðeUg;b ÿ eUp;bÞ ð46Þ

The constants Dzz and Ezz are shown by Fig. 30. Dzz is independent of

filter width and close to the theoretical value 1/12. Ezz can be writ-

ten as the function f(D⁄). We formulate the following relation in or-

der to obtain the Dynamic Mixed model:

�ap
eV d;b ¼

D2

12

@�ap

@xj

@ eUg;b

@xj
þ Kbbf ðD�Þhð�apÞ�apðeUg;b ÿ eUp;bÞ ð47Þ

The model constant for the gradient part is assumed to be equal to

the theoretical value 1/12 in all directions. This assumption is a

good approximation as shown by Fig. 28. With this assumption,

we do not need a second test filter to calculate the constant for

the gradient part. The model constant Kbb of the functional part is

adjusted dynamically (see Appendix C.1).

5.2.5. Dynamic Structure model

In this part, we propose a new class of sub-grid scale model for
�ap
eV d;i. The proposed model uses the sub-grid scalar variance as a

part of the scaling factor and small-scale statistics are extrapolated

to provide knowledge of large-scale fields. The following model is

proposed

�ap
eV d;i ¼ ÿCsgs

apap ÿ �ap�ap

�ap

ðeUg;i ÿ eUp;iÞ ð48Þ

where apap ÿ �ap�ap is the sub-grid variance of ap at the grid level.

The sub-grid scalar variance is also referred to as the scalar mixed-

ness since it measures the degree of local non-homogeneity of the

Fig. 28. Gradient model coefficients Abb along the vertical (zÿ) and radial (xÿ,yÿ)

directions for different inverse Froude numbers Frÿ1
D based on the filter width D.

Fig. 29. Full Tensor model coefficients Bzz and Czz along the mean flow for different

inverse Froude numbers Frÿ1
D based on the filter width D.

Fig. 30. Mixed model coefficients Dzz and Ezz along the mean flow for different

inverse Froude numbers Frÿ1
D based on the filter width D.



solid volume fraction within the characteristic length. First, we cal-

culated the correlation coefficient between �ap
eV d;i and the predic-

tions of the Dynamic Structure model. The model constant ranges

from 1.5 to 0.8 (see Fig. 31). The sub-grid scalar cannot be found

from the resolved field and we need a closure term or an additional

transport equation for the sub-grid variance.

5.2.6. A priori analyses of effective drag model predictability

As a structural test of the models, ri is computed as the correla-

tion between the model predictions of and the measured �ap
eV d;i.

Fig. 32 shows the correlation coefficients between the Smagorin-

sky-type, the Gradient, the Mixed, the Full Tensor, and the Dy-

namic Structure models, and the measured �ap
eV d;i for different

inverse Froude numbers Frÿ1
D based on the filter width D along

the x-direction. The Full Tensor model shows the poorest perfor-

mance, with very low correlation coefficients (ÿ0.2 < rx < 0.2),

while the Gradient model gives higher correlations (�0.4). The cor-

relation coefficients provided by the Smagorinsky-type, the Mixed

and the Dynamic Structure models are moderate (�0.5) for small

filter widths. For large filter widths, the performances of these

models are improved (�0.6). Fig. 33 shows the correlation coeffi-

cients of the proposedmodels for different inverse Froude numbers

Frÿ1
D based on the filter width D along the y-direction. Model pre-

dictabilities are as similar as along the x-direction. Fig. 34 shows

the correlation coefficients for different inverse Froude numbers

Frÿ1
D based on the filter width D along the z-direction. The Gradient

model shows moderate performance (�0.5) for small filter widths.

However, the correlation coefficients provided by the Gradient

model become smaller as filter width increases. For large filter

widths, the correlation coefficients are around 0.3. It was expected

that Reynolds terms would be dominant for large filter widths and

that the Gradient model would cancel out these contributions. In

order to improve the predictability of the Gradient model, Rey-

nolds terms modelled by high-order derivatives were introduced

by the Full Tensor model. We did not see any improvement in

terms of the correlation coefficients. The Dynamic Structure model

provides higher correlations (�0.8) independent of filter widths

and the Smagorinsky-type and the Mixed models provide moder-

ate correlation coefficients (�0.6) for small filter sizes and high

correlation coefficients (�0.8) for intermediate and large filter

widths.

Fig. 35 shows pdfs of relative error, defined as in Eq. (20), of
�ap
eV d;i for all the models along the mean flow direction for inverse

Froude number Frÿ1
D ¼ 0:352 on the filter width D. Statistically,

these models predict comparable magnitudes of �ap
eV d;i. The pdf of

relative error for the Smagorinsky-type model shows that there

is a mismatch with the predicted �ap
eV d;i due to the peak not being

centred at zero. Fig. 36 shows pdfs of relative error, defined as in

Eq. (28), of effective drag correction for all the models along the

mean flow direction for inverse Froude number Frÿ1
D ¼ 0:352 based

on the filter width. The Smagorinsky-type and the Dynamic Struc-

ture models can predict the correction very well along the mean

direction. The mean squared errors Ei, calculated as in Eq. (21),

are shown by Figs. 37–39. The Full Tensor model was found to have

the highest mean squared error for all filter widths and all

Fig. 31. Dynamic Structure model coefficient Csgs along the mean flow for different

inverse Froude numbers Frÿ1
D based on the filter width D.

