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1 Introduction

The impacts of the COVID-19 crisis on European electricity markets are reminiscent

of the anticipated consequences of the ongoing energy transition. Energy e�ciency

improvements and increasing shares of intermittent renewables, producing at near-zero

marginal costs, tend to depreciate wholesale electricity prices by reducing the market

share of conventional generators. In the long-run, “too low” prices would lead to

early power plant retirements and insu�cient capacity investment in necessary flexible

back-up technologies, which, in turn, would compromise both system reliability and

e�ciency. The energy transition may therefore exacerbate issues related to the “missing

money problem”, and more generally market incompleteness, unless markets are able

to provide adequate scarcity signals.

In this paper, we argue that the sanitary crisis underlines the weaknesses of the

current design of electricity markets in the face of ambitious environmental objectives.

First, we develop a method to quantify the impacts of the COVID-19 crisis on inter-

connected electricity markets, and decompose the revenue loss for producers, retailers

and grid operators with respect to their anticipation. We study di↵erent counterfac-

tual scenarios, including one where the pandemic had occurred assuming renewable

capacity was at the European Union’s 2030 target. We also discuss observed market

outcomes during the crisis in light of the energy transition. The empirical analysis

focuses on the French electricity market. This market was one of the most a↵ected in

Europe due to the abundance of low-cost energy from nuclear plants combined with

the drastic nationwide containment measures implemented by the government.

On March 16th 2020, French President Macron announced a nationwide lockdown

as a measure to slow down the COVID-19 epidemic in France. This lockdown remained

in force until May 11th. Around the same period, almost all European countries have

enacted similar containment measures. Those measures have had important impacts

on European power systems. The main short-term consequences have been the sig-

nificant reductions in electricity consumption. CRE (2020a) reports a 15% reduction

during the first lockdown in France compared to 2019. Renewable and nuclear energies

were the two major production sources during this episode while security of supply was

ensured by the flexibility of nuclear and hydro power plants. Fossil-fuel generation was
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reduced by 53% (CRE, 2020a) in comparison to 2019. This slump in power consump-

tion, combined with very low commodity prices caused by a depressed world energy

consumption, and abundant near-zero marginal cost production from renewables, has

resulted in unexpectedly low spot power prices. The crisis has also modified the nu-

clear maintenance and refueling calendars in France, leading to anticipations of lower

nuclear power production until 2022 (CRE, 2020a).

As part of the Clean energy for all Europeans package adopted in 2019 (European

Commission, 2019), France’s 2030 National Energy and Climate Plan aims for 33%

renewable energy in its total energy mix (NECP, 2020). It implies that domestic

power generation from renewable sources is set to increase from 21% in 2019 to 40%

by 2030. The bulk of this increase will have to come from wind and solar power given

the limited potential for new hydro power plants. At the same time, the share of

nuclear energy is set to decrease from 71% to 50% (RTE, 2019). In Europe, the share

of electricity produced by renewable energy sources is expected to increase from 25% to

more than 50% by 2030. The Clean energy for all Europeans package includes directives

to design future highly renewable electricity markets. The EU Commission essentially

proposes an energy-only market design with increased cross-border trade, along with

additional market-based incentives for flexibility resources (e.g. energy storage and

ancillary service providers, etc.). This design may, unfortunately, fall short in providing

the adequate signals to guarantee long-term reliability and e�ciency (Newbery et al.,

2018).

Contributions and main results. This paper has three main contributions. First,

we evaluate the impacts of the pandemic on electricity demand, polluting emissions

and generation by technology in France using a machine-learning approach. Second,

we combine a structural econometric model and our machine learning predictions to

disentangle the respective short-term e↵ects of demand reductions and depressed fuel

prices on wholesale prices in the day-ahead market while accounting for endogenous

cross-border electricity trade. Third, the estimates are used to assess losses in revenues

for suppliers, retailers and grid operators. We conclude the paper with a discussion

about market design adjustments for the energy transition.

Our results show that load patterns have been significantly modified and electricity
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consumption has reduced by around 12% between March 16, 2020 and May 31, 2020.1

These demand reductions led to important modifications of the supply mix. Fossil-fuel

generation has dropped to historically low levels. Nuclear power plants have been used,

jointly with hydro plants, to balance fluctuations in demand and renewable output,

thanks to their manoeuvrability. The greater share of low carbon production, together

with decreased demand, have driven CO2 emissions down by 28% during this period.2

We also remark that load forecast errors have surged for a limited time period after

the enactment of containment measures.

The combination of demand reductions, caused by the lockdown, and low commod-

ity prices, led to a reduction of average wholesale electricity prices from 27.6 §/MWh

to 15.3 §/MWh. We find that about 50% of this price decrease can be attributed

to low fuel prices. The aggregate decrease in day-ahead market value is found at 1.3

billion § (B§), that is -47%. The impacts of the crisis might have been larger for

France than for other European countries due to the abundance of low-cost nuclear

power and intermittent renewables. As evidence of this claim, we find that net exports

have increased by 4.7 TWh (+50%) in total during this period, despite the existence

of similar containment measures in neighboring countries.3 A counterfactual scenario

under the 2030 renewable target of 40% is considered for France. It reveals that a

shock comparable to the pandemic in a highly renewable electricity market would have

resulted in even lower prices, down to an average of 8.5 §/MWh, and nearly 50% larger

market impacts.

Gross revenue losses for producers and retailers depend on each actor’s respective

hedging position, which are not observable. The actual impacts lie in-between two

hypothetical scenarios. If retailers had their entire expected demand covered by futures

contracts, then they would have borne nearly all market losses whereas some suppliers

would have made a profit thanks to the crisis. Indeed, hedging acts against price risk

but not against volume risk like the large demand reductions observed during the crisis.

Reversely, if retailers had no hedging contracts at all, then they would have obtained

sligthly larger revenues while suppliers would have borne all losses – with the largest

1Relative changes are calculated with respect to their (estimated) counterfactual level assuming
the pandemic had not occurred.

2RTE (2020b) evaluates this reduction at around 35% for April only.
3The market impacts in other systems are beyond the scope of this paper.
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impact for the nuclear power producers. In addition, we find that the distribution

grid operator has lost above 80 million § (M§) in net revenues, that is roughly 2.5%

of the operator’s annual revenues from network charges (CRE, 2020c). The losses for

the transmission grid operator are expected to be of similar magnitude. Operators are

nevertheless fully compensated for those losses by the regulator (CRE, 2021a).

Not all end-users had unusually low consumption during the spring of 2020. For

eastern France, INSEE (2021) finds that commercial and industrial usage reduced by

up to 30% during the first lockdown whereas household consumption increased by as

much as 10%. A notable fact is that the substantial, though temporary, reductions

in wholesale electricity prices did not pass-through to end-users under regulated tar-

i↵s. Most consumers pay regulated rates which have increased (on average by +1.5%)

following the biannual regulatory hearings in August 2020, January 2021 and August

2021, essentially due to increased transport costs (CRE, 2020b, 2021b).

Finally, we argue that observed prices and market shares by generation technol-

ogy at the onset of the pandemic are informative about future market outcomes with

abundant renewable power, where wholesale prices will fall in a more sustainable way.

France’s 2030 renewable objectives are to increase the share of renewable power and

to decrease that of nuclear power. Our structural estimates indicate a negative price

e↵ect of about -14 §/MWh, which is comparable to the above-mentioned impacts. The

incompleteness of current electricity markets, as discussed later on, suggests that those

prices may not provide adequate signals about the needs for dispatchable capacity in

the future.

Literature. This paper is related to several strands of the literature. First, it con-

tributes to quantify the pandemic’s consequences on energy markets. There are several

papers evaluating demand reductions, forecast errors and market impacts in worldwide

electricity markets, including Benatia (2020); Benatia and Gingras (2021), Ghiani et al.

(2020), Leach, Rivers and Sha↵er (2020), Narajewski and Ziel (2020), Percy and Moun-

tain (2020), Ruan et al. (2020), Zhong et al. (2020), and all market impact analyses

conducted by system operators (AESO, 2020; ERCOT, 2020; PJM, 2020; NYISO, 2020;

RTE, 2020b). Gillingham et al. (2020) discuss how the crisis may have detrimental long-

run consequences for clean energy innovation, in particular by postponing renewable
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capacity investments. Wigand et al. (2020) show short-term evidence of such delays

caused by disruptions in global supply chains, and document a significant decrease in

renewable tender auction prices. At the macroeconomic level, Cicala (2020) makes

use of measured demand reductions from European electricity systems to quantify the

economic consequences of the crisis. We contribute to this literature by providing an

in-depth analysis of the pandemic consequences on France’s electricity system, which

was one of the main epicenters in Europe.

Second, our empirical framework is based on a machine learning approach to es-

timate counterfactual outcomes in a micro-economic context. This approach builds

upon ideas from Burlig et al. (2020). Related approaches are used, among others, in

Benatia and Gingras (2021), Benatia and Billette de Villemeur (2021), Fabra, Lacuesta

and Souza (2021), and Graf, Quaglia and Wolak (2020). The latter argues, somehow

similarly to the present paper, that realized demand reductions provide insights about

the performance of future electricity markets with high penetration of renewables. Us-

ing a deep learning approach, they find substantial wholesale price decrease (-45%)

in Italy and document an increase of re-dispatch costs. They conclude that the costs

of maintaining grid reliability may increase with the share of intermittent renewables.

The advantage of using a machine learning approach in our context is to obtain pre-

cise counterfactual predictions of hourly demand. Those predictions are in turn used

as inputs in a structural model to obtain counterfactual market outcomes, including

prices.

Third, our econometric model is based on economic theory. The approach of Wol-

fram (1999) is used to develop the functional form of the aggregate supply function. In

addition, we endogenize cross-border exchanges by estimating the net import supply

functions using an approach similar to Bushnell, Mansur and Saravia (2008), Brown

and Olmstead (2017) and Mansur (2007). We provide justification for a di↵erent set of

instrumental variables (IV) than used in the above-mentioned papers: renewable power

production. Similar IVs have been used for estimating electricity demand elasticities

in Debia, Benatia and Pineau (2018) and Fabra et al. (2021).

Finally, there is a burgeoning literature on electricity market design for highly-

renewable markets. We summarize the most important results here, and discuss their

implications in light of our analysis in the discussion section.
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Electricity markets are subject to multiple market failures. The environmental ex-

ternality and generators’ market power are well-known failures (Fischer and Newell,

2008; Borenstein, Bushnell and Wolak, 2002). In addition, retail and wholesale prices

do not fully reflect scarcity. First, retail prices are independent of hourly demand and

supply variations. Ambec and Crampes (2012) use a micro-theoretic model to show

that energy-only markets4 with large shares of intermittent renewables cannot decen-

tralize the optimal energy mix in absence of price-elastic consumers. Second, wholesale

prices are state-contingent but remain imperfect scarcity signals. The advocates of the

energy-only market design argue that market price caps, used to mitigate abuse of

market power, preclude firms to collect scarcity rents to recoup their investment costs,

and lead to under-investment in new capacity (Hogan, 2005). This is known as the

“missing money problem” (Joskow, 2008). However, Fabra (2018) shows that the exis-

tence of market power alone leads to under-investment, even without price caps. She

considers, instead, that the root of under-investment is related to missing markets for

capacity availability. Indeed, capacity availability generates a positive externality by

contributing to system reliability, even when not used for production. In line with

Cramton and Stoft (2006), she shows that addressing the missing money problem in

the presence of market power requires the introduction of capacity payments unrelated

to actual energy production.

Petitet, Finon and Janssen (2017) note that energy prices will become more volatile

and uncertain as the share of intermittent renewables increases, which will exacerbate

issues related to under-investment, even in a perfect competition framework. They

contribute to this literature by showing that capacity mechanisms are more e�cient

than scarcity pricing to reach similar levels of reliability, if investors are risk-averse.

