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Summary

1. Understanding the functional significance of species interactions in ecosystems has become
a major challenge as biodiversity declines rapidly worldwide. Ecosystem consequences arising

from the loss of diversity either within trophic levels (horizontal diversity) or across trophic
levels (vertical diversity) are well documented. However, simultaneous losses of species at dif-
ferent trophic levels may also result in interactive effects, with potentially complex outcomes

for ecosystem functioning.
2. Because of logistical constraints, the outcomes of such interactions have been difficult to

assess in experiments involving large metazoan species. Here, we take advantage of a detri-
tus–based model system to experimentally assess the consequences of biodiversity change

within both horizontal and vertical food-web components on leaf-litter decomposition, a fun-
damental process in a wide range of ecosystems.

3. Our concurrent manipulation of fungal decomposer diversity (0, 1 or 5 species), detritivore
diversity (0, 1 or 3 species), and the presence of predatory fish scent showed that trophic com-
plexity is key to eliciting diversity effects on ecosystem functioning. Specifically, although

fungi and detritivores tended to promote decomposition individually, rates were highest in the
most complete community where all trophic levels were represented at the highest possible

species richness. In part, the effects were trait-mediated, reflected in the contrasting foraging
responses of the detritivore species to predator scent.

4. Our results thus highlight the importance of interactive effects of simultaneous species loss
within multiple trophic levels on ecosystem functioning. If a common phenomenon, this out-

come suggests that functional ecosystem impairment resulting from widespread biodiversity
loss could be more severe than inferred from previous experiments confined to varying diver-

sity within single trophic levels.

Key-words: aquatic hyphomycetes, biodiversity and ecosystem functioning, detritivores,

fungi, litter decomposition, shredders, stream, trophic cascade

Introduction

What ‘species do in ecosystems’ (Lawton 1994) has

become a leading theme of ecological inquiry. Central to

this development have been investigations into ecosystem

consequences arising from species interactions within tro-

phic levels (Hooper et al. 2012). This research is generally

conducted under the label of biodiversity effects on eco-

system functioning (Hillebrand & Matthiessen 2009; Reiss

et al. 2009; Loreau 2010; Cardinale et al. 2012), motivated

in part by the current rapid species loss worldwide

(Dudgeon et al. 2006; Naeem, Duffy & Zavaleta 2012)

and its repercussions for the human benefits afforded by*Correspondence author. E–mail: jeremy.jabiol@gmail.com
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ecosystems with diverse communities (Cardinale et al.

2012). Although initially focused on terrestrial plant

diversity and primary productivity (e.g. Isbell et al. 2011),

such relationships have now been documented for a wide

range of ecosystem properties and community types

(Stachowicz, Bruno & Duffy 2007; Scherber et al. 2010;

Cardinale et al. 2011), including aquatic and terrestrial

detritus-based systems in which leaf litter decomposition

is a central process (Srivastava & Bell 2009; Gessner et al.

2010; Cardinale et al. 2012).

Similar attention has been given to the concept of tro-

phic cascades (Baum & Worm 2009; Terborgh & Estes

2010) and their repercussions for ecosystem functioning.

Trophic cascades refer to the phenomenon that top-
predators suppress the biomass of intermediate consum-

ers, which in turn releases consumers at the next lower

trophic level from predation pressure, with this alternate

suppression-and-release effect propagating down to the

producer level. As originally formulated, trophic cascades

operate over entire trophic levels (Hairston, Smith &

Slobodkin 1960), but this stringent condition was later

relaxed as it became clear that the concept is also useful

to describe trophic relationships between individuals or

clusters of species interacting across trophic levels in a

cascading fashion (Knight et al. 2005; Mooney et al.

2010; Terborgh & Estes 2010). In addition, the concept

has been expanded to encompass behaviourally mediated

cascades (Schmitz 2008) and ecosystem-level effects other

than biomass suppression at alternate trophic levels (Croll

et al. 2005; Rasher & Hay 2010). This has led to a rich

conceptual framework (K!efi et al. 2012), and compelling

evidence for the existence of trophic cascades in a wide

variety of biological communities and ecosystems

(Sommer 2008; Baum & Worm 2009; Terborgh & Estes

2010).