Fig. 32. Correlation coefficients rx between the x-component of measured and

modelled �ap
eV d;b for different inverse Froude numbers Frÿ1

D based on the filter width

D. The test filter width is bD ¼
ffiffiffi
5

p
D by following Lilly (1992).

Fig. 33. Correlation coefficients ry between the y-component of measured and

modelled �ap
eV d;b for different inverse Froude numbers Frÿ1

D based on the filter width

D. The test filter width is bD ¼
ffiffiffi
5

p
D by following Lilly (1992).

Fig. 34. Correlation coefficients rz between the z-component of measured and

modelled �ap
eV d;b for different inverse Froude numbers Frÿ1

D based on the filter width

D. The test filter width is bD ¼
ffiffiffi
5

p
D by following Lilly (1992).



directions while the Dynamic Structure model had the lowest val-

ues for radial directions. The Smagorinsky-type model had the low-

est mean squared error along the mean flow direction.

6. Particle SGS stress tensor models

The particle sub-grid stress tensor rsgs
p;ij is defined in the filtered

momentum equation of the particulate phase as

rsgs
p;ij ¼ gUp;iUp;j ÿ eUp;i

eUp;j ð49Þ

A priori analyses on SGS stress tensor show that the sub-grid

correlated energy and the dissipation have to be modelled. Moreau

et al. (2009) proposed dividing the particle sub-grid stress tensor

rsgs
p;ij into deviatoric and spherical parts in the framework of dilute

particle laden turbulent flow modelling. Following Moreau et al.

(2009), the Smagorinsky (1963) model is proposed for the devia-

toric part here and the Yoshizawa (1986) model is used for the

spherical part as follows:

rsgs
p;ij ¼ r�

p;ij þ
1

3
rp;kkdij ð50Þ

¼ ÿC2
sD

2 eS�
p

���
���eS�

p;ij þ
2

3
CYD

2 eS�
p

���
���
2

dij ð51Þ

where eS�
p;ij is the trace free strain rate tensor of the filtered particle

velocity and is given by

eS�
p;ij ¼

@ eUp;i

@xj
þ @ eUp;j

@xi
ÿ 2

3

@ eUp;k

@xk
dij ð52Þ

eS�
p

���
��� is the norm of eS�

p;ij and defined by eS�
p

���
���
2

¼ 1=2eS�
p;ij
eS�
p;ij. The

modelling form chosen is consistent with what has been done in

single-phase turbulence. Agrawal et al. (2001) argued that

sub-grid viscosity was proportional to macro-scale strain rate in

single-phase turbulent flow while, in this problem, it appears to

be inversely proportional to strain rate.

6.1. Assessment of Smagorinsky and Yoshizawa models

The models are assessed at the tensor and scalar levels. At scalar

level, the sub-grid tensor is multiplied by the gradient of filtered

Fig. 35. Pdfs of relative error ez, computed as in Eq. (20), for inverse Froude number

Frÿ1
D ¼ 0:352 along the mean flow direction. The test filter width is bD ¼

ffiffiffi
5

p
D by

following Lilly (1992).

Fig. 36. Pdfs of relative error ez of the drag correction, computed as in Eq. (20), for

inverse Froude number Frÿ1
D ¼ 0:352 along the mean flow direction. The test filter

width is bD ¼
ffiffiffi
5

p
D by following Lilly (1992).

Fig. 37. Mean squared error Ex, computed as in Eq. (21), for the x-component of

measured and modelled �ap
eV d;b for different inverse Froude numbers Frÿ1

D based on

the filter width D. The test filter width is bD ¼
ffiffiffi
5

p
D by following Lilly (1992).

Fig. 38. Mean squared error Ey, computed as in Eq. (21), for the y-component of

measured and modelled �ap
eV d;b for different inverse Froude numbers Frÿ1

D based on

the filter width D. The test filter width is bD ¼
ffiffiffi
5

p
D by following Lilly (1992).

Fig. 39. Mean squared error Ez, computed as in Eq. (21), for the z-component of

measured and modelled �ap
eV d;b for different inverse Froude numbers Frÿ1

D based on

the filter width D. The test filter width is bD ¼
ffiffiffi
5

p
D by following Lilly (1992).



particle velocities. The correlation coefficients between the devia-

toric part of the filtered particle sub-grid stress tensor r�
p;zj and

the Smagorinsky model are shown by Fig. 40. The Smagorinsky

model performs poorly in terms of the correlation coefficients

(r � 0.2) at the tensor level. It is well established the dissipation

characteristics of the Smagorinsky model, and thus the correlation

coefficients between the product of the deviatoric part of the ten-

sor by the gradients of the filtered particles velocities and of the

Smagorinsky model prediction are also presented (see Fig. 40).