Relatedly, Levin and Botterud (2015) demonstrate that capacity payments or regulated

scarcity tari↵s, established to improve the scarcity signal of energy prices when demand

exceeds supply, will be increasingly needed to safeguard supply security. However, the

design of capacity payments requires careful considerations to achieve e�cient and

reliable systems (Byers, Levin and Botterud, 2018).

4In energy-only markets, suppliers earn revenues solely by selling their energy production to the
wholesale market. In alternative market designs, suppliers can obtain additional remunerations by
providing additional services, such as for grid reliability (e.g. capacity availability or ancillary services),
which can be market-based or sold at regulated tari↵s.
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In the face of ambitious renewable objectives, there are other missing markets.

Henriot and Glachant (2013) argue that the market design should reflect the changes

brought by renewable energy deployment: lower predictability, increased short-time

variations and greater spatial granularity. Newbery et al. (2018) consider that the

associated externalities should be addressed as directly as possible: by introducing

more granular prices through time and space, through locational prices and additional

markets with di↵erent delivery horizons. Leslie et al. (2020) recommend similar adjust-

ments, and argue that those would be su�cient for the energy-only market design to

deliver e�cient and reliable systems, assuming market power mitigation mechanisms

are e↵ective.

The remainder of the paper is organized as follows. Section 2 presents the French

electricity sector and estimates the pandemic’s impacts on demand, forecast errors,

CO2 emissions and generation by technology. Section 3 evaluates the market impacts

and studies a variety of counterfactual scenarios. Section 4 discusses implications for

the energy transition. Section 5 concludes the paper.

2 The French electricity sector and the pandemic

2.1 The French electricity market

The French electricity industry is subject to market competition in the generation and

retail segments since the introduction of the First and Second Energy Packages of the

European Union in 1996 and 2000.

The transmission and distribution segments are regulated monopolies. Réseau de

Transport d’Électricité (RTE) is the legal entity in charge of grid reliability, system

operations and the transmission network. Its counterpart for the distribution network

is Enedis, which is in charge of the delivery to end-users (industrial, commercial and

residential consumers). Their remuneration is based on a two-part tari↵ paid by market

participants to access grid infrastructures.

The generation segment is dominated by the historical producer, Électricité de

France (EDF), which is largely owned by the French State (84%). The company

operates 90.5 GW of installed capacity in France, including the entire nuclear fleet and
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around 75% of the total hydro capacity. It was formerly a vertically-integrated public

monopoly with RTE and Enedis. As a dominant firm, EDF is regulated in two main

ways. First, the company is contractually committed to carry out a “public service

mission” for the French State for an unlimited period. Second, electricity retailers

have a regulated access to the historical nuclear production of EDF through Accès

Régulé à l’Electricité Nucléaire Historique (ARENH) in order to promote upstream and

downstream competition. ARENH gives access to retailers to buy electricity generated

by EDF’s nuclear power plants at a regulated access tari↵ of 42 §/MWh for up to

a total of 100 TWh per year. The remainder, approximately 280 TWh per year of

nuclear power, is remunerated at wholesale (spot and forward) prices. ARENH rights

are attributed to retailers based on their respective customer base. As will be discussed

later, the low prices caused by the lockdown in France have led some retailers to renege

on their ARENH contracts, by arguing force majeure.

The rest of the generation segment is divided into two medium-sized producers:

Engie (25% of French hydro capacity and some gas turbines) and Gazel Energy (2 coal-

fired power plants and some renewables), and a fringe of independent producers which

operates around 5% of domestic production, mainly from renewables. Remunerations

for renewable power plants are guaranteed through feed-in contracts which conditions

vary across technologies and commissioning dates. Wholesale suppliers are remuner-

ated from the wholesale market and long-term contract arrangements.5 This market is

part of the European Power Exchange. It is organized as a sequential multi-unit auc-

tion where retailers buy wholesale energy from electricity suppliers. The day-ahead (or

spot) market takes place one day prior to physical production and is used to allocate

resources e�ciently based on demand forecasts for the following day. The real-time (or

intraday) market is operated near real-time and is essentially used to balance forecast

errors and other contingencies.

In 2019, 71% of domestic electricity production came from nuclear power genera-

tors, 10% from hydro plants, 11% from other renewables (wind, solar and biomass),

and only 8% from fossil fuel plants (natural gas, oil and coal). In addition, the French

electricity system is interconnected with 33 European countries through 6 main inter-

faces (Belgium, Germany, Italy, Spain, Switzerland, and the United Kingdom). France

5Note that a capacity market was introduced in 2017.
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is a net exporter of electricity. 473 TWh of electricity was consumed in the country in

2019 while 84 TWh was exported and 28 TWh were imported – mostly from Germany

(50%) during cold winter days (RTE, 2019).

Finally, the retail segment of the industry is composed of 27 actors. Historical sup-

pliers (Engie and EDF) covered 75% of residential demand and 55% of non-residential

consumption as of March 2020. The remainder was supplied by alternative retailers

(CRE, 2020d). 32% of the total power consumption is still under regulated tari↵s ac-

cessible to consumers with less than 36 kVA. One third of the residential tari↵s cover

grid operation costs, one third is for energy production, and the rest covers taxes and

subsidies to renewable energy.

2.2 Counterfactual demand, generation and emissions

In this section, we follow an approach similar to Benatia and Gingras (2021) to esti-

mate the counterfactual electricity demand, emissions and generation by technology, at

the hourly level, assuming the COVID-19 crisis had not happened. These counterfac-

tual estimates will allow us to evaluate the hourly market impacts and revenues losses

caused by the crisis once combined with the structural model in Section 3. More stan-

dard regression methods would unfortunately lead to much less precise counterfactual

predictions.

The analysis focuses on the period spanning from March 2020 to May 2020, and

uses data from January 2014 to May 2021. The data has been collected from ENTSO-

E’s transparency platform,6 RTE’s Éco2mix data portal,7 and weather variables have

been web-scrapped from Reliable Prognosis.8 Table 1 shows means and standard de-

viations (in parentheses) for the main (hourly) variables of interest: actual demand

(GW), forecast errors in absolute terms (MW), day-ahead price (§/MWh), and CO2

emissions (kilotons/hour). The complete dataset and pre-processing steps are detailed

in Appendix A.

6
https://transparency.entsoe.eu/dashboard/show.

7
https://data.rte-france.com/.

8
https://rp5.ru.
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Table 1: Summary statistics (hourly values)

Year Actual load Abs. F. error DA price Emissions
2014 52.78 763.7 � 2.20

(10.84) (631.1) � (1.27)
2015 54.02 765.0 38.45 2.59

(11.60) (677.8) (12.99) (1.58)
2016 54.68 801.0 36.70 3.15

(11.51) (665.4) (24.44) (1.68)
2017 54.69 815.4 44.96 3.08

(12.53) (710.4) (20.23) (1.87)
2018 54.28 858.0 50.20 2.09

(12.20) (727.4) (18.45) (1.42)
2019 53.72 803.7 39.45 2.00

(11.53) (681.0) (14.02) (1.32)
2020 50.73 811.2 32.21 1.76

(10.88) (784.6) (16.10) (0.99)

Notes: This table shows (hourly) means and standard deviations (in parentheses) for realized
load (in GW), forecast errors in absolute terms (in MW), day-ahead price (in §/MWh), and CO2
emissions (in kilotons/h) for France. Note that price data for 2014 is missing.

Machine learning-based counterfactual predictions. Our methodology consists

in training a neural network capable of predicting the hourly electricity demand un-

der business-as-usual conditions, but without relying on recent realizations or other

variables which may have been a↵ected by the crisis. The objective is to construct a

credible counterfactual demand assuming containment measures had not been imple-

mented. It must be clear that we do not propose a forecasting model. Instead, we focus

on the discrepancies between actual realizations and counterfactual estimates which we

interpret as the causal e↵ects of the crisis on electricity demand.

This causal interpretation relies on two main assumptions. First, demand is per-

fectly price-inelastic. This assumption is standard for electricity demand as it is largely

considered as highly price-inelastic, and it allows to use machine learning prediction

techniques to predict the counterfactual demand function without addressing the price

sensitivity of demand and subsequent endogeneity issues. Second, there is no omitted

variable correlated with both the timing of the crisis and variations in past, contem-

poraneous, or future electricity demand. It implies that, for instance, there was no
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anticipatory changes in behavior. The sanitary crisis being exogenous to the economy,

this assumption should be satisfied unless important predictors, such as weather vari-

ables, are omitted from the model, or if observations too close to the lockdown period

are included in the estimation sample. For that reason, the prediction model will be

trained using the 52704 hourly observations from January 1st, 2014 to February 28th,

2020.

The neural network model, hereafter denoted FNet, has a set of 188 predictors, all

exogenous to the crisis, including:

• 95 hourly weather variables: dew point temperature, humidity, pressure, precip-

itation, temperature, visibility, wind gusts, and wind speed measured near the

largest airports located in Bordeaux, Brest, Lille, Lyon, Lyon (Satolas), Mar-

seille, Montpellier, Paris (Orly), Paris (CDG), Perpignan, Rennes, Strasbourg,

Toulouse.9

• 46 daily weather variables: minimum and maximum temperature (26 variables)

and dew point temperature (20 variables) measured at airports.

• 47 time variables: binary variables for hours of the day, days of the week, months

of the year, a linear time trend and bank holidays occurring between March to

May.10

The algorithm is a two-layer feed-forward network with a single-hidden layer and

5 neurons. We minimize the risks of overfitting in two ways. First, entire days (of 24

hourly observations) are randomly attributed to two samples: a fitting set (90%), and

a testing set (10%). This step is useful because hourly observations within a day can

be very similar hence (hourly) random splitting could lead to overfitting. Second, we

implement a cross-fitting strategy (Jacob, 2020). The fitting set is split randomly in

the same way into 10 even folds, and the model is trained 10 times using each fold

sequentially as the validation set and the 9 others as the training set.11 The model’s

9Note that some weather variables were not included because they had too many missing values.
10Included holidays are those taking place between March and June: Ascension, Fête du travail,

Armistice, Pâques, Pentecôte, and Fête de la musique. All other observations associated with holidays
(e.g. Christmas, New Year’s eve, etc.) are dropped from the sample for a total of 9 days per year.

11It is trained by minimizing the Mean-Squared-Errors (MSE) criterion using the Levenberg-
Marquardt backpropagation algorithm in MATLAB.
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predictions correspond to the median over the 10 separate models, and its performance

is evaluated on the testing set which is never used for training or validation. The

algorithm is finally used to predict hourly demand from March 1st, 2020 to May 31st,

2020.

The same approach is used to predict counterfactual hourly CO2 emissions, gener-

ation from thermal plants fueled by oil, coal, gas and biomass, and nuclear generation.

The data covers a shorter period from January 1st, 2018 to May 31st, 2020. Generation

and emissions largely depend on capacity availability and cross-border exchanges, hence

we include additional variables: wind and solar power forecasts in Belgium, France,

Germany, Switzerland, Spain, and United Kingdom (15 variables), actual wind and

solar generation in France (2 variables), cross-border transfer capacities with adja-

cent countries (8 variables), planned and forced outages at thermal, hydro and nuclear

power plants in France (4 variables), and temperature measured at airports in trading

countries (13 variables). In addition, we use the same hourly weather variables (95

variables) and time variables (47 variables) for France but we discard daily min and

max values. The network structure, the training algorithm and the sample-splitting

algorithm remain unchanged. The model includes a total of 184 variables and the

sample is relatively smaller with 16656 observations.

Predictive performance and counterfactuals. The predictive performance of

our algorithm (FNet) is described in Table 2 for demand and emissions. Results for

generation by technology are presented in Appendix B.