Investigations into trophic cascades and biodiversity

effects on ecosystem functioning share the goal of gaining

insight into the significance of species interactions for eco-

system properties. This notwithstanding, the two lines of

research have proceeded largely independently, although

there have been repeated calls to incorporate the vertical

component of biodiversity across trophic levels into

assessments of effects on ecosystem functioning arising

from horizontal, or within-trophic level, biodiversity

change (Petchey et al. 2004; Duffy et al. 2007; Hillebrand

& Matthiessen 2009; Reiss et al. 2009; Gessner et al.

2010; Cardinale et al. 2012).

When trophic complexity has been addressed in previ-

ous biodiversity-ecosystem functioning experiments

involving metazoans, it has been limited to either concom-

itant variation of both species richness within a single tro-

phic level and food chain length (e.g. Wojdak 2005), or to

species richness across two trophic levels (e.g. Gamfeldt,

Hillebrand & Jonsson 2005). Results of the few published

experiments show that resource diversity, as well as

consumer presence and diversity, can change species

interactions within-trophic levels and thereby modify

biodiversity effects on ecosystem processes, depending on

consumer food selectivity or responses to predation

(Duffy et al. 2007). However, consequences of biodiversity

loss in more complex food webs involving metazoans have

been poorly explored so far, owing to the logistic con-

straints associated with manipulating the large number of

required experimental units.

Here we capitalize on a tractable, well characterized

detritus based food web from forest streams to assess the

extent to which interactions between horizontal and verti-

cal components of biodiversity affect leaf litter decompo-

sition. Detritus-based food webs in streams are amenable

to diversity manipulations at all trophic levels, including

basal resources (leaf litter), microbial decomposers (pri-

marily aquatic hyphomycete fungi), detritivorous primary

consumers (litter consuming arthropods) and predators.

Using a realistic food-web configuration (Fig. 1a), in

which species richness decreases with increasing trophic

level (Petchey et al. 2004), we simultaneously manipulated

(a)

(b)

Fig. 1. Schematic of trophic (solid lines) and non trophic
(dashed lines) interactions in detritus-based stream food webs. (a)
Relationships between leaf litter, fungal decomposers, detritivores
and predators as reflected in the experimental design of this
study. Indirect interactions include (1) fungal facilitation of detri-
tivores through leaf conditioning, (2) trait mediated reduction
of detritivore feeding by predators, and (3) fungal stimulation
through nutrient excretion by vertebrate and invertebrate con-
sumers. Direct and indirect predation effects on detritivores (grey
lines) are not addressed in this study. (b) Two of 234 food web
configurations realized in this study, including the most diverse
community (left), and a reduced food web with a single detriti-
vore and three trophic links to fungal species (right). H1–H5:
hyphomycete species, D1–D3: detritivore species, P: predator.



the species richness of both fungal decomposers and

invertebrate detritivores, together with the presence or

absence of predatory fish scent. We then used a statistical

model to partition the effects arising from the presence of

each trophic level, from richness within two of the three

levels, and from the interaction of these factors. Our cen-

tral hypothesis was that biodiversity effects on ecosystem

functioning emerge, or grow stronger, when communities

comprise multiple species at multiple trophic levels,

because increasingly complex food webs increase the

scope for species interactions and hence biodiversity

effects to occur. Specifically, we hypothesized that (i) hori-

zontal diversity effects depend on trophic structure,

including the presence and/or diversity of higher and/or

lower trophic levels, and (ii) these relationships are driven

by the performance of detritivores, which can reach very

high densities on decomposing leaf litter, and can greatly

contribute to litter decomposition in streams (e.g. Hieber

& Gessner 2002). We expected that detrivore performance

will be affected by both the presence of predators (reflect-

ing reduced feeding activity to minimize the risk of detec-

tion; Malmqvist 1993) and the presence and diversity of

aquatic hyphomycete fungi (resulting in complementary

selective feeding on a mosaic of patches on leaves colo-

nized by distinct fungal species; Suberkropp 1992).