The model shows better performance at the scalar level than at

the tensor level (r � 0.4).

Fig. 41 shows the correlation coefficients between the particle

sub-grid energy 1/2rp,kk and predictions by the Yoshizawa model.

The Yoshizawa model predicts the compression stress of particle

phases very well and the correlation coefficients are really high

for the tensor level. For the scalar level, the correlation coefficients

are up to 0.95 even for larger filter sizes. PDFs of the sub-grid en-

ergy and dissipation are compared with the predictions of viscosity

models (Smagorinsky, Yoshizawamodel) are shown by Figs. 42 and

43. The Yoshizawa model overestimates the level of the sub-grid

energy at its lows values. This poor prediction can be seen easily

seen for Frÿ1
D ¼ 0:48. The PDF of sub-grid dissipation r�

p;zj

@eUp;zj

@xj
has

some negative values, which represent the backscatter effect.

However, it is well known that the Smagorinsky model is not able

to resolve this backscatter and underestimation of dissipation oc-

curs for every filter size consistent with correlation coefficients,

as shown previously.

The viscosity model constants Cs and CY calculated from DNS re-

sults by the least square method are shown by Fig. 44. Cs was cal-

culated by following the procedure for the dynamic Smagorinsky

model (Germano et al., 1991) for single-phase turbulent flow along

the homogeneous direction. Cs is smaller than single-phase flow

model constants ([0.1,0.2] for homogeneous isotropic turbulence,

0.079 channel flow). CY are independent for small and intermediate

filter sizes and can be evaluated to be approximately 0.05. For large

filter widths, CY increases linearly and this trend has to be validated

in the PCFB with longer length. Moreau et al. (2009) estimated

0.051 from DNS simulation of homogeneous isotropic turbulence

in the framework of the mesoscopic Eulerian approach. Erlebacher

et al. (1992) have performed direct simulations of compressible

homogeneous turbulence at Mach numbers ranging from 0.1 to

0.6 with the Yoshizawa model and they evaluated CY at 0.0066.

This value was determined with a linear least-squares regression

method at the vector level and it was stated that it depended on

the Mach number. Additionally, Zang et al. (1991) studied the

influence of this constant in LES of compressible homogeneous

decaying turbulence at a turbulent Mach number of 0.1. CY varied

from its standard value (0.0066) to a value 50 times larger. Here,

we calculated a value 25 times larger than the standard for sin-

gle-phase flow and this could be a result of the high compressibil-

ity of the dispersed phase. Additionally, CY could be dependent on

the particle inertia characterised by the dimensionless Stokes

number ~sp eS�
p;ij

���
���.

Fig. 40. Correlation coefficients r between the deviatoric part of the filtered particle

sub-grid stress tensor r�
p;zj and Smagorinsky model for different inverse Froude

numbers Frÿ1
D based on the filter width D at the tensor and scalar level.

Fig. 41. Correlation coefficients r between the filtered particle sub-grid energy

1/2rp,kk and Yoshizawa model for different inverse Froude numbers Frÿ1
D based on

the filter width D at the tensor and scalar level.

Fig. 42. Pdfs of particle sub-grid energy 1/2rp,kk from DNS data and by the

Yoshizawa model for inverse Froude numbers Frÿ1
D ¼ 0:224 and 0.480.



7. Conclusion

Meso-scale structures are continuously formed in a circulating

fluidised bed and they can be resolved through the Eulerian ap-

proach by supplementing the kinetic theory of granular flows on

a high-resolution computational grid. However, simulations with

mesh sizes larger than the small-scale structure size cancel out

these structures and this causes poor predictions of bed

hydrodynamics.

To investigate the effects of unresolved structures on the

resolved field, we first obtained mesh-independent results for

gas–solid in the 3D periodic circulating fluidised bed. Then, we

used these results in a systematic approach based on a priorimeth-

odology. We performed the filtering procedure on a given Euler–

Euler model and obtained the filtered momentum and filtered par-

ticle agitation transport equations. Additional terms arising from to

the filtering procedure were investigated by budget analyses to

determine their importance. It was found that meso-scale struc-

tures affected the flow characteristics profoundly. In particular,

cancellation of these structures led to an overestimation of the

drag force between gas and particle phases. We showed that the

sub-grid drift velocity, defined as the difference between the fil-

tered gas velocity seen by the particulate phase and the filtered

gas velocity, had to be modelled to obtain the correct drag.

Some families of functional and structural models were pro-

posed for sub-grid drift velocity and the models’ predictions were

tested in an a priori manner with correlation coefficients, mean

squared error and probability density functions of local relative er-

ror. For the functional model, the Smagorinsky-type model was

proposed as a continuation of the work of Parmentier et al.