For demand, the performance of FNet fairs well with respect to that of RTE’s fore-

casting algorithm, in terms of both mean absolute (relative) prediction errors (MAPE)

and root-mean-squared prediction errors (RMSE).12 During the first two weeks before

the lockdown on March 16th, the two algorithms perform equivalently than for the test

set. For example, FNet exhibits a 1.6% and 2.7% MAPE, which are of similar magni-

tudes than the 2.3% MAPE for the test set. However, the MAPE surges to 15.3% for

FNet and 5% for RTE right after the lockdown came into force.

12Recall that FNet is not a forecasting algorithm. It is trained using observations prior to March
1st, 2020 and predicted for March, April and May 2020. It does not use lagged realizations of the
load but actual weather realizations to form predictions. The comparison to RTE’s algorithm is only
useful to get a benchmark for the distribution of errors.
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Table 2: Predictive performance

Demand Emissions
MAPE (%) RMSE MAPE (%) RMSE

FNet RTE FNet RTE FNet FNet
Test set 2.3 1.5 1.66 1.05 20.2 0.46
03/02-03/08 1.6 1.3 1.20 1.02 20.0 0.69
03/09-03/15 2.7 1.5 1.94 1.06 16.2 0.45
03/16-03/22 15.3 5.0 7.90 3.60 42.5 0.66
03/23-03/29 17.7 3.1 9.42 1.96 86.8 1.27
03/30-04/05 11.4 2.0 6.64 1.53 67.4 0.80
04/06-04/12 14.7 1.9 6.56 1.03 104.1 0.53
04/13-04/19 17.9 2.9 7.53 1.49 73.6 0.39
04/20-04/26 14.8 1.5 6.31 0.79 71.1 0.40
04/27-05/04 14.3 1.4 6.64 0.75 49.9 0.32
05/05-05/10 12.0 1.9 5.00 0.97 54.0 0.37
05/11-05/18 9.2 1.7 4.56 0.96 38.1 0.28
05/19-05/24 9.7 1.7 4.09 0.84 27.2 0.28
05/25-05/31 7.6 1.9 3.24 0.94 25.7 0.31

Notes: This table shows the performance of our prediction model (FNet) and RTE’s forecasting
algorithm on the test set and for all weeks from March to May 2020. Figures B.1 and B.2 in
Appendix B compares actual and counterfactual demand/emissions distributions.

The forecasting errors of RTE’s algorithm are shown in Figure 1 along with FNet’s

prediction errors.13 RTE’s errors reduced down to usual levels within 5 weeks, and the

MAPE remained well below 5%, which is evidence that RTE has adapted quickly to

the structural break created by containment measures, unlike other electricity system

operators like New York (Benatia and Gingras, 2021).

13Plotted values are moving-averages over 48 hours.
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Figure 1: Mean Absolute Prediction Errors (%)

Although forecast errors quickly attenuated, demand remained away from its usual

levels. The MAPE for FNet was much larger than 5% from March to May, and the pre-

dicted counterfactual demand under business-as-usual conditions is found consistently

larger than realized levels. Figure 2a plots 48-hours moving-averages of actual load

and predictions from mid-February 2020 to May 2020, and Figure 2b shows moving-

averages over 7 days from January 2020 to May 2021. We find that the demand

reductions caused by the pandemic were the largest during the first lockdown episode,

probably because it was tied to more drastic sanitary measures and police controls

than the subsequent episodes.
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Figure 2: Actual load and predictions

The performance of FNet to predict CO2 emissions is not as good. Nevertheless,

we observe a sharp increase in MAPE from about 20% on the test set to above 40%

during the period under study. Figure 3 shows the extent to which the crisis caused

a reduction in CO2 emissions (48-hours moving-average). The majority of emissions

reductions seem to have occurred during the first weeks of the lockdown.
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Figure 3: CO2 emissions

Finally, the counterfactual generations by technology (48-hours moving-average)
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are reported in Figure 4. The test set yields a MAPE 14% and 2.3% for thermal and

nuclear generation, respectively.14 We find systematic downward deviations of thermal

and nuclear generations after the lockdown was enacted. Thermal production was

considerably reduced from mid-March to early May. Interestingly, its level was kept

nearly constant at record lows because of the small residual demand. The equilibrium

between supply and demand was instead assured by the load-following capabilities of

nuclear and hydro plants. Figure 4b shows that the fluctuations of nuclear generation

have been unusually large during this period.
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Figure 4: Actual and predicted generation (FNET)

Reduced demand and new load patterns. Weekly demand and emissions re-

ductions during the lockdown were substantial. They are estimated as the aggregated

di↵erences by week between realized demand and its counterfactual had the crisis not

occurred. Table B.2 in Appendix B the weekly estimates and standard errors (in paren-

theses). The largest reduction in electricity consumption occurred during the first and

second weeks of the lockdown with -1228 GWh (-12.9%) and -1502 GWh (15%) of

weekly demand. At the same time, emissions dropped by 62 and 179 kilotons (46%).

From March 16th to May 31st, consumption was 10.6 TWh smaller than usual, that

is about 12%, and emissions have been 28% smaller. For comparison, Benatia and

14Density plots of actual and predicted output are shown in Figures B.3 and B.4 in Appendix B.
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Gingras (2021) finds that demand had reduced by about 8% over the same period in

the state of New York, the initial COVID-19 epicenter in North America.

As teleworking became the new normal and public transportation was shutdown,

new daily load patterns have emerged. Table 3 reports the average estimates of relative

demand reduction by time of the day from March 23 to May 4, 2020. In relative terms,

the largest consumption reduction occurs during the morning peak with -18.1% during

weekdays and -14.1% during week-ends.

Table 3: Average daily load reductions

Night Morning Afternoon Evening
10PM-6AM 6AM-12PM 12PM-6PM 6PM-10PM

Weekdays (%) �10.8 �18.1 �13.9 �13.4
(1.1) (1.1) (0.9) (1.0)

Week-ends (%) �9.2 �14.1 �10.0 �9.7
(1.2) (1.4) (1.2) (1.2)

Notes: This table shows average load reductions in relative terms caused by lockdown measures,
separately for weekdays and weekends. Standard errors, taking account of the correlation of hourly
errors within a day, are reported in parentheses.

The consumption timing has also changed. Figures 5a and 5b show the average

hourly loads (actual and counterfactual) for weekdays and week-ends. Lockdown mea-

sures shaved the morning and evening peaks during weekdays. During week-ends,

morning consumption increased more sharply than usual, suggesting that sheltering

measures have a↵ected sleeping and consumption patterns.
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Figure 5: Daily load patterns

3 Measuring market impacts

In this section, we develop a methodology to estimate the impacts of demand reduc-

tions and natural gas price reductions on the day-ahead market. This approach follows

similar steps than Benatia and Gingras (2021) for New York. Our principal contribu-

tion is that we fully address the endogeneity of prices by accounting for endogeneous

cross-border exchanges with adjacent electricity systems. Market-coupling is a key

component of European electricity markets as prices are settled altogether in a com-

mon dispatch algorithm. It is therefore crucial to account for cross-border exchanges.

Summary statistics of the main variables used in this analysis are presented in Table

4. In this section, we separately estimate the net import function and domestic supply

function for France using the pre-pandemic sample spanning from January 2018 to

February 2020.
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Table 4: Summary statistics (Jan 2018 to Feb 2020)

Price NetImp NatGas Q N Wind Out.
Mean 43.96 -7.05 17.52 12.35 44.50 3.62 1.55
Std 17.21 4.10 6.00 5.23 6.21 2.71 1.42
1st percentile 6.02 -14.70 8.63 2.59 32.51 0.52 0.00
99th percentile 88.18 4.36 29.53 25.99 57.16 12.10 5.73

Notes: This table shows (hourly) means, standard deviations, 99th percentiles and 1st percentiles
of the Day-ahead price (§/MWh), net imports (GW), natural gas price (§/MWh), domestic pro-
duction net of wind, solar and nuclear production denoted by Q (GW), nuclear power production
denoted by N (GW), domestic wind power forecast (GW), and nuclear capacity under forced
outage (GW).

3.1 Net import curve

The European electricity market is a zonal market with multiple trading zones, each

covering an entire country or spreading over a larger region, and with limited exchange

capacities between zones. The French electricity system consists in a single trading zone

interconnected to the rest of the European system through interfaces with Belgium,

Germany, Italy, Spain, Switzerland, and the United Kingdom.

We aim at estimating the net import function, that is how net imports of electricity

in France vary with the local day-ahead price. In order to simplify the analysis, we focus

on the aggregate net imports across all six interfaces. Our methodology is inspired by

previous papers in the economics literature, e.g. Brown and Olmstead (2017).

Specification. Let It be the net imports at time t, Pt be the day-ahead (DA) price

in France, and Zt be exogenous covariates in other countries. In a general equilibrium

model, It results from a system of price equations subject to constraints on exchange

capacities. We follow a partial equilibrium approach by focusing only on France. We

specify the net import curve as the linear function of prices given by

It = �IPt + �IZt + "t, (1)

where "t is a mean-zero error term, and the parameters of interest are �I and �I .

�I captures the e↵ect of an increase in the local spot price (i.e. in France) on net
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imports. It corresponds to the slope of the net imports curve. We expect this parameter

to be positive: as the local price increases it is more likely that foreign countries find

profitable to export to France. Reversely, as the price decreases, other countries may

find profitable to import electricity produced in France, which would increase exports

(hence reduce net imports) in France.

�IZt measures the extent to which other countries are willing to export to France,

and France is willing to import, accounting only for foreign demand and supply condi-

tions and independently of the French price. It corresponds to the intercept of the net

imports curve. This term is important to obtain credible counterfactual prices because

other countries have also been a↵ected by the crisis. More specifically, their demand

for electricity produced in France may have di↵ered from business-as-usual not only

because of the e↵ect of the crisis on the French price, but also due to its e↵ects on their

local demand.

The variables in Zt include: 7 temperature variables measured at airports in Barcelona,

Brussels, Frankfurt, Geneva, London, Paris (CDG) and Turin; 14 variables for renew-

able power forecasts (solar, onshore wind and o↵shore wind) in Belgium, Germany,

Spain, Switzerland and the United Kingdom, and solar power forecast in France;15 8

variables measuring expected interconnection capacity limits with Italy, Spain, Switzer-

land and the United Kingdom (in both directions).16 In addition, we include a set of

57 time dummies for hours of the day, days of the week, months, bank holidays in

France and a linear time trend, leading to a total of 87 control variables in addition to

the endogenous price variable.

Identification. The identification of �I and �I requires that the error "t be uncor-

related with Pt and Zt. The former condition is violated since Pt is simultaneously

determined with It in equilibrium. To solve this endogeneity problem, we pursue an

instrumental variable (IV) approach. A valid IV a↵ects It only through Pt, the local

price. We opt for wind power forecast in France which a↵ects the (day-ahead) price in

France through the merit-order e↵ect, but does not a↵ect (or is not correlated with)

demand or supply conditions in other countries – as long as one controls for foreign re-

15Data on renewable forecasts for Italy has too many missing in our sample.
16This information is not available for Belgium and Germany because there is no direct current

interconnection.
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newable power production and weather conditions. We consider it to be more suitable

than local weather conditions for instrumentation because temperature, for example,

is likely to be strongly correlated across countries. Thus, using local weather as an

instrument while controlling for foreign weather conditions would leave little identify-

ing variations. In comparison, domestic wind power production is less predictable and

tends to be much less correlated to foreign weather and renewable outputs.

Estimation. Model (1) is estimated using least-squares and two-step (linear) IV-

GMM on hourly observations from January 1, 2018 to February 28, 2020. The weight-

ing matrix used for those estimations corresponds to the Newey-West covariance matrix

robust to arbitrary autocorrelation and heteroskedasticity with automated lag selection

(14 hourly lags).