Materials and methods

We conducted this multitrophic biodiversity–decomposition exper-

iment at the Moulis Experimental Ecological Station located in

the Pyrenees, southwestern France. We simultaneously manipu-

lated the species richness and composition of both fungal decom-

posers (all species of a pool of six in isolation, plus all six possible

five-species combinations) and invertebrate detritivores (all of four

species in isolation, plus all possible three-species combinations)

(Fig. 1b). In addition, we crossed all fungal and detritivore combi-

nations with a predator treatment where consumption was pre-

cluded (presence or absence of fish scent). Control treatments

without fungi, detritivores or fish were also included. There were

three replicates for each treatment combination, resulting in a total

of 702 experimental units. We used aquatic microcosms consisting

of plastic containers (11 9 8 9 4 cm) filled with 160 mL of dec-

anted (! 24 h), constantly aerated water from a nearby forest

stream (R!emillass!e stream). The microcosms were placed in a tem-

perature-controlled room at 10 °C. Three pebbles of similar size

(1"40 # 0"43 cm3 SD) were added to each microcosm to allow

detritivores to seek shelter from predation risk.

Fungi and detritivores used in the experiment were collected

from local populations. Recent single-spore isolates of six com-

mon species of aquatic hyphomycete (Articulospora tetracladia

Ingold, Clavariopsis aquatica de Wildeman, Flagellospora curvula

Ingold, Heliscus lugdunensis Saccardo et Th!erry, Tetrachaetum

elegans Ingold, and Tetracladium marchalianum de Wildeman),

which co-occur on decomposing leaves in the region (Gessner

et al. 1993), were obtained from freshly formed foam in stream

riffles and maintained on 1% malt agar. Spores of these species

were generated by submerging agar plugs from the leading edge

of colonies in 40 mL of constantly aerated water. The resulting

spore suspension was used to inoculate autoclaved oak (Quercus

robur L.) leaf discs (10 mm diameter) submerged in 800 mL of

constantly aerated and periodically renewed mineral nutrient

solution (per liter 0"01 g KNO3, 0"55 mg K2HPO4, 0"1 g CaCl2,

0"01 g MgSO4. 7H2O, pH adjusted to 7). A total of approxi-

mately 90 000 fungal spores was added, corresponding to

$18 000 spores of each of the five species in mixed communities

or $90 000 spores of a single fungal species. Fungi were allowed

to colonize the leaf disks for 35 days at 15 °C before batches of 6

discs from each fungal treatment were distributed to the micro-

cosms. Spores of aquatic hyphomycetes produced during the col-

onization period were counted on 3 occasions, including after

35 days, to verify that all species developed in the experimental

communities and no cross-contamination occurred. Forty mL of

the spore suspensions were sampled for each species combination.

Aliquots were filtered on membrane filters (SMWP, 5 lm pore

size; Millipore, Bedford, MA, USA) and stained with 0"05% Try-

pan blue. The spores trapped on the filters were identified and

counted under the microscope at 9 200 (Gessner, B€arlocher &

Chauvet 2003). All fungal treatments were successful, as indicated

by sporulation of all inoculated species in all treatments and a

complete lack of cross-contamination (Table S1).

Specimens of four species of detritivores (Sericostoma persona-

tum Kirby and Spence, Nemoura flexuosa–marginata group

Zwick, Protonemura meyeri Pictet and Gammarus fossarum Koch)

were collected from three streams near the Ecological Station,

kept in aquaria at 10 °C, and fed on naturally decomposing leaf

litter collected in one of the above streams (R!emillass!e). We

placed six individuals of a single species (for each of the four det-

ritivore species in single-species treatments) or two individuals

each of three different species (for each of four detritivore species

mixtures) in the microcosms. Throughout the experiment, any of

the few dead or emerged individuals were replaced daily with

similar-sized conspecifics.