(2012). The solid volume fraction dependency of the model was gi-

ven by the function hð�apÞ. The shape of this function obtained from

the high resolution 2D simulation of dense fluidized bed by Par-

mentier et al. (2012), was improved by the high-resolution 3D sim-

ulation of dilute gas–solid flow in the periodic circulating fluidised

bed. The function hð�apÞ obtained from the high-resolution simula-

tion of the periodic circulating fluidised bed shows less drag cor-

rection for the case of a solid volume fraction smaller than 0.2.

This result has an obvious physical meaning since gas passes

through 3D structures more easily than through 2D structures.

The mesh-dependency of the functional model was defined by

the filter width, the filtered relative velocity and the filtered relax-

ation time. As structural models, we proposed the Gradient, the

Full Tensor, the Mixed and the Dynamic Structure model. The Gra-

dient model, which considers only the Leonard and Cross terms of

Germano’s decomposition of �ap
eV d;i, showed good performance in

terms of correlation coefficient for small filter widths. We intro-

duced the high-order terms, which are fourth order of the filter

width, to take Reynolds terms into account. The Mixed model

was proposed where high-order terms were modelled by the func-

tional model (Smagorinsky-type model). We obtained high correla-

tion coefficients even for large filter widths. Sub-grid structure

properties were transferred to the resolved field by introducing

the sub-grid scalar variance of the solid volume fraction in the Dy-

namic Structure model. It gave high correlation coefficients inde-

pendent of filter widths.

Filtering meso-scale structures yielded to SGS stress tensors

which increased the effective viscosity and normal stresses of the

particulate phase. The Smagorinsky model, as used in single-phase

turbulent flow, was used to model the effective viscosity but it

shows poor performance in terms of correlation coefficient. The

model constant of the Smagorinsky model was smaller than that

of single-phase turbulent flows. The Yoshizawa model was used

to close the sub-grid correlated energy and its predictions were

higher. The model coefficient of the Yoshizawa model was consis-

tent with previous applications for Large Eddy Simulation of turbu-

lent dilute gas-solid flow. We also performed a budget analysis of

the filtered transport equation of particle agitation and demon-

strated that the production of the particle agitation was underesti-

mated at increasing filter width.

In this study, we have explored different models for the effec-

tive drag force and identified the strengths and limitations of each

of them. The Dynamic Functional model is the most reliable model

for a structured grid and simplified computational domain but the

mesh dependency of this model may be retuned either through lar-

ger-scale simulations or comparisons with experimental data. The

Mixed model without dynamic adjustment of the model constant

Fig. 43. Pdfs of particle sub-grid dissipation from DNS data and by the Smagorinsky

model for inverse Froude numbers Frÿ1
D ¼ 0:224 and 0.480.

Fig. 44. Yoshizawa and Smagorinsky model coefficients, CY and Cs, respectively, for

different inverse Froude numbers Frÿ1
D based on the filter width D.



is mostly suitable for simulations with unstructured mesh and

complex geometries. Additionally, we examined the SGS particle

stress term and constructed the model as in Large Eddy Simulation

of turbulent flows. This approach was firstly used for gas–solid

flows in circulating fluidised beds and, in terms of a priori perfor-

mance, appears favourable for industrial applications. A further

study could perform a posteriori tests and make comparisons be-

tween the predictions of the models and models already availabl

(Igci and Sundaresan, 2011; Parmentier et al., 2012) for gas–solid

flows in the 3D periodic circulating fluidised bed and available

experimental data.

The polydisperse gas–solid flow modelling by an Euler–Euler

approach could be addressed in a future study. For polydisperse

gas–solid flows, the inter-particle interactions are taken into ac-

count by an additional term in the particulate momentum equa-

tions. The effect of mesh resolution on this term and the sub-grid

scale modelling will be obtained by applying the proposed meth-

odology from the present study.

Acknowledgements

This work was granted access to the HPC resources of CALMIP

under allocation P0111 (Calcul en Midi- Pyrénées). This work

was performed using HPC resources from GENCI-CINES (Grant

2012-x2012026012).

Appendix A. Mathematical modelling

The modelling approach is based on the Euler–Euler model for-

malism, which involves separate mean transport equations of

mass, momentum and energy for the gas and particulate phases.

The mass balance equation of each phase is (when subscript

k = g, we refer to the gas and, when k = p to the particulate phase)

@

@t
ðakqkÞ þ

@

@xi
ðakqkUk;iÞ ¼ 0 ðA:1Þ

with ak the volume fraction, qk the density and Uk the mean velocity

of phase k. Themomentumbalanceequationof eachphase is givenby

@

@t
qkakUk;i þ

@

@xj
qkakUk;iUk;j ¼ ÿak

@Pg

@xi
þ Ik;i ÿ

@Rk;ij

@xj

þ akqkgi ðA:2Þ

with Pg the mean gas pressure, gi the gravity acceleration, Rk,ij the

effective stress tensor, and Ik,i the mean momentum transfer rate

between phases without the mean gas pressure effect. The term

Ik,i is modelled by considering only the drag force between phases

with the mean particle relaxation time scale sp,

Ig;i ¼ ÿIp;i ¼
apqp

sp
V r;i with

sp ¼ 4
3

qp

qg

dp
CD jvr j

CD ¼ 24
Rep

1þ 0:15Re0:687p

h i
aÿ1:7
g

Rep ¼ dp jvr j
mg

8
>>>><
>>>>:

ðA:3Þ
The mean drag coefficient CD is written as a function of a particle

Reynolds number from Wen and Yu (1966) with the mean particle

Reynolds number Rep. In (A.3), dp is the particle diameter and mg the
molecular kinematic viscosity of the gas. The local instantaneous

relative velocity vr,i is equal to the difference between the local par-

ticle velocity up,i and the instantaneous gas velocity ~ug;i locally

undisturbed by the presence of the particle. Finally, Vr,i is the mean

fluid-particle relative velocity, Vr,i = Up,i ÿ Ug,i.

The particulate stress tensor Rp,ij is defined by

Rp;ij ¼ Pp ÿ kp
@Up;m

@xm

� �
dij ÿ lp

@Up;j

@xi
þ @Up;i

@xj
ÿ 2

3
dij

@Up;m

@xm

� �
ðA:4Þ

with the collisional pressure, Pp, the bulk viscosity, kp, the restitu-

tion coefficient, ec, that determines energy loss during inter-particle

collisions, the pair correlation function, g0, the particle agitation, q2
p ,

and the shear viscosity, lp. These terms are

Pp ¼ apqp 1þ 2apg0ð1þ ecÞ
� �2

3
q2
p

g0 ¼ 1ÿ ap

ap;max

� �ÿ2:5ap;max

where ap;max ¼ 0:64

kp ¼
4

3
a2
pqpdpg0ð1þ ecÞ

ffiffiffiffiffiffiffiffiffiffi
2

3

q2
p

p

s

lp ¼ apqp mkinp þ mcollp

h i

mkinp ¼ 1

2
sp

2

3
q2
p 1þ apg0Uc

ÿ �
1þ sp

2

rc

sc

� ��

mcollp ¼ 4

5
apg0ð1þ ecÞ mkinp þ dp

ffiffiffiffiffiffiffiffiffiffi
2

3

q2
p

p

s2
4

3
5

The transport equation for particle agitation q2
p was developed

in the framework of the kinetic theory of granular media supple-

mented by the interstitial fluid effect (Boëlle et al., 1995; Balzer

et al., 1995; Gobin et al., 2003). The transport equation for particle

agitation q2
p is

@

@t
apqpq

2
p þ

@

@xi
apqpUp;iq

2
p ¼ @

@xi
apqp Kkin

p þ Kcoll
p

� � @q2
p

@xi

" #

ÿ Rp;ij

@Up;i

@xj
ÿ 1

3
1ÿ e2c
ÿ �apqp

sc
q2
p

ÿ 2
apqp

sp
q2
p ðA:5Þ

The first term on the right-hand side in Eq. (A.5) represents the dif-

fusive transport of q2
p by kinematic motion and collisions. The sec-

ond term represents the production rate of q2
p by the mean

particle velocity gradients. The third and fourth terms are the dissi-

pation of q2
p through inelastic collisions and interaction with the gas

phase, respectively. Eq. (A.5) is additionally solved with Kkin
p ; Kcoll

p

and sc the kinematic diffusivity, the collisional diffusivity and the

collision time as defined by

Kkin
p ¼ 5

9
sp

2

3
q2
pð1þ apg0ucÞ 1þ 5

9
sp

nc

sc

� ��

Kcoll
p ¼ apg0ð1þ ecÞ

6

5
Kkin

p þ 4

3
dp

ffiffiffiffiffiffiffiffiffiffi
2

3

q2
p

p

s2
4

3
5

sc ¼
dp

24apg0

ffiffiffiffiffiffiffiffiffiffi
3

2

p
q2
p

s

respectively. Model coefficients are

uc ¼
3

5
ð1þ ecÞ2ð2ec ÿ 1Þ

nc ¼
1

100
ð1þ ecÞð49ÿ 33ecÞ

rc ¼
1

5
ð1þ ecÞð3ÿ ecÞ

Uc ¼
2

5
ð1þ ecÞð3ec ÿ 1Þ

Appendix B. Derivation of filtered Euler–Euler two-phase model

Let ak(x, t) denote the volume fraction of phase k at location x

and time t obtained by solving the Euler–Euler two-phase model

equations. We can define the filtered phase volume fraction as



�akðx; tÞ ¼
Z Z Z

akðr; tÞGðrÿ xÞdr ðB:1Þ

where G(r ÿ x) is a weight function that satisfies
R R R

GðrÞdr ¼ 1.