Table 5 shows the estimation results of three regressions. The first column reports

the estimates of (1) without correcting for the endogeneity of Pt. The second column

shows the estimates of the first-stage, that is the regression of Pt onto wind power

forecast in France Wind.FR and Zt. The third column reports the coe�cients of (1)

while using Wind.FR as an IV for Pt. We show only the 10 most significant coe�cients

associated with exogenous (and non-deterministic) covariates, as measured by their t-

statistic from the IV regression.

The IV regressions yields a significantly larger coe�cient for Pt than least-squares,

revealing a downward endogeneity bias. The first-stage results validate Wind.FR as a

good IV, in the sense that it is strongly correlated with Pt, conditionally on covariates.

Its coe�cient is negative, which is in line with the well-known result that wind power

tends to depreciate prices.17

The most significant covariates, neglecting time controls, are transmission capaci-

ties with the United Kingdom and Italy, and renewable power production in foreign

countries. For instance, more solar power generation in Germany is associated with

larger net imports in France. Remark that we do not need to identify these coe�cients

individually because we only care about the (aggregate) intercept term �IZt.

17Formal hypothesis testing based on the generalized rank tests of Kleibergen and Paap (2006)
yields a p-value below 0.001 against the null hypothesis of under-identification and a maximum Wald
test size distortion caused by weak identification between 15% and 20% (F-test = 8.1, 20% quantile
= 6.7).
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Table 5: Estimates of the net import function

(LS) (FS) (IV)
Net Imports Price Net Imports

Price (Endog.) 0.09 0.77
(0.01) (0.25)

Wind.FR (IV ) �0.48
(0.16)

TC.FR.UK 0.90 �0.88 1.41
(0.16) (0.33) (0.32)

TC.UK.FR �1.24 �0.24 �0.98
(0.15) (0.28) (0.23)

TC.FR.IT �0.54 0.80 �1.09
(0.08) (0.31) (0.31)

Solar.DE 1.29 �0.79 1.83
(0.19) (0.68) (0.53)

Solar.BE 0.72 �1.45 1.72
(0.15) (0.51) (0.51)

Solar.FR �1.03 0.90 �1.81
(0.20) (0.66) (0.55)

Solar.CH 0.57 �1.55 1.64
(0.14) (0.50) (0.52)

WindOff.UK 0.59 �4.76 3.86
(0.14) (0.53) (1.24)

WindOns.ES 0.28 �1.25 1.30
(0.07) (0.29) (0.43)

WindOns.DE 0.73 �0.36 0.94
(0.10) (0.40) (0.31)

WindOns.UK �0.28 2.78 �2.19
(0.09) (0.34) (0.73)

Dummies Hours/Weekdays/Months/Years/Holidays
# Covariates 88 88 88
Obs 18818 18818 18818
RMSE 2.5 9.9 7.3

Notes: This table reports regression results for the net import function specified in (1) using ordi-
nary least-squares (LS), the first-stage of Pt onto Wind.FR as IV (FS) and linear IV-GMM of (1)
(IV). Standard errors are computed using the Newey-West covariance estimator with automated
lag selection. They are robust to arbitrary heteroskedasticity and autocorrelation. Covariates in-
clude weather variables, transfer capacities with foreign countries, renewable production forecasts
by trading country, and dummies for hours of the day, days of the week, months, bank holidays
in France and a linear time trend. The last row reports the root-mean-squared-error (RMSE).
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3.2 Day-ahead market

The day-ahead prices across Europe are computed by a single algorithm maximizing

the overall welfare.18 The algorithm, called “Euphemia”, calculates prices for each

zone, for each hour of the following day, as well as implicitly allocating auction-based-

cross-border capacities. The prevailing hourly price, for a given zone, corresponds

approximately to the price bid of the generation unit called into operation with the

highest-accepted bid price. Under perfect competition, this price coincides with the

unit’s marginal cost of production. In practice, price bids include mark-ups or mark-

downs depending on the firm’s forward position and ability to exercise market power.

Let us specify the aggregate supply as

Pt = �QQt + �NNt + �NGt + ⇢Zt + ⇠t. (2)

which is a linear function of thermal and hydro production Qt, nuclear production

Nt, natural gas prices NGt, additional covariates Zt, and a zero-mean error term ⇠t.

This specification corresponds to a piecewise linear supply function with two technolo-

gies: nuclear plants Nt, and thermal and hydro plants Qt = Dt � Nt � It � Rt, with

Dt being demand, It being net imports and Rt being domestic renewable output. The

exogenous covariates Zt are the same as in (1).

Model (2) admits a structural interpretation following Wolfram (1999). The average

of the first-order condition of firm-level profit-maximization problems across firms yields

the industry-level supply relationship Pt = ↵MC where MC denote the industry-

level marginal cost function and ↵ is a behavioral parameter depending on the degree

of competition. A piecewise linear specification for MC directly yields (2), where

parameters implicitly depend on the degree of competition. We remain agnostic about

the degree of competition, which does not matter for this paper’s main objective, and

thereby neglect the identification of ↵.

Identification. The identification of �Q and �N su↵ers from the simultaneity of

Pt with Qt and Nt. On the one hand, the realized price depends on the respective

18The public description of the Single Price Coupling Algorithm is available at http://www.

nemo-committee.eu/publications.
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production of Qt and Nt, and the volume of net imports It through the equilibrium

mechanism: an increase of production implies a larger price. On the other hand,

strategic players form expectations about the price upon choosing their bids. Thus Qt

and Nt are endogenous if market bids vary with expectations about the equilibrium

(day-ahead) price.

We instrument Qt and Nt with domestic wind power forecasts (Wind.FR) and

nuclear capacity under forced outages (Outages). Both are considered as valid IV

because they a↵ect the equilibrium price only indirectly through their e↵ects on con-

ventional generation from thermal, hydro and nuclear plants. More specifically, wind

power generation depends on random weather realizations and is produced at near-zero

marginal cost and benefits from priority dispatch. Therefore an increase in (hourly)

wind power production leads to an exogenous reduction of conventional generation in

equilibrium, everything else kept constant. Similarly, forced outages of nuclear plant

are caused by unexpected exogenous technological factors. These outages reduce the

availability of domestic nuclear capacity and therefore result in an increased price due

to a temporarily lower nuclear production. Unlike planned nuclear outages, forced out-

ages provide more exogenous sources of variations because they have limited e↵ects on

market strategies due to their unexpected nature.

Estimation. Model (2) is estimated using the same approach as model (1). Table

6 shows the estimation results of five regressions. The first column (LS) neglects the

endogeneity issue. The second column (FS1) shows the estimates of the first-stage for

Qt. The third column (FS2) shows the estimates of the first-stage for Nt. The fourth

column (IV1) reports the coe�cients of (2) when accounting for the endogeneity of Qt

but not that of Nt. The last column (IV2) instruments for both Qt and Nt. We report

only the 8 most significant coe�cients associated with exogenous (non-deterministic)

covariates, as measured by their t-statistic from the last regression (IV2).
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Table 6: Regression results DAM

(LS) (FS1) (FS2) (IV1) (IV2)
Price Q N Price Price

Qt (End.) 1.07 2.33 2.24
(0.08) (0.36) (0.30)

Nt (End.) 0.77 1.08 1.19
(0.06) (0.11) (0.25)

Wind.FR (IV ) �0.32 �0.18
(0.04) (0.05)

Outages (IV ) 0.35 �0.55
(0.03) (0.04)

Nat. Gas Price 2.04 �0.07 0.12 2.10 2.08
(0.09) (0.03) (0.02) (0.12) (0.11)

WindOff.BE �2.34 �0.17 �0.36 �2.07 �2.03
(0.50) (0.14) (0.17) (0.52) (0.51)

TC.FR.IT �1.21 0.40 �0.55 �1.59 �1.47
(0.34) (0.11) (0.13) (0.40) (0.42)

TC.UK.FR 0.70 �0.30 0.44 0.97 0.89
(0.23) (0.07) (0.08) (0.27) (0.28)

TC.FR.UK �0.46 0.28 �0.21 �0.78 �0.73
(0.20) (0.05) (0.07) (0.24) (0.23)

Solar.UK �0.77 �0.02 0.07 �0.47 �0.48
(0.18) (0.06) (0.08) (0.20) (0.20)

TC.ES.FR �0.65 0.10 �0.15 �0.49 �0.47
(0.18) (0.06) (0.07) (0.20) (0.20)

WindOns.DE �1.18 �0.13 �0.34 �0.88 �0.86
(0.36) (0.12) (0.13) (0.40) (0.40)

WindOns.ES �2.12 �0.26 �0.04 �0.86 �0.88
(0.30) (0.12) (0.14) (0.44) (0.42)

Dummies Hours/Weekdays/Months/Years/Holidays
# Covariates 90 90 90 90 90
Obs 18818 18818 18818 18818 18818
RMSE 7.5 2.1 2.3 7.9 7.9

Notes: This table reports regression results for the supply function specified in (2) using ordinary
least-squares (LS), first-stages of Qt (FS1) and Nt (FS2), linear IV-GMM of (2) where only Qt

is instrumented (IV1), and where both Qt and Nt are instrumented (IV2). Standard errors are
computed using the Newey-West covariance estimator with automated lag selection. They are
robust to arbitrary heteroskedasticity and autocorrelation. Covariates include weather variables,
transfer capacities with foreign countries, renewable production forecasts by trading country, and
dummies for hours of the day, days of the week, months, bank holidays in France and a linear
time trend. The last row reports the root-mean-squared-error (RMSE).
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The first-stage regressions (FS1) and (FS2) confirm that both Qt and Nt are sub-

stituted by wind power. Forced outages of nuclear capacity reduces nuclear production

but increases thermal and hydro production. All four coe�cients are statistically sig-

nificant and have the expected signs.19

The estimated coe�cients for Qt and Nt in (IV1) and (IV2) are not statistically dif-

ferent. This result suggests that nuclear production is not endogenous to the day-ahead

price, unlike Qt, implying that the nuclear producer (EDF) is not acting strategically

in the day-ahead market. It might be explained by EDF’s tendency to sell the vast

majority of its nuclear production through forward contracts.

Our preferred estimates are given by (IV2). The coe�cients for Qt and Nt in the

IV regression are larger than when neglecting endogeneity, although this di↵erence is

not statistically significant for Nt. Furthermore, the coe�cient associated with Nt is

smaller than that of Qt. Nuclear plants have typically smaller marginal costs than other

conventional plants. The estimated aggregate supply function hence becomes steeper as

domestic generation increases and more expensive units enter into production. Natural

gas prices also turn out to have a significantly positive e↵ect on prices by shifting the

supply curve upwards.

Finally, several control variables measuring transmission capacities and renewable

forecasts in foreign countries are found to be significantly correlated with prices. For

instance, wind power production in Belgium is negatively correlated with the domestic

price, probably because it decreases domestic production by increasing net imports,

everything else kept constant. Remark that identifying those parameters is unnecessary

for our analysis.

3.3 Counterfactual scenarios

In this section, we investigate 4 counterfactual scenarios. The first 3 scenarios are

focused on the short-run e↵ects of the crisis. Scenario 1 evaluates the impacts of the

electricity demand reductions. Scenario 2 measures the impacts of low natural gas

prices. Scenario 3 combines the above two e↵ects into the main counterfactual of

19Formal hypothesis testing based on the generalized rank tests of Kleibergen and Paap (2006)
yields a p-value below 0.0001 against the null hypothesis of under-identification and a maximum Wald
test size distortion caused by weak identification below 10% (F-test = 71.6, 10% quantile = 7.03).
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interest. Scenario 4 is used to draw insights about the sustainability of the current

industry in the longer run by assuming that the pandemic had occurred in the highly-

renewable electricity system planned for 2030.