Brown trout (Salmo trutta fario L.) of a local population were

obtained from a nearby fish hatchery. Three individuals, one

2-yr-old and two yearlings, were placed in each of three 40-L
aquaria (one per experimental block). Water in the aquaria was

renewed daily to ensure similar water quality throughout the

experiment (i.e. similar kairomone and nutrient concentrations;

Table 1). Decanted stream water from the aquaria with fish was

added to half of the microcosms at the beginning of the experi-

ment to simulate the presence of predators while preventing

Table 1. Ion concentrations (mg L%1) in water from aquaria with or without fish. Water was analysed by ion chromatography (Dionex
DX–120; Dionex Corp., Sunnyvale, CA, USA) after 5 fold dilution (see Materials and methods) and after 24 h of fish exposure. Concen-
trations of PO4

3% and NO2
% were below 10 and 5 lg L%1, respectively. Mean # SD, N = 6 to 8

Treatment N–NO3
% N–NH4

+ S–SO4
2% Cl% Ca2+ Mg2+ K+ Na+

Fish 0"57 # 0"004 0"56 # 0"27 0"87 # 0"03 1"85 # 0"19 3"99 # 0"21 1"54 # 0"03 0"86 # 0"16 3"10 # 0"23
Control 0"58 # 0"04 0"03 # 0"02 0"86 # 0"10 1"79 # 0"22 4"06 # 0"07 1"51 # 0"03 0"69 # 0"10 2"91 # 0"07



actual predation on the detritivores. During the experiment, half

of the water volume of the microcosms was renewed daily using

water with or without fish scent in the fish presence and absence

treatments, respectively. Water exposed to fish was diluted five-

fold for this purpose. To avoid strong fluctuations in the compo-

sition of fish kairomones, which can vary with diet (e.g. Crowl &

Covich 1990; Chivers, Wisenden & Smith 1996), fish were starved

both during and 48 h before the experiment (i.e. for 178 h in

total).

The experiment was stopped after 130 h when leaf mass loss

approached 100% in the treatment experiencing the most rapid

decomposition. Leaf discs and detritivores were collected, dried,

and weighed to the nearest 0"01 mg. Leaf mass loss was deter-

mined as the difference between the average initial dry mass of

batches of six leaf discs (29"7 # 2"3 mg, mean # SD; N = 30)

and the final dry mass at the end of the experiment. Detritivore

biomass was determined for each species in each microcosm, with

average individual biomass subsequently calculated by dividing

the total biomass of each species by the number of individuals

for that species in each microcosm.

To assess variation in the responses of the detritivore species

relative to their metabolic potential, we also calculated an index

of detritivore performance that standardizes for differences in

body mass (McKie et al. 2008). The index relates the observed

leaf mass loss attributed to detritivores to their estimated meta-

bolic capacity. It is based on the observation that large animals

consume more food per capita than small ones but that the rela-

tionship between feeding rate and body size is not directly pro-

portional. Metabolic capacity of the detritivores was calculated

by assuming a power relationship between the body mass and

feeding rate of the detritivores according to the metabolic theory

of ecology (Brown et al. 2004). Thus, for a given microcosm, the

metabolic capacity of the detritivores was determined as the sum,

across all individuals and species, of the average individual body

mass raised to the three-quarter power (Brown et al. 2004). Mor-

tality during the experiment was accounted for by using the mean

individual biomass, weighted according to the length of time an

individual was most likely to have laid dead before replacement

(i.e. 12 h). Finally, we calculated the ratio of the leaf mass loss

attributed to detritivores to the metabolic capacity in each micro-

cosm, where the leaf mass loss attributed to detritivores was cal-

culated as the difference between the final leaf dry mass in

microcosms with and without detritivores (for the same combina-

tion of fungal communities and predator presence or absence).

The resulting index of detritivore performance is a standardized

measure of whether and to what extent detritivore feeding was

stimulated or inhibited (rates higher or lower than expected from

the detritivore biomass and corresponding metabolic capacity) in

microcosms differing in fungal diversity and predator presence or

absence.

We performed an analysis of variance (ANOVA) on leaf mass

loss with predator presence (PP), detritivore community composi-

tion (DC) and aquatic hyphomycete community composition

(HC) as factors, as well as species richness terms. For the latter,

a priori contrasts were defined to distinguish between the effects

of aquatic hyphomycete presence (HP) and detritivore presence

(DP; by comparing the 0 vs. 1 species treatments), and aquatic

hyphomycete species richness (HR; comparing the 1 vs. 5 species

treatments) and detritivore species richness (DR; comparing the 1

vs. 3 species treatments). All richness effects were tested relative

to variation among species combinations, which represent the

true replicates for the richness treatments, rather than among

microcosms, by nesting the aquatic hyphomycete and detritivore

species composition terms within fungal and detritivore richness,

respectively (Schmid et al. 2002).