The filtered phase velocity of phase k is defined as

eUkðx; tÞ ¼
1
�ak

Z Z Z
Gðrÿ xÞakðr; tÞUkðr; tÞdr ðB:2Þ

Applying such a filter to the mass balance equation for the phase k,

we obtain
@

@t
�akqk þ

@

@xj
qk

�ak
eUk;j ¼ 0 ðB:3Þ

This filtering procedure can be applied to momentum balance. The

filtered momentum balance of phase k is

@

@t
qk

�ak
eUk;i þ

@

@xj
qk

�ak
eUk;i

eUk;j ¼ ÿ�ak

@Pg

@xi
ÿusgs

k;i þeIk;i þ Isgsk;i

ÿ @

@xj
eRk;ij ÿ

@

@xj
Rsgs

k;ij

ÿ @

@xj
qk

�akr
sgs
k;ij þ �akqkgi ðB:4Þ

Terms with superscript (�sgs) in Eq. (B.4) appear from the filtering

process and they represent the interaction between filtered and

sub-grid contributions. The term usgs
k;i represents the correlation be-

tween the volume fraction of the phase k and gas pressure

usgs
k;i ¼ ak

@Pg

@xi
ÿ �ak

@ePg

@xi
ðB:5Þ

A Reynolds stress contribution coming from the gas or particle

phase velocity fluctuations rsgs
k;ij is defined by the following equation:

rsgs
k;ij ¼ gUk;iUk;j ÿ eUk;i

eUk;j ðB:6Þ

The terms eIk;i and Isgsk;i are the filtered and sub-grid contribution of

the drag term and are defined as

eIg;i ¼ ÿeIp;i ¼
�apqp

~sp
eUp;i ÿ eUg;i

� �
ðB:7Þ

Isgsg;i ¼ ÿIsgsp;i ¼
apqp

sp
V r;i ÿ

�apqp

~sp
eUp;i ÿ eUg;i

� �
ðB:8Þ

In this study, we focus on the effective stress tensor of the particu-

late phase. The terms eRp;ij and Rsgs
p;ij are the filtered and sub-grid con-

tributions of the particulate stress tensor. These contributions are

eRp;ij ¼ ePp ÿ ~kp
@ eUp;m

@xm

 !
dij ÿ ~lp

@ eUp;i

@xj
þ @ eUp;j

@xi
ÿ 2

3

@ eUp;m

@xm
dij

 !
ðB:9Þ

Rsgs
p;ij ¼ Pp ÿ kp

@Up;m

@xm

 !
dij ÿ lp

@Up;i

@xj
þ @Up;j

@xi
ÿ 2

3

@Up;m

@xm
dij

� �

ÿ eRp;ij ðB:10Þ

with

ePp ¼ �apqp½1þ 2�apg0ð1þ ecÞ�
2

3
~q2
p ðB:11Þ

~kp ¼
4

3
qpdpð1þ ecÞ�a2

pg0

ffiffiffiffiffiffiffiffiffiffi
2

3

~q2
p

p

s

ðB:12Þ

~mkinp ¼
~sp
2

2

3
~q2
pð1þ �apg0UcÞ 1þ

~sp
2

rc

~sc

� ��
ðB:13Þ

~mcollp ¼ 4

5
�apg0ð1þ ecÞ ~mkinp þ dp

ffiffiffiffiffiffiffiffiffiffi
2

3

~q2
p

p

s0
@

1
A ðB:14Þ

and the filtered particulate shear viscosity ~lp ¼ �apqp
~mkinp þ ~mcollp

� �
.

The filtering procedure can be performed on the transport equation

of particle agitation. The filtered transport equation of particle agi-

tation is given by

@

@t
�apqp

~q2
p þ

@

@xi
�apqp

eUp;i~q
2
p ¼ @

@xi
�apqp

eK kin
p þ eK coll

p

� � @~q2
p

@xi

 !

þ @

@xi
ðqpKiÞ ÿ eRp;ij

@ eUp;i

@xj
ÿ S

ÿ 1

3
1ÿ e2c
ÿ � �apqp

~sc
~q2
p ÿ E ÿ 2

�
�apqp

~sp
~q2
p ÿ F þQ ðB:15Þ

with eK kin
p and eK coll

p the filtered kinematic and collisional diffusivities

respectively, given by:

eK kin
p ¼ 5

9
~sp

2

3
~q2
pð1þ �apg0ucÞ 1þ 5

9
~sp

nc
~sc

� ��
ðB:16Þ

eK coll
p ¼ �apg0ð1þ ecÞ

6

5
eK kin

p þ 4

3
dp

ffiffiffiffiffiffiffiffiffiffi
2

3

~q2
p

p

s2
4

3
5 ðB:17Þ

~Rp;ij
@eUp;i

@xj
is the production of filtered particle agitation by the filtered

particle velocity gradient. The terms Ki; S; E; F and Q are sub-grid

contributions and are defined by the following relations:

Ki ¼ ap Kkin
p þ Kcoll

p

� � @q2
p

@xi
ÿ �ap

eK kin
p þ eK coll

p

� � @~q2
p

@xi
ðB:18Þ

S ¼ Rp;ij

@Up;j

@xi
ÿ eRp;ij

@ eUp;j

@xi
ðB:19Þ

E ¼ 1

3
1ÿ e2c
ÿ �

qp

ap

sc
q2
p ÿ

�ap

~sc
~q2
p

� �
ðB:20Þ

F ¼ 2qp

ap

sp
q2
p ÿ

�ap

~sp
~q2
p

� �
ðB:21Þ

Q ¼ ÿ @

@xi
�apqp

gq2
pUp;i ÿ ~q2

p
eUp;i

� �
ðB:22Þ

Appendix C. Dynamic adjustment of the model constant Kbb

Parmentier et al. (2012) proposed adjusting the model con-

stants Kbb dynamically by using a method adapted from Germano

et al. (1991) and Lilly (1992). The constant are dependent on both

the case simulated and the direction. The idea is to estimate values

of Kbb for each cell during the simulation on a coarse grid, by per-

forming a filtering operation of variables over cells in the neigh-

bourhood. Test-level filtered function �̂f can be averaged over the

base level function �f for a uniform 3D mesh

b�f ðx; tÞ ¼ 1

7
ð�f ðx; tÞ þ �f ðxþ bDex; tÞ þ �f ðxÿ bDex; tÞ þ �f ðxþ bDey; tÞ

þ �f ðxÿ bDey; tÞ þ �f ðxþ bDez; tÞ þ �f ðxÿ bDez; tÞÞ ðC:1Þ

where bD is the test-level filter width. Parmentier et al. (2012) tested

the function gðD�; �apÞ at the test and the base filter levels. They state

that both functions are nearly independent of the choice of the filter

width. The model at the base level is given by:

�ap
eV d;b ¼ apðUg;b ÿ Up;bÞ ÿ �apðeUg;b ÿ eUp;bÞ

¼ Kbbf ðD�Þhð�apÞ�apðeUg;b ÿ eUp;bÞ ðC:2Þ



Consequently, one can define the sub-grid drift velocity T b at test

scale as

T b ¼ dapðUg;b ÿ Up;bÞ ÿ �̂apð beU g;b ÿ beU p;bÞ ðC:3Þ
The difference between the sub-grid drift velocity at the test scale

and the filtered sub-grid drift velocity
d

�ap
eV d;b ¼ dapðUg;b ÿ Up;bÞÿ

d
�apðeUg;b ÿ eUp;bÞ is

Lb ¼ T b ÿ d
�ap
eV d;b ¼ d

�apðeUg;b ÿ eUp;bÞ ÿ �̂apð beU g;b ÿ beU p;bÞ ðC:4Þ
T b at scale bD is given by

T b ¼ Kbbf ðbDÞhð�̂apÞ�̂apð beU g;b ÿ beU p;bÞ ðC:5Þ
d

�ap
eV d;b is calculated by

d
�ap
eV d;b ¼ d

KbbfðD�Þhð�apÞ�apðeUg;b ÿ eUp;bÞ ðC:6Þ
Substitution of these expressions into Eq. (C.4) leads to the follow-

ing relations:
Lb � KbbMb ðC:7Þ
where Mb ¼ f ðbDÞhð�̂apÞ�̂apð beU g;b ÿ beU p;bÞ ÿ d

fðD�Þhð�apÞ�apðeUg;b ÿ eUp;bÞ.
We assume that the scale variance of Kbb is negligible at two differ-

ent scale levels. Thus, we can obtain a model coefficient as

Kbb �
Lb

Mb

ðC:8Þ

To avoid numerically unstable values of Kbb, we calculate the do-

main-averaged model coefficient along the mean flow as follows:

Kbb �
hLbMbi
hMbMbi

ðC:9Þ

For three-dimensional simulations, the model coefficients along the

longitudinal and transverse directions are assumed to be the same

and given by following relation:

K ll ¼ K tt ¼
hLlMl þ LtMti

M2
l þM2

t


 � ðC:10Þ

C.1. Dynamic procedure for Mixed model

In order to obtain an expression for Kbb, a similar procedure to

the one given for the dynamic functional model can be performed.

T b can be defined at test scale as

T b ¼
bD2

12

@ �̂ap

@xj

@
beU g;b

@xj
þ Kbbf ðbDÞhð�̂apÞ�̂apð beU g;b ÿ beU p;bÞ ðC:11Þ

The difference between the test and filtered scales is

Lb ¼ T b ÿ d
�ap
eV d;b ¼ d

�apðeUg;b ÿ eUp;bÞ ÿ �̂apð beU g;b ÿ beU p;bÞ ðC:12Þ
d

�ap
eV d;b is calculated by

d
�ap
eV d;b ¼

dbD2

12

@�ap

@xj

@ eUg;b

@xj
þ d

KbbfðD�Þhð�apÞ�apðeUg;b ÿ eUp;bÞ ðC:13Þ

Substitution of these expressions into Eq. (C.12) leads to

Lb � Hb þ KbbMb where

Mb ¼ ÿf ðbDÞhð�̂apÞ�̂apð beU g;b ÿ beU p;bÞ

þ d
fðD�Þhð�apÞ�apðeUg;b ÿ eUp;bÞ ðC:14Þ

and

Hb ¼
bD2

12

@ �̂ap

@xj

@
beU g;b

@xj
ÿ D2

12

d
@�ap

@xj

@ eUg;b

@xj
ðC:15Þ

We assume that the scale variance of Kbb is negligible at two differ-

ent scale levels. Thus, the model coefficient is given by

Kbb ¼
hðLb ÿHbÞMbi

hMbMbi
ðC:16Þ

The model coefficients along the longitudinal and transverse direc-

tions are given by Eq. (C.10).