For clarity, we use the standard notations of the potential outcomes framework,

where variables indexed by (1) have received the treatment and those indexed by (0)

have not. Note that the “treatment” under study varies across scenarios.

Counterfactual scenario 1 (CF1): No Demand Reductions. First, we study

the impact of demand reductions using our estimates of the counterfactual demand

obtained in Section 2. The counterfactual day-ahead price bPt(0) assuming that demand

reductions due to containment measures had not occurred is given by

bPt(0) =Pt(1) + �̂Q

h
bQt(0)�Qt(1)

i
+ �̂N

h
bNt(0)�Nt(1)

i
, (3)

where Pt(1), Qt(1), and Nt(1) are the observed realizations during the pandemic and

bQt(0) = bDt(0)� bNt(0)� bIt(0)�Rt, (4)

is the counterfactual generation from thermal and hydro plants given: 1. the pre-

dicted counterfactual demand bDt(0), 2. the predicted counterfactual nuclear produc-

tion bNt(0), and 3. the endogenous net imports as defined by

bIt(0) = �̂I
bPt(0) + �̂IZt, (5)

subject to aggregate transmission capacity limits IU
t
� bIt(0) � IL

t
, defined as the sum

of transmission capacity limit across interfaces.20 Although rarely binding in practice,

these constraints are useful to have meaningful predictions for aggregate net imports.

We solve for bPt(0) for each hour between March and May 2020 using linear grid search.

Counterfactual scenario 2 (CF2): No Natural Gas Price Reductions. Sec-

ond, we study the impact of the natural gas price reductions by assuming a coun-

20Due to the lack of controllable direct current interconnections, interface limits with Belgium and
Germany are approximated by the 1st and 99th quantiles of observed exchanges in the estimation
sample.
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terfactual price equal to 10.2 §/MWh, the average price in January-February 2020,

corresponding to an average increase of 6 §/MWh compared to actual prices from

March to May 2020. All other variables are kept unchanged. Figure 6 shows the time-

series of natural gas prices NGt(1) and its counterfactual dNGt(0). The counterfactual

price is given by

bPt(0) =Pt(1) + �̂Q

h
bQt(0)�Qt(1)

i
+ �̂

h
dNGt(0)�NGt(1)

i
, (6)

where bQt(0) depends on the price through endogenous exchanges with trading countries
bIt(0), as defined above. Demand is kept at observed levels during the crisis in this

scenario. As a consequence, the nuclear production is unchanged because it essentially

varies with expected domestic demand.
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Figure 6: Natural gas prices

Counterfactual scenario 3 (CF3): Neither Demand Nor N.Gas Reductions.

In this scenario, we combine (3) and (6) to obtain the counterfactual price assuming the

crisis did not a↵ect energy markets, neither through demand nor through commodity

prices. The counterfactual price is defined as
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bPt(0) =Pt(1) + �̂Q

h
bQt(0)�Qt(1)

i
+ �̂N

h
bNt(0)�Nt(1)

i
+ �̂

h
dNGt(0)�NGt(1)

i
,

(7)

where bQt(0) again depends on the price through the net import function.

Counterfactual scenario 4 (CF4): COVID-19 pandemic in 2030. What would

have been the consequences of the crisis if Europe had already reached its ambitious

renewable targets set for 2030? Answering this question should shed light on the

sustainability of future highly-renewable electricity markets in the face of disruptive

events. In this scenario, demand and fuel prices are held at the realized “crisis level”,

i.e. Dt(0) = Dt(1) and NGt(0) = NGt(1).

In 2030, all European countries would have increased their renewable capacity and

so increasing exports would not be an available option for France to integrate its

domestic renewable power. We formalize this idea by assuming cross-border exchanges

to remain as observed, i.e. It(0) = It(1). As will be shown, it corresponds to an

already large amount of exports compared to usual levels. Since this is a partial

equilibrium model where foreign countries are not explicitly modelled, and cross-border

transfer capacities are held as observed, this assumption allows to prevent exports from

increasing further as a consequence of even lower local prices.

France’s objective for 2030 is to have 40% of domestic generation from renewable

sources and 50% from nuclear energy. From January to May 2020, renewable and nu-

clear energy accounted for, respectively 25.4% and 68.1% of domestic production. We

hence assume wind and solar power to increase from 10.9% to 25.5% of total gener-

ation while keeping hydro and biomass generation fixed at 14.5%. Keeping domestic

production constant, the counterfactual generation from wind and solar plants is hence

given by bRt(0) = Rt(1)⇥ 25.5/10.9. At the same time, nuclear generation is assumed

to reduce down by 18.1 points to its counterfactual value bNt(0) = Nt(1) ⇥ 50/68.1.21

The counterfactual price is hence given by

21We acknowledge that there are many alternative and more realistic way to construct such coun-
terfactual series but this is beyond the scope of this paper.
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bPt(0) =Pt(1) + �̂Q

h
bQt(0)�Qt(1)

i
+ �̂N

h
bNt(0)�Nt(1)

i
, (8)

where bQt(0) = Dt(0) � bNt(0) � It(0) � bRt(0) is not endogenous since It(0) = It(1) by

assumption.

3.4 Price impacts and net imports

The counterfactual prices are calculated together with their corresponding net imports,

for all hours from March 1 to May 31, 2020. Those predictions are in turn used to

compute the gross value of the day-ahead market in each scenario.

Day-ahead prices. Hourly price impacts are calculated as

�P = Pt(1)� bPt(0), (9)

that is a negative value indicates that the observed prices were (on average) lower

than their corresponding counterfactual levels in scenarios 1 to 3. To better understand

the joint impact of the pandemic and increased penetration of renewables, we replace

Pt(1) by the counterfactual prices in absence of the pandemic (CF3) to evaluate impacts

in CF4. Weekly average price impacts are reported in Table 7 for all five scenarios.
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Table 7: Average price impacts (§/MWh)

(CF1) (CF2) (CF3) (CF4)
No Dem. Red. No Gas. Red. No D/G Red. More Renew.

03/16-03/22 -10.02 -6.00 -11.47 -16.84
03/23-03/29 -13.39 -9.26 -15.39 -28.59
03/30-04/05 -9.99 -8.58 -12.31 -21.45
04/06-04/12 -7.95 -6.03 -10.39 -11.89
04/13-04/19 -8.55 -6.75 -11.40 -17.17
04/20-04/26 -7.00 -6.85 -10.47 -12.77
04/27-05/04 -8.65 -8.66 -12.31 -21.56
05/05-05/10 -7.17 -8.62 -11.03 -14.03
05/11-05/18 -7.86 -10.33 -11.95 -23.00
05/19-05/24 -9.73 -12.99 -14.93 -19.98
05/25-05/31 -8.35 -13.23 -13.85 -23.12
Average -8.97 -8.85 -12.32 -19.13

Notes: This table shows weekly average price impacts in §/MWh after March 16th, 2020,
when the lockdown was implemented in France. We report estimates for the four counterfactual
scenarios presented earlier. The averages across all hours are given in the last row.

The average DA price observed during this period was about 15.3 §/MWh. Con-

taiment measures alone are found to have caused an average price decrease of about

9 §/MWh (CF1). The strongest price impacts occurred during the first weeks of the

lockdown where demand reductions were the largest. The price of natural gas has also

had a significant impact. We find that, on average, prices would have been nearly

8.9 §/MWh higher in absence of fuel price reductions (CF2). This e↵ect is larger in

May since the fuel price gradually decreased from February onward. Combining both

e↵ects yields an average price impact of the crisis of about 12.3 §/MWh (CF3), i.e. a

decrease above 45% with respect to the average counterfactual price of 27.6 §/MWh

had no crisis occurred. The results from (CF1) and (CF2) imply that roughly half of

the average e↵ect of the pandemic can be attributed to demand reductions, and the

other half was caused by low fuel prices.

In the scenario with increased penetration of renewables (CF4), the consequences of

the crisis are even stronger. Prices would have been reduced by an extra 6.8 §/MWh

down to an average of 8.5 §/MWh. Therefore, increasing the deployment of renewable

energy without market design adjustments dampens the economic sustainability of the
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system, not only by reducing average prices in normal conditions but also by making

it less resilient to highly disruptive events.

Figure 7a shows the actual and counterfactual prices in CF3. It reveals that the

occurrences of negative prices would have been much less frequent had the crisis not

occurred. Figure 7b shows the actual and counterfactual net imports in CF3. We find

that containment measures and low commodity prices have decreased net imports by

4.7 TWh over the period under study. It corresponds to a 50% increase of exports.

During April 2020 alone, France has increased its exports by 2.5 TWh because of the

low price environment. This increase is found to be significantly smaller during the

second half of May 2020.22
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Figure 7: Actual and counterfactual series (48-hour moving averages)

3.5 Consequences for producers, retailers and grid operators

The previous results provide the necessary basis to compute the economic consequences

for producers, retailers and grid operators.

22Weekly average impacts for net imports are reported in Table B.3 in Appendix B for all five
scenarios.
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Day-ahead market values. The value of the day-ahead market in every hour t

corresponds to the producers’ gross revenues. It is defined as

V alueDA

t
= PDA

t
⇥DDA

t
. (10)

Table 8 reports the actual day-ahead market value and its counterfactual values in

each scenario. The total market value realized from March 16th to May 31st is 1.5

B§ (Observed). Therefore, the joint e↵ects of containment measures and fuel price

drop are found to have caused a 47% decrease in gross value from 2.9 B§ (CF3). The

marginal e↵ects of sheltering measures and fuel prices are of similar magnitude (CF1

and CF2). The 2030 scenario reveals that gross revenues would have been down to

960 M§, hence an extra 600 M§ reduction, had renewable penetration been twice as

large as today (CF4).

Table 8: Weekly day-ahead market values (M§)

(Observed) (CF1) (CF2) (CF3) (CF4)
Actual No D. Red. No G. Red. No D/G Red. More R.

03/16-03/22 221 348 282 358 189
03/23-03/29 177 349 274 363 62
03/30-04/05 188 316 275 332 111
04/06-04/12 126 215 177 231 127
04/13-04/19 88 175 141 193 43
04/20-04/26 98 168 147 188 91
04/27-05/04 104 199 175 220 28
05/05-05/10 147 229 216 250 131
05/11-05/18 154 248 245 274 56
05/19-05/24 113 207 209 236 75
05/25-05/31 123 213 228 246 48
Total 1539 2666 2370 2889 960

Notes: This table shows the total weekly day-ahead market value in M§ for each counterfactual
scenario after the lockdown. The last row reports the total values over the period.

Market impacts across technologies. We decompose revenues loss by technology

focusing on CF3, for which our counterfactual generations by technology are the most

plausible. Let us denote the observed production of thermal, nuclear and hydro plants
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by T (1), N(1) and H(1), respectively, and their counterfactual values by bT (0), bN(0)

and bH(0). Recall that renewable power remains unchanged R(0) = R(1) in CF3.

For internal consistency, the equilibrium between the counterfactual demand bDDA(0)

and the sum of productions and net imports bIit(0) for any scenario i must hold in each

hour t. Thus, for each scenario i, we calculate the counterfactual hydro generation as
bHit(0) = bDDA

t
(0)� bNt(0)� bTt(0)� bIit(0), where bDDA

t
(0), bNt(0), and bTt(0) are predicted

with FNet, and bIit(0) is obtained when calculating counterfactual prices.23

We consider the revenue of a producer, without hedging positions, to be the produc-

tion volume times the di↵erence between the day-ahead price and the production cost

KX

t
, where X 2 {T,H,N,R} denotes the technology. For gas-fired thermal plants, the

production cost is assumed to be KT

t
= ⇢(↵NGt + �Ccarbon

t
) with NGt denoting the

gas price and Ccarbon

t
= 20 § being the carbon price.24 We calibrate the parameters

↵ = 1
0.52 and � = 0.43, which denote the heat rate and emissions rate of the gas power

plant, respectively (CRE, 2018). This marginal cost is then multiplied by ⇢ = 0.65,

which corresponds to the share of gas-fired generation in the thermal mix.