Our detritivore performance index was also analysed using a

series of ANOVAs, to assess overall responses across detritivore

treatments, and the responses of each detritivore single species

treatment separately. As a first step, the effects of detritivore and

aquatic hyphomycete richness, predator presence, and their inter-

actions, were tested using the same ANOVA models as previously:

Predator presence (PP) was crossed with aquatic hyphomycete

presence (HP) as well as aquatic hyphomycete and detritivore

richness (HR and DR), with aquatic hyphomycete composition

(HC) and detritivore composition (DC) nested in the respective

richness terms.

Additionally, four further analyses were performed focusing

specifically on the detritivore single-species treatments, to evalu-

ate the responses of each individual detritivore species (taken sep-

arately) to aquatic hyphomycete diversity and predator presence.

This latter analysis thus included predator presence (PP) crossed

with aquatic hyphomycete presence (HP) and richness (HR), and

aquatic hyphomycete composition (HC) nested in richness. The

presence/absence contrast in detritivore combinations (DP) was

not included in the latter analyses. We used Type I sums of

squares in all ANOVAs, with response variables square root- or

log-transformed to satisfy assumptions of normality and homo-

scedasticity. All statistics were performed using R version 2.12 (R

Development Core Team 2011).

Results

leaf mass loss

Average leaf mass loss ranged from 0"71% to 93"6% with

a mean of 29"9% # 0"71 SE (Fig. 2). Community compo-

sition of detritivores and aquatic hyphomycetes

(P < 0"001), but not species richness (P = 0"74 and 0"11,

(a) (b)

Fig. 2. Leaf mass loss as a function of aquatic hyphomycete and
detritivore species richness. Mean percentage (# SE) of the initial
dry mass in microcosms without aquatic hyphomycetes (s), with
1 aquatic hyphomycete species ( ) or 5 aquatic hyphomycete spe-
cies (●) present, and with fish absent (a) or present (b).



respectively), explained a considerable portion of the over-

all variability (SS of main effects = 13"3 and 18"6%,

respectively; Table 2), suggesting that decomposition rates

were more strongly influenced by consumer community

composition than by species richness. Among all main

effects relating to presence–absence or species diversity,

only aquatic hyphomycete (P = 0"007) and predator pres-

ence (P = 0"004) were significant, with higher leaf mass

loss occurring when either group was present (+23"6%
and +2"6%, respectively; Fig. 2). Although detritivore

presence accounted for an average of 16"4% of total leaf

mass loss, the effect was not significant (P = 0"099).
Multiple interactions involving both presence–absence

and richness within trophic levels were apparent. In par-

ticular, there were several significant second-order interac-
tions involving predator presence and both the presence

and richness of aquatic hyphomycetes (Table 2). Further

significant third-order interactions emerged (i) between

aquatic hyphomycete diversity and the presence of preda-

tors and detritivores (P = 0"009), and (ii) between detriti-

vore diversity and predator and aquatic hyphomycete

presence (P = 0"002; Table 2). All these interactions

increased decomposition rate with an increasing number

of trophic levels (i.e. the presence–absence terms) and/or

within-trophic level species richness. Most strikingly, the

highest decomposition rate (average mass loss of 43"9%)

was observed when all trophic levels were present at the

highest possible richness levels (Fig. 2).

detrit ivore performance

Detritivore performance (i.e. detritivore-mediated leaf

decomposition in relation to the estimated metabolic

capacity of the detritivore community [MC]; see Materials

and methods) varied between 0 and 2"54 mg MC%1

(mean # SE = 0"39 # 0"01 mg MC%1; Fig. 3). Species

composition of detritivores and aquatic hyphomycetes

explained a significant part of the observed variability

(P < 0"001; SS of main effects = 1"9 and 17"6%, respec-

tively; Table 3), as did the interaction between aquatic

hyphomycete and detritivore species composition

(P = 0"005, 7"9% of the total SS). Furthermore, the inter-

action between aquatic hyphomycete diversity and preda-

tor presence was highly significant (P < 0"001; Table 3),

suggesting that detritivore performance was contingent on

both resource diversity and the presence of predators. The

latter interaction resulted in a negative effect of fish pres-

ence (decrease of 0"13 mg MC%1) on detritivore perfor-

mance for the single-species aquatic hyphomycete

treatments, while it became positive (increase of 0"10 mg

MC%1) for diverse aquatic hyphomycete communities

(Fig. 3).