Appendix D. Derivation of the Gradient and Full Tensor models

The Gradient and Full Tensor models can be derived from the

Taylor series expansion for a variable /,

/ðxÞ ¼ /ðx0Þ þ
@/

@xj
ðx0ÞIj þ

1

2

@2/

@xjxk
ðx0ÞIjk þOðD3Þ ðD:1Þ

where Ij ¼ ðxj ÿ xj0 Þ and Ijk ¼ ðxj ÿ xj0 Þðxk ÿ xk0 Þ. Performing filtering

on this expansion gives

�/ðxÞ ¼ /ðx0Þ þ
@/

@xj
ðx0ÞIj þ

1

2

@2/

@xjxk
ðx0ÞIjk þOðD3Þ ðD:2Þ

Multiplying the series expansions for the scalar, /, and the vector, ki,

then filtering yields

/kiðxÞ ¼ /ðx0Þkiðx0Þ þ /ðx0Þ
@kiðx0Þ
@xj

þ kiðx0Þ
@/ðx0Þ
@xj

� �
Ij

þ 1

2
/ðx0Þ

@2kiðx0Þ
@xj@xk

þ kiðx0Þ
@2/ðx0Þ
@xj@xk

" #(
ðD:3Þ

þ @/

@xj
ðx0Þ

@ki
@xk

ðx0Þ
�
Ijk ðD:4Þ

Multiplying the series expansion for the scalar, �/, and the vector, ki,

leads

/kiðxÞ ¼ /ðx0Þkiðx0Þ þ /ðx0Þ
@kiðx0Þ
@xl

Il þ /ðx0Þ
@2kiðx0Þ
@xl@xm

IlIm

þ @/

@xj
ðx0Þkiðx0ÞIj þ

@/

@xj
ðx0Þ

@kiðx0Þ
@xl

IjIl þ
@/

@xj
ðx0Þ

� @2kiðx0Þ
@xl@xm

IjIlIm þ @2/ðx0Þ
@xj@xk

kiðx0ÞIjIk þ
@2/ðx0Þ
@xj@xk

� @kiðx0Þ
@xl

IjIkIl þ
@2/ðx0Þ
@xj@xk

@2kiðx0Þ
@xl@xm

IjIkIlIm ðD:5Þ

The series expansion of the particle volume fraction, ap, is

�apðxÞ ¼ apðx0Þ þ
@ap

@xj
ðx0ÞIj þ

1

2

@2ap

@xjxk
ðx0ÞIjk ðD:6Þ

The series expansion of the filtered gas velocity, eUg;i, by replacing

the unweighted filtering with Favre-filtering is given as

eUg;iðxÞ ¼ eUg;iðx0Þ þ
@ eUg;i

@xl
ðx0ÞeI l þ

1

2

@2 eUg;i

@xlxm
ðx0ÞeI lm ðD:7Þ

The filtering of the multiplication of the particle volume fraction

and gas velocity is

apUg;iðxÞ ¼ apðx0ÞUg;iðx0Þ

þ apðx0Þ
@Ug;iðx0Þ

@xj
þ Ug;iðx0Þ

@apðx0Þ
@xj

� �
Ij

þ 1

2
apðx0Þ

@2Ug;iðx0Þ
@xj@xk

þ Ug;iðx0Þ
@2apðx0Þ
@xj@xk

" #
Ijk

þ @ap

@xj
ðx0Þ

@Ug;i

@xj
ðx0ÞIjk ðD:8Þ

The general model for the sub-grid drift flux, �ap
eV d;i ¼ apUg;i ÿ �ap

eUg;i,

can be obtained by the subtraction of the multiplication of Eqs.

(D.6) and (D.7) from Eq. (D.8) as



�ap
eV d;i ¼

1

2
ap

@2Ug;i

@xj@xk
Ijk ÿ

1

2
ap

@2Ug;i

@xl@xm
eI lm þ @ap

@xj

@Ug;i

@xk
Ijk ÿ

1

4

� @2ap

@xj@xk

@2Ug;i

@xl@xm
IkleI lm ðD:9Þ

with Ik ¼ 0 if x0 is the centroid of the filtering volume. By following

Okong’o and Bellan (2004), we assume Ij ’ eI j and Ijk ’ eI jk. For a

cubic top-hat filter, Ijk is equal to D2djk=12 leading to

�ap
eV d;i ¼

D2

12

@ap

@xj

@Ug;i

@xj
ÿ D4

576

@2ap

@xj@xk

@2Ug;i

@xj@xk
ðD:10Þ
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