In absence of hedging, the revenues loss LT

it
at time t in scenario i for thermal

producers is

LT

it
= Tt(1)

�
PDA

t
(1)�KT

t
(1)

�
� bTit(0)

⇣
bPDA

it
(0)� bKT

it
(0)

⌘
, (11)

with bKit(0) and Kt(1) the counterfactual and observed production cost.

Assuming hydro plants’ production cost to be zero, the revenues loss for is simply

LH

it
= PDA

t
(1)Ht(1)� bPDA

it
(0) bHit(0). (12)

For nuclear production, we consider a constant production cost KN

t
= 12 §/MWh

(Alasseur and Féron, 2018) and focus on the revenue variation not related to the

ARENH mechanism. We substract the ARENH volume V ARENH

t
auctioned at the end

23The weekly changes for demand, net imports and each technology are summarized in Table B.4
in Appendix B.

24This carbon price corresponds to the mean EU ETS’s allowance emission price dur-
ing the period (last accessed on October 2021 at https://www.investing.com/commodities/

carbon-emissions-historical-data).
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of 2019 from the production to obtain

LN

it
= (Nt(1)� V ARENH

t
)(PDA

t
(1)�KN

t
)� ( bNit(0)� V ARENH

t
)( bPDA

it
(0)�KN

t
). (13)

Considering that the global yearly ARENH volume contracted for 2020 is 100TWh, we

set V ARENH

t
= 21.09TWh as the proportion of 100TWh corresponding to the 11 weeks

under study.

The change in revenues for renewable producers exposed to markets, and not ben-

efiting from any subsidies, only comes from the price decrease given R(0) = R(1).

Assuming that all intermittent renewable producers are in this situation provides the

upper bound on revenue variation defined as LR

it
=

⇣
PDA

t
(1)� bPDA

it
(0)

⌘
Rt(1).

Hedging contracts. Let us now consider the role of hedging. We assume that it

consists in a constant volume �X during the whole period. The revenues loss L̄X

it
is

then defined as

L̄X

it
= LX

it
��X(PDA

t
(1)� bPDA

it
(0)). (14)

In the numerical results, we consider a hedging position �X

i
= Et[Xit(0)] equal to

the expected production over the period under study. The average production in CF3

corresponds to what rational producers would have anticipated upon choosing their

hedging positions before the risk of a pandemic has materialized. One can thus rewrite

equation (14) into

L̄X

it
=
⇣
Xt(1)� bXit(0)

⌘⇣
bPDA

it
(0)� bKX

t
(0)

⌘
�Xt(1)

⇣
KX

t
(1)� bKX

t
(0)

⌘

�
�
�X �Xt(1)

� ⇣
PDA

t
(1)� bPDA

it
(0)

⌘
.

(15)

The first term corresponds to the loss with respect to the expected revenue caused by

the output reduction. The second term corresponds to the loss due to changes in the

production costs. This term is assumed to be zero for all producers except for the gas

power plant, for which this term is negative because the gas price is lower leading to

a reduced impacts on revenues. The last term is related to the combination of price

and volume risks associated with the spread between the expected production volume

�X and its realization Xt(1). In the case of the COVID-19 crisis, this last term is
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almost always negative because production was significantly lower than anticipated for

most producers, and the price di↵erence
⇣
PDA

t
(1)� bPDA

it
(0)

⌘
is negative. For hydro

producers, however, production has increased by 3 TWh (+10%).25

Table 9 shows aggregate estimates of revenues impacts with respect to the expected

revenue before the crisis for CF3. In absolute terms, the nuclear producer has su↵ered

the most with losses above 600 M§ (column 2) in absence of hedging.26 This figure

corresponds to roughly 4.3% of 2019 revenues for the nuclear producer. For the other

technologies, the losses are estimated at -1.5% for thermal producers, -3.6% for hydro

producers and -8% for intermittent renewable producers. The latter estimate largely

exaggerates the real consequences for renewable producers because it assumes that all

plants are directly exposed to the market and receive no subsidies. This is bound to

happen in a very close future, but applies today only for the oldest wind power plants.

Both gas price and demand reductions have contributed to reduce revenues for

nuclear and hydro producers assuming they were completely exposed to spot prices.

The gas price contraction has counterbalanced the reduction of demand and hence

of production for thermal producers. They are nevertheless much less resilient to

important financial disruptions because they operate on much smaller scale.

Producers are bound to hedge their future production using derivative contracts.

Accounting for future contracts leads to very di↵erent impacts of the COVID crisis on

their revenues. All producers would have managed to secure their expected revenue

under complete hedging of average future production.27 They might even have earned

slightly more because the di↵erence between the realised and expected spot prices is

so high that the last term in (14) counterbalances the impact of the diminution of

production. This shows the importance and e�ciency of hedging to secure future

revenues even with the simple hedging strategy considered here. In that particular

case, hedging manages to counterbalance the price risk but also the volume risk. This

would have been di↵erent if the crisis had led to a contraction of production combined

with an increase of spot prices.

25This finding is confirmed by RTE (2020a) which reports a 8.4% annual increase of hydro power
production in 2020 compared to 2019, whereas all other sources had significantly lower production.

26Table B.5 reports weekly values under zero hedging.
27Table B.6 reports weekly values under complete hedging.
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Table 9: Total revenues impacts by technology (M§)

No Dem/N.Gas Red. (CF3)
Thermal. Nuclear Hydro Renew. Retail

No Hedging -34.3 -645.3 -86.6 -136.2 80.7
Hedging 1.0 12.2 55.8 0.3 -1063.5

Notes: This table shows the aggregate revenues changes by generation technology in M§ in CF3,
i.e. assuming away demand and fuel price reductions. Hedging contracts are estimated at the
average counterfactual production in this scenario, which is considered business-as-usual.

Retailers. Consider a retailer selling electricity at a fixed tari↵ C. Let us denote by
bSt(0) and St(1) the counterfactual and observed retailer’s sales to end-users for a given

hour t. The revenues impacts of the retailer without hedging are

LS

t
= St(1) (C � Pt(1))� bSt(0)

⇣
C � bPDA

t
(0)

⌘

=
⇣
St(1)� bSt(0)

⌘⇣
C � bPDA

t
(0)

⌘
� St(1)

⇣
Pt(1)� bPDA

t
(0)

⌘ (16)

where the first term represents the volume risk and the revenue loss due to a volume

contraction. The second term represents the price risk, which in this case becomes an

opportunity to reduce the revenue losses because buying power on the spot market is

much less expensive than expected.

If we assume that the retailer has fully hedged its expected volumne at �S at the

average price F , its revenues losses at time t for scenario i are

L̄S

t
= �bSit(0)(C � bPDA

it
(0))��S

⇣
bPDA

it
(0)� F

⌘

+ St(1) (C � Pt(1)) +�S (Pt(1)� F )

=
⇣
St(1)� bSit(0)

⌘⇣
C � bPDA

it
(0)

⌘
+
�
�S � St(1)

� ⇣
Pt(1)� bPDA

it
(0)

⌘
.

(17)

The first term comes from an unexpected consumption contraction, whereas the second

term represents the fact that the retailer has to sell the remaining volume (�S �St(1))

bought at the price F on the day-ahead market at the (lower) price Pt(1). If the

retailer is risk averse, then the hedging volume was close to the expected consumption,

i.e. �S = St(1), and the second term is negative bPit(0) � Pt(1). Contrary to producers,
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the additional hedging term increases the revenues losses for retailers, due to spot price

reductions caused by the COVID-19 crisis.

Let C = 115.71 §/MWh be the retail price in France,28, and F = 50.8 §/MWh be

the average price of future contracts late 2019 for year 2020.29 As reported in Table

9, the total revenue impacts for retailers between March 16, 2020 to May 31, 2020 is

+81 M§ in absence of hedging compared to -1.1 B§ assuming they had taken hedging

positions based on pre-crisis expectations.

This finding explains why some retailers have reneged on ARENH contracts by

arguing force majeure,30 hence reshu✏ing market losses among market participants.31

Indeed, retailers’ expectations about future spot prices and consumption from March

onward could not anticipate the COVID-19 crisis with certainty at the time ARENH

contracts were signed in December 2019. The full available volume of ARENH was

sold to retailers at 42 §/MWh based on market expectations, including about fuel

prices. During the lockdown, however, the power demand dropped considerably below

the 2019 expectations and retailers had extra volumes they had to sell back on the spot

market at an average price of 15 §/MWh. Given the hedging price F = 42 §/MWh

and the realized price of 15 §/MWh, and considering the ARENH volume �S to be

100 TWh ⇥ 11 weeks/365 days = 21.1 TWh, the ARENH contracts correspond to a

financial issue of 571 M§ for retailers for the first lockdown episode. This is around

one half of the financial impacts evaluated above. For comparison, the net income of

Total Direct Energie, one of the leading alternative retailer in France, was around 52

M§ in 2017.32

28The retail price is evaluated considering the average retail price for households at
179.91 §/MWh, the average industrial retail price at 81.15 §/MWh , and a ratio of
35% of total power consumption for households (https://www.statista.com/statistics/
418087/electricity-prices-for-households-in-france/ and https://www.statista.com/

statistics/595816/electricity-industry-price-france/).
29Values were obtained from the European Energy Exchange (https://www.eex.com).
30Reuters: Total among companies seeking force majeure on EDF contracts: sources, April 6, 2020

(https://www.reuters.com/article/us-edf-nuclearpower-idUSKBN21O1B7).
31Whether the “force majeure” claim is legitimate is a matter for the law and thereby beyond the

scope of this paper.
32Direct Energie: Annual Financial Report 2017 (https://total.direct-energie.com/

fileadmin/Digital/Groupe/PDF/Rapport_annuels/2017/en/Annual_financial_report_2017.

pdf).
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Grid operators: distribution networks. The cost structure of Enedis, the entity

in charge of the distribution network in France, has variable and fixed components.

CRE (2019) evaluates that approximately 1/3 of their annual costs comes from vari-

able expenses (network losses and access rights to the transmission network) and 2/3

from fixed costs (infrastructure management). In 2018, Enedis’ expenses were evalu-

ated at 13.5 B§, of which 3.6 B§ for transmission grid access rights (called “TURPE

HTB”) and 1 B§ in compensation of network losses. Based on this evaluation, we

can decompose the 2018 revenue of the distribution operator into: 76% of fixed costs;

26.5% of transmission grid access rights which are proportional to the global consump-

tion; and 7.5% of network losses which we consider proportional to the product of the

consumption and the spot price.

The costs can be written as follows:

costs = fixed costs + c1
X

t

Dt

| {z }
access rights

+ c2
X

t

PtDt

| {z }
losses

(18)

Using 2018 figures, we can estimate c1 = 7.5 §/MWh and c2 = 4.2 ⇥ 10�2. Both

the transmission grid access rights and the network losses diminished due to demand

and price reductions caused by the crisis. The diminution of costs is therefore the sum

of:

• transmission grid access reduction : considering the estimated demand decrease

to be on average 10590 GWh and c1, the reduction is 79.4 M§;

• network losses reduction : considering the estimated market values decrease to

be 1350 M§ and c2, the reduction is 56.7 M§.