Among the single-species detritivore treatments, the

performance of Gammarus was lower (0"29 # 0"03 mg

MC%1) than that of the three insect species (0"44 # 0"04,
0"45 # 0"06 and 0"42 # 0"03 mg MC%1 for Nemoura, Pro-

tonemura and Sericostoma, respectively). Detritivore

responses to predator presence and aquatic hyphomycete

communities varied among species (Table 4; Fig. 4), with

Table 2. ANOVA results of square-root transformed data on leaf
mass loss, testing for the effects of community composition and
species richness at each of three trophic levels. Each richness
(treatment) term is tested against the following composition
(error) term, and error terms are tested against the residuals. E/F
column indicates whether the factor is included as a factor (F) or
error term (E)

Source of variation E/F d.f. SS P

Aquatic hyphomycete
presence (HP)

F 1 466"6 0"007

Aquatic hyphomycete
species richness (HR)

F 1 129"8 0"106

Aquatic hyphomycete
community composition (HC)

E 10 410"5 <0"001

Detritivore presence (DP) F 1 185"0 0"099
Detritivore species
richness (DR)

F 1 6"0 0"737

Detritivore community
composition (DC)

E 6 292"6 <0"001

HP 9 DP F 1 2"3 0"216
HP 9 DR F 1 <0"1 0"909
HR 9 DP F 1 5"8 0"052
HR 9 DR F 1 3"6 0"124
HC 9 DC E 92 136"8 0"002
Predator presence (PP) F 1 7"5 0"004
HP 9 PP F 1 3"9 0"038
HR 9 PP F 1 4"4 0"027
DP 9 PP F 1 0"6 0"399
DR 9 PP F 1 <0"1 0"946
HP 9 DP 9 PP F 1 0"6 0"428
HP 9 DR 9 PP F 1 9"0 0"002
HR 9 DP 9 PP F 1 6"3 0"009
HR 9 DR 9 PP F 1 1"6 0"181
HC 9 DC 9 PP E 108 94"7 0"690
Residuals E 468 444"9

(a) (b)

Fig. 3. Detritivore performance as a function of detritivore and
aquatic hyphomycete species richness. Mean (# SE; see Materials
and methods for calculation of detritivore performance) in micro-
cosms without aquatic hyphomycetes (s), with 1 aquatic hyph-
omycete species ( ) or 5 aquatic hyphomycete species (●)
present, and with fish absent (a) or present (b).



interactions apparent for Protonemura (HR 9 PP:

P = 0"011; Table 4), Sericostoma (HR 9 PP: P = 0"015;
Table 4) and Nemoura (HR x PP: P = 0"045; Table 4).

Specifically, Protonemura and Nemoura performance

decreased in the presence of predators in the single-
species treatments but not when five aquatic hyphomycete-
species were present. In contrast, Sericostoma

performance was unaffected by predator presence in the

single-species aquatic hyphomycete treatments, and

increased when five aquatic hyphomycete species were

present (Fig. 4). The performance of all detritivore species

also varied with aquatic hyphomycete community compo-

sition (Table 4).

Discussion

The chief discovery emerging from our manipulation of a

model detritus-based system is that the ecosystem process

we targeted – litter decomposition – was most efficient

when both horizontal (within-trophic level) and vertical

(across trophic-level) diversity components were present.