The revenues of the distribution grid operator come from a two-part tari↵ with

a variable component proportional to the realized energy consumption. Reversely to

the cost structure, the revenue structure is such that only 27% of the annual revenues

is fixed while 73% are variable. It implies that a diminution of the variable part

mechanically induces a diminution of net revenues for the distribution grid operator.
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The revenues can be written as follows:

revenues = fixed part + r1
X

t

Dt

| {z }
variable part

. (19)

Assuming that the revenues are equal to the costs and using 2018 values, we recover

the parameter r1 = 20.7 §/MWh. Therefore, the revenue contraction implied by the

reduction of demand of 10590 GWh is 219.2 M§.

As a result, the global impact for the distribution grid operator is a global reduction

of its net revenue of 219.2 � 79.4 � 56.7 = 83.1 M§. It is explained by the inverse

ratios of fixed over variable components for costs and revenues. Su�cient information

to evaluate the financial impact of the crisis on the transmission grid operator (RTE)

was not available but we can expect a negative impact. Operators are nevertheless

fully compensated through future rate hikes following regulatory hearings.

Those results show that the crisis had enormous short-term consequences for whole-

sale market participants in the French electricity sector. As stated in the introduction,

end-users have not been a↵ected by wholesale price variations due to regulated tari↵s.

Moreover, demand variations have been heterogeneous across consumer segments. We

argue that temporary price reductions did not pass on to consumers mainly because

the crisis had generated significant losses for transmission and distribution operators

which the regulator had to compensate by raising tari↵s ex-post.

In the next section, we draw a parallel between the observed market outcomes

during the crisis and future outcomes that will prevail through the energy transition.

4 Discussion

The empirical results document how unprecedented demand reductions and low fuel

prices, both caused by the crisis, have resulted in historically low wholesale electric-

ity prices in France. In addition, containment measures have dramatically a↵ected

load patterns and thereby temporarily increased uncertainty around demand net of

renewable production. The COVID-19 crisis is undoubtedly an extreme event, which

negative impacts was mitigated (exacerbated) for producers (retailers) who had taken
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hedging positions in 2019, i.e. when the future prices under “pre-crisis” expectations

did not reflect the pandemic’s impacts.

More generally, we argue that the observed market outcomes during the crisis are

informative about the future with abundant renewable power in which (wholesale) spot

and futures prices will fall in a more sustainable way, and become more volatile. Un-

fortunately, those prices might be “too low” to guarantee grid reliability by generating

enough investments in necessary capacity in absence of market design adjustments.

Today’s main concern arising from the missing money problem (Joskow, 2008) and

missing markets (Newbery et al., 2018) is the risk of under-investment in flexible plants

which are necessary to guarantee supply reliability in systems with large amounts of

intermittent renewable power.

At the onset of the crisis, demand decreased by 12% and became (temporarily) more

di�cult to forecast, which introduced additional uncertainty around the demand net

of renewable output. This context is somehow comparable to France’s 2030 renewable

scenario which plans an increase of 19 percentage points of domestic generation from

renewable sources, and a reduction of 21 points from nuclear power, with respect to

2019, assuming demand is maintained at today’s pre-crisis levels. To illustrate this

point, let us consider the average hourly domestic power generation was 62 GW in 2019.

Achieving 2030 objectives implies that 13 GW of nuclear power must be substituted

each hour by, on average, a combination of renewable sources (11.8 GW) and thermal

production (1.2 GW). The average price e↵ect implied by our structural estimates is

therefore

�̂Q ⇥ [+1, 200MW ] + �̂N ⇥ [�13, 000MW ] ⇡ �14 §/MWh, (20)

which is comparable to the price impacts estimated for the crisis. This result occurs

because substituting nuclear power with renewable power tends to reduce prices for

two reasons. First, wind and solar plants have near-zero marginal costs, unlike nu-

clear plants. Second, the nuclear producer acts similarly to a regulated monopoly by

selling its production around its average costs, as evidenced by ARENH contracts (42

§/MWh) compared to marginal cost estimates (12 §/MWh).

Figure 8a shows the distributions of energy prices observed during the crisis and
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their counterfactual values in CF3. This comparison reveals that the realized prices

were lower and more volatile than usual, often taking values close to zero or even

negative. The levelized cost of electricity (LCOE) for CCGT and combustion turbines

entering service in 2025 as projected by EIA (2020) are also shown. The LCOE is

a measure of average costs by technology under assumptions about capacity factors,

capital costs, and operations and maintenance costs. Realized prices are found almost

always below both projected LCOEs, implying both technologies would be largely

unprofitable in this market. In addition, Figure 8b shows thermal generation during

the crisis and its counterfactual values under business-as-usual conditions. The realized

average output from thermal plants was 2.8 GW, implying a 13% capacity factor (RTE,

2020a). This production level only requires 5.6 GW of installed thermal capacity, nearly

4 times less than actual capacity in France, assuming the plants have a 50% capacity

factor on average. In comparison, the projected LCOEs in EIA (2020) assume a 87%

capacity factor for CCGT and 30% for combustion turbines.

(a) Day-ahead prices (b) Thermal generation

Figure 8: Histograms of actual and counterfactual outcomes

The combination of low prices and small capacity factors should drive thermal

producers to exit the market in the long run. Those results show that the energy

transition would likely lead to many early retirements of thermal plants along with

a dramatic reduction of investment in necessary flexible capacity if: 1) there is no
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additional remuneration for flexibility and capacity availability, and 2) demand remain

relatively stable at pre-crisis levels.

Although informative about potential future outcomes, the realized market out-

comes during the crisis cannot be interpreted as a long-run equilibrium with large

renewable deployment. Instead, it is a market in disequilibrium where prices will ad-

just as producers will enter or exit the market (Green and Léautier, 2017). All plants

must cover their full costs in the long-run, hence prices would increase to reflect the

scarcity of flexible capacity as exit occurs. Demand rationing would also occur if prices

are capped for regulatory reasons and flexibility is not adequately priced.

Our literature review demonstrates that achieving an e�cient and reliable high-

renewable system requires to address multiple externalities, and that the current Eu-

ropean electricity market design is insu�cient in that respect (Newbery et al., 2018).

Some experts consider that externalities should be corrected by introducing additional

“energy markets” with prices at finer spatial and time scales (Newbery et al., 2018;

Leslie et al., 2020). Others emphasize the importance of capacity payments to address

the externality related to capacity availability while keeping in mind market power

issues and risk-aversion (Fabra, 2018; Petitet, Finon and Janssen, 2017). In particular,

Fabra (2018) discusses reliability options, which provide capacity payments but also

incentivize capacity availability and address market power issues. This solution does

not, however, remove the need for proper pricing of ancillary and flexibility services for

short-term e�ciency reasons, and to adequately incentivize investment in new capacity

needed to manage highly-renewable systems.33

It is worth considering that there are capacity and flexibility markets in several

European countries, including France. However, those markets are still in a developing

phase. We identify two main drawbacks. First, technologies are not discriminated

according to their flexibility in the capacity auctions. Investments in flexible back-up

generators, although required to balance short-term fluctuations of wind power pro-

duction, are not incentivized di↵erently than baseload power plants. Second, observed

capacity prices have been highly volatile so far,34 and, as such, cannot yet provide a

clear signal of long-term capacity needs.

33We thank an anonymous referee for pointing this out.
34For instance, capacity prices for year 2019 collapsed to zero in two out of six auctions.
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The sanitary crisis is also a portent of more risky electricity markets. Investors’

expectations about future market fundamentals and regulatory policies must account

for the possibility of similar events causing large demand, or fuel price, variations over

sustained periods of time, such as pandemics but also climate events. Future cash flows

of long-term stranded assets, like power plants, are hence subject to increasing uncer-

tainty. The introduction of more granular prices would result in even more volatile

prices and time-varying cash flows. Conversely, capacity payments and long-term con-

tracts can contribute to mitigate revenue uncertainty, in particular related to extreme

events.

5 Conclusion

The impacts of the COVID-19 crisis on the French electricity sector have been enor-

mous. This paper has developed an empirical framework to quantify the e↵ects of the

crisis on demand, forecast errors, and market outcomes, accounting for cross-border

trade with all adjacent countries. Our results document large demand reductions (-

12%) and wholesale price drops (-45%) leading to gross revenue losses for market

participants at 1.3 B§ (-47%), and net revenue losses for the distribution network

operator at 80 M§. Retailers have probably borne the vast majority of the market

losses, assuming all participants had forward contracts to cover their expected “pre-

crisis” demand and supply volumes. Theses losses have been, however, redistributed in

great majority to the historical vertically-integrated producer, following the reneging

of regulated supply contracts by retailers.35

More generally, the consequences of the crisis are evocative of the anticipated conse-

quences of the ongoing energy transition: low energy prices and increased uncertainty

caused by the large deployment of intermittent renewables. European electricity mar-

kets will experience similarly low and volatile prices along with decreasing market

shares for fossil-fuel and nuclear generators going through 2030. In the long-run, the

35Moreover, an analysis over a longer time horizon would probably show di↵erent results. The pan-
demic has deeply a↵ected the maintenance schedule of nuclear plants, leading to significant reduction
of available nuclear capacity during winter. The spot prices will therefore be higher than usual. Re-
tailers should hence be able to pocket the di↵erence between the spot price and that of the regulated
contracts.
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energy transition may exacerbate reliability issues related the “missing money prob-

lem” and missing markets. We argue that capacity payments can be useful to guarantee

capacity adequacy, provided that they discriminate across technologies with respect to

their contribution to system reliability, and o↵er stable long-term signals.

There are other important considerations not studied in this paper, in particular

related to market power. Intermittent renewable plants will have larger shares in

electricity auctions and will be marginal more frequently going through 2030. In theory,

market power in electricity markets come from generators with positive probabilities

to be marginal (Ausubel et al., 2014). Following Fabra and Llobet (2020), the energy

transition will thus lead to a new competitive paradigm in electricity markets. We

believe that empirical studies of strategic behaviors in European electricity markets

during the crisis may provide important insights in that respect.
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V. Anatolitis, L. Kitzing, M. Dukan, P del Rio, and O. Fitch-Roy. 2020.

“Impact of COVID-19 on Renewable Energy Auctions.” Working Paper.

Wolfram, Catherine D. 1999. “Measuring Duopoly power in the British Electricity

Spot Market.” American Economic Review, 89(4): 805–826.

Zhong, Haiwang, Zhenfei Tan, Yiliu He, Le Xie, and Chongqing Kang. 2020.

“Implications of COVID-19 for the Electricity Industry: A Comprehensive Review.”

CSEE Journal of Power and Energy Systems, 6(3): 489–495.

53



A Data Appendix

This section describes the data. Table A.1 gives the time resolution and the sources.

Note that the data used in this paper is publicly available online.36 The final dataset

is available on demand for replication purposes.

Table A.1: Data sources

Data Resolution Source

Weather data Hourly Reliable Prognosis
French market and load Hourly RTE
Capacity outages Hourly RTE
Renewable forecasts Hourly ENTSO-E’s Transparency
Transmission capacities Hourly ENTSO-E’s Transparency
Natural gas prices Daily European Energy Exchange

Notes:
For example, hourly weather data from weather station in Paris Orly is obtained from https:

//rp5.ru/Weather_archive_in_Paris,_Orly_(airport),_METAR.
France’s electricity market data is obtained from https://www.rte-france.com/eco2mix/

telecharger-les-indicateurs.
Nuclear plants’ outages are obtained from https://www.services-rte.com/en/

download-data-published-by-rte.html?category=generation&type=unavailabilities.
Renewable forecasts are downloaded from https://transparency.entsoe.eu/generation/r2/

dayAheadGenerationForecastWindAndSolar/show.
Transmission capacities are downloaded from https://transparency.entsoe.eu/

transmission-domain/ntcDay/show.
PEG Natural gas prices have been collected by extracting .json data from https://www.

powernext.com/spot-market-data.

The weather data contains hourly measurements from 13 weather stations in France

and 13 weather stations in adjacent countries, from Jan 1, 2014 to May 31, 2021.37

The weather variables include measurements of temperature, dew point tempera-

ture, humidity, pressure, precipitation, visibility, wind gusts, and wind speed. Variables

for stations with above 1% of missing hourly values are discarded. Table A.2 reports

the mean, standard deviations, 1st and 99th percentiles of each variables used in the

36Some variables have been collected using web-crawlers.
37The data is sometimes irregularly measured in time within and across stations and was reshaped

in a regular panel of hourly observations using linear interpolation.
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analysis. Remark that foreign weather variables outside temperature are not used,

hence not reported here.

Descriptive statistics for all other variables used at some point in the analysis, but

for which no summary statistics is provided in Tables 1 or 4, are given in Table A.3

below. Again, variables with above 1% missing values are discarded, that is why there

are no renewable forecasts for Italy.
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Table A.3: Descriptive statistics for other variables

Mean St. Dev. 1st p. 99th p.
Demand (F) 54.51 11.81 33.50 82.73
Oil.FR (A) 0.28 0.24 0.07 1.07
Coal.FR (A) 0.41 0.56 �0.01 2.23
Nat.Gas.FR (A) 4.01 2.48 0.43 8.75
Biomass.FR (A) 1.10 0.07 0.94 1.26
Wind.FR (A) 3.80 2.94 0.29 12.05
Solar.FR (A) 1.23 1.79 �0.00 6.16
Hydro.FR (A) 6.56 3.47 �0.34 14.49
Co2rate.FR (A) 35.74 17.35 9.00 84.00
Solar.BE (F) 0.39 0.61 0.00 2.33
WindO↵.BE (F) 0.52 0.45 0.01 1.51
WindOns.BE (F) 0.43 0.38 0.04 1.52
Solar.CH (F) 0.05 0.08 0.00 0.29
WindOns.CH (F) 0.01 0.01 0.00 0.03
Solar.DE (F) 4.49 7.03 0.00 25.93
WindO↵.DE (F) 2.64 1.66 0.10 6.03
WindOn.DE (F) 11.40 8.83 0.87 36.43
Solar.ES (F) 1.52 1.81 0.00 5.92
WindOns.ES (F) 5.84 3.35 0.84 14.82
Solar.FR (F) 1.16 1.65 0.00 5.80
WindOns.FR (F) 3.62 2.71 0.52 12.10
Solar.UK (F) 1.25 1.91 0.00 7.40
WindO↵.UK (F) 3.01 2.07 0.21 8.39
WindOns.UK (F) 4.10 2.41 0.64 9.50
TC.CH.FR 1.18 0.12 0.70 1.50
TC.FR.CH 2.75 0.30 2.29 3.20
TC.ES.FR 2.20 0.55 1.00 3.50
TC.FR.ES 2.40 0.66 1.00 3.60
TC.IT.FR 1.02 0.10 0.87 1.16
TC.FR.IT 2.43 0.67 0.37 3.39
TC.UK.FR 1.86 0.31 1.00 2.00
TC.FR.UK 1.86 0.31 1.00 2.00
Out.Nuclear (Planned) 21.55 7.56 6.26 34.85
Out.Thermal (All) 4.91 2.15 1.00 9.28
Out.Hydro (All) 4.68 1.93 1.73 8.53

Notes: This table provides mean, standard deviations, 1st and 99th percentiles for the other
variables used in the analysis but not reported in the main body of the paper.
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B Additional results
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Figure B.1: Density plots of actual load and FNet predictions
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Figure B.2: Histograms of actual emissions and FNet predictions
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Table B.1: Predictive performance (RMSPE)

Thermal Nuclear
MAPE RMSE MAPE RMSE

Test set 14.2% 0.90 2.3% 1.28
03/02-03/08 10.0% 0.98 2.5% 1.43
03/09-03/15 13.7% 1.16 3.6% 1.97
03/16-03/22 42.2% 2.40 8.2% 3.82
03/23-03/29 82.1% 3.89 9.5% 3.98
03/30-04/05 73.8% 2.85 8.1% 3.46
04/06-04/12 89.7% 1.92 7.2% 3.10
04/13-04/19 81.4% 1.80 10.5% 3.97
04/20-04/26 89.0% 1.82 9.9% 3.78
04/27-05/04 63.9% 1.57 9.7% 3.68
05/05-05/10 48.3% 1.21 11.2% 4.08
05/11-05/18 37.8% 1.04 13.0% 4.50
05/19-05/24 21.7% 0.90 10.0% 3.57
05/25-05/31 13.5% 0.55 15.3% 5.09

Notes: This table shows predictive performance of FNet for production by technology.
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Figure B.3: Histograms of actual thermal generation and FNet predictions
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Figure B.4: Histograms of actual nuclear generation and FNet predictions

Table B.2: Weekly demand reductions (GWh)

Demand Emissions
GWh SE % Kt SE %

03/16-03/22 �1228 (91) �12.9 �62 (24) �17.9
03/23-03/29 �1502 (91) �15.1 �179 (24) �46.4
03/30-04/05 �985 (91) �10.4 �103 (24) �39.8
04/06-04/12 �1024 (91) �12.8 �73 (24) �49.8
04/13-04/19 �1211 (91) �15.1 �53 (24) �41.0
04/20-04/26 �1007 (91) �12.8 �56 (24) �41.2
04/27-05/04 �1006 (91) �12.7 �35 (24) �30.7
05/05-05/10 �798 (91) �10.7 �53 (24) �35.4
05/11-05/18 �677 (91) �8.5 �24 (24) �16.8
05/19-05/24 �634 (91) �8.7 18 (24) 16.4
05/25-05/31 �517 (91) �7.1 42 (24) 36.6
Total �10590 �11.7 �579 �28.4

Notes: This table shows weekly demand and emissions reductions in GWh and kilotons, respec-
tively, predicted using FNet. Standard errors are reported in parentheses. Errors are calculated
using the delta-method from FNet prediction errors on the test set. They are constant across
week because the covariance matrix only accounts for error correlation across hours of a given
day, hence it neglects other factors like correlation across days, or week.
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Table B.3: Impacts on net imports (GWh)

(CF1) (CF2) (CF3) (CF4)
No Dem. Red. No Gas. Red. No D/G Red. More Renew.

03/16-03/22 -264 158 -447 0
03/23-03/29 -232 284 -491 0
03/30-04/05 -4 168 -305 0
04/06-04/12 -217 -39 -525 0
04/13-04/19 -294 -66 -652 0
04/20-04/26 -216 -195 -664 0
04/27-05/04 -98 -96 -569 0
05/05-05/10 46 -133 -444 0
05/11-05/18 257 -16 -226 0
05/19-05/24 335 -48 -296 0
05/25-05/31 499 -37 -116 0
Total -188 -21 -4736 0

Notes: This table shows weekly average impacts on net imports in GWh after March 16th, 2020,
when the lockdown was implemented in France. We report estimates for the five counterfactual
scenarios presented earlier. The total across all hours are given in the last row.

Table B.4: Changes in load, exchange, and production compared to CF3 (in TWh)

Demand Net Imp. Therm. Nuclear Hydro
03/16-03/22 -1.23 -0.45 -0.30 -0.45 -0.03
03/23-03/29 -1.50 -0.49 -0.59 -0.57 0.15
03/30-04/05 -0.98 -0.30 -0.39 -0.49 0.21
04/06-04/12 -1.02 -0.53 -0.27 -0.45 0.22
04/13-04/19 -1.21 -0.65 -0.25 -0.59 0.28
04/20-04/26 -1.01 -0.66 -0.27 -0.57 0.49
04/27-05/04 -1.01 -0.57 -0.21 -0.55 0.32
05/05-05/10 -0.80 -0.44 -0.18 -0.65 0.48
05/11-05/18 -0.68 -0.23 -0.12 -0.73 0.41
05/19-05/24 -0.63 -0.30 0.05 -0.51 0.13
05/25-05/31 -0.52 -0.12 0.03 -0.83 0.40
Total -10.59 -4.74 -2.51 -6.40 3.06

Notes: This table shows changes in domestic production by technology, as predicted by FNet.
Standard errors are robust to serial correlation within a day.
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Table B.5: Weekly revenues impacts by technology (M§)

(CF1) (CF3)
No Demand Red. No Dem/Gas Red.

The. Nuc. Hyd. Ren. The. Nuc. Hyd. Ren.
03/16-03/22 -11.4 -53.8 -16.4 -10.9 -8.5 -58.8 -17.8 -12.3
03/23-03/29 -16.8 -73.7 -14.9 -17.3 -12.6 -80.3 -16.2 -19.9
03/30-04/05 -10.6 -58.1 -9.7 -12.1 -7.0 -66.4 -11.1 -14.7
04/06-04/12 -3.5 -44.6 -5.2 -6.1 -1.5 -54.5 -6.4 -7.8
04/13-04/19 -2.9 -40.0 -2.2 -8.7 -0.6 -51.5 -3.6 -11.3
04/20-04/26 -2.5 -34.0 2.8 -5.4 0.5 -47.2 1.7 -7.7
04/27-05/04 -4.4 -42.8 -5.2 -9.4 -1.5 -55.2 -7.0 -13.3
05/05-05/10 -4.6 -42.0 0.1 -5.0 -1.1 -54.6 -2.0 -7.8
05/11-05/18 -4.9 -43.9 -4.0 -9.6 -1.4 -57.5 -6.9 -14.2
05/19-05/24 -3.9 -42.2 -8.8 -8.5 -0.4 -57.7 -12.9 -12.7
05/25-05/31 -4.1 -43.2 -1.2 -8.8 -0.4 -61.6 -4.3 -14.5
Total -69.7 -518.5 -64.8 -101.8 -34.3 -645.3 -86.6 -136.2

Notes: This table shows the weekly revenues loss by generation technology in M§ for each
counterfactual scenario after the lockdown. The last row reports the total values over the period.
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Table B.6: Weekly revenues loss, net of hedging contracts, by technology (M§)

(CF1) (CF3)
No Demand Red. No Dem/Gas Red.

The. Nuc. Hyd. Ren. The. Nuc. Hyd. Ren.
03/16-03/22 -3.6 -5.2 -5.9 -0.8 -2.3 -3.1 -5.7 -0.7
03/23-03/29 -6.4 -8.7 -0.9 -3.8 -4.5 -5.6 0.0 -4.4
03/30-04/05 -2.8 -9.7 0.8 -2.1 -2.0 -6.7 1.8 -2.3
04/06-04/12 2.7 -6.0 3.1 1.9 1.9 -4.1 4.5 2.7
04/13-04/19 3.8 1.5 6.8 -0.1 2.8 3.8 8.4 0.2
04/20-04/26 2.9 -0.0 10.2 1.7 1.9 3.6 12.7 2.8
04/27-05/04 2.4 -0.8 3.9 -0.7 1.0 4.5 5.9 -0.9
05/05-05/10 0.9 -7.2 7.6 2.2 0.0 -1.1 9.6 3.3
05/11-05/18 1.2 -5.8 4.2 -1.6 0.3 0.5 5.6 -2.2
05/19-05/24 3.7 5.0 1.5 1.3 1.4 14.8 2.8 2.3
05/25-05/31 2.4 -2.7 7.5 -0.4 0.6 5.6 10.2 -0.6
Total 7.0 -39.7 38.8 -2.4 1.0 12.2 55.8 0.3

Notes: This table shows the weekly revenues loss by generation technology in M§ for each
counterfactual scenario after the lockdown. The last row reports the total values over the period.
Hedging contracts are estimated at the average production in scenario 3 (Lockd./Gas), which is
considered business-as-usual.
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