Diversity effects on decomposition rate did not primarily

arise because of species interactions within a given trophic

level, but reflected complex interactions between the pres-

ence and species richness of microbial decomposers, detri-

tivorous invertebrates, and the non-trophic influence of a

vertebrate predator. This experimental result supports

outcomes of theoretical models suggesting that multi-

trophic interactions complicate assessments of the func-

tional consequences of biodiversity change (Th!ebault &

Loreau 2003, 2006), demonstrating that even relatively

modest effects of change within single trophic levels can

ramify and amplify through ecological networks to influ-

ence ecosystem functioning.

Unsurprisingly, the sheer presence of fungal decom-

posers strongly increased ecosystem process rates, reflect-

ing their key role in leaf litter decomposition in streams

and other ecosystems (Gessner et al. 2010). However,

further increases in decomposition rate with increased

fungal richness, although consistent (Fig. 2), were too

small to be statistically significant unless predatory fish

were present. This finding is in line with outcomes of

previous biodiversity–decomposition experiments in the

absence of detritivores where fungal diversity effects

were weak or non-existent (Dang, Chauvet & Gessner

2005; Duarte et al. 2006). Increased detritivore richness

Table 3. ANOVA results of log-transformed data on detritivore
performance (see Materials and methods for calculation), testing
for the effects of community composition and species richness at
two trophic levels as well as predator presence. Each richness
(treatment) term is tested against the following composition
(error) term, and error terms are tested against the residuals. E/F
column indicates whether the factor is included as a factor (F) or
error term (E)

Source of variation E/F d.f. SS P

Aquatic hyphomycete
presence (HP)

F 1 1"92 0"114

Aquatic hyphomycete
species richness (HR)

F 1 1"71 0"135

Aquatic hyphomycete
community composition (HC)

E 10 6"44 <0"001

Detritivore species richness (DR) F 1 0"07 0"501
Detritivore community
composition (DC)

E 6 0"79 <0"001

HP 9 DR F 1 <0"01 0"736
HR 9 DR F 1 0"11 0"116
HC 9 DC E 82 3"63 0"005
Predator presence (PP) E 1 0"04 0"241
HP 9 PP F 1 <0"01 0"785
HR 9 PP F 1 1"10 <0"001
DR 9 PP F 1 0"04 0"317
HP 9 DR 9 PP F 1 0"15 0"047
HR 9 DR 9 PP F 1 0"03 0"410
HC 9 DC 9 PP E 98 3"76 0"039
Residuals E 416 12"22

Table 4. ANOVA results of log-transformed data on detritivore performance (see Materials and methods for calculation), testing for the
effects of aquatic hyphomycete community composition and diversity as well as predator presence in single-species detritivore treatments
(Gammarus, Nemoura, Protonemura and Sericostoma). Each richness (treatment) term is tested against the following composition (error)
term, and error terms are tested against the residuals. E/F column indicates whether the factor is included as a factor (F) or error term
(E)

Source of variation E/F d.f.

Gammarus Nemoura Protonemura Sericostoma

SS P SS P SS P SS P

Aquatic hyphomycete
presence (HP)

F 1 0"11 0"228 0"40 0"184 0"24 0"238 0"17 0"232

Aquatic hyphomycete
species richness (HR)

F 1 0"04 0"451 0"35 0"206 <0"01 0"936 0"30 0"121

Aquatic hyphomycete community
composition (HC)

E 10 0"66 0"005 1"95 <0"001 1"55 0"031 1"03 <0"001

Predator presence (PP) F 1 0"02 0"331 0"21 0"011 0"02 0"555 0"04 0"026
HP 9 PP F 1 0"01 0"498 0"06 0"197 0"09 0"252 <0"01 0"823
HR 9 PP F 1 <0"01 0"731 0"15 0"045 0"46 0"011 0"05 0"015
HC 9 PP E 10 0"23 0"439 0"70 0"024 0"56 0"629 0"12 0"134
Residuals E 52 1"17 1"58 3"64 0"39



has more often yielded positive effects on decomposition

in previous studies (McKie et al. 2008; Srivastava et al.

2009), though neutral or negative detritivore diversity

effects have also been observed (Gessner et al. 2010).

Differences in microbial diversity, which previous experi-

ments with detritivores did not control for, could be an

important factor accounting for the variable outcomes

of other studies, given that detritivore diversity effects in

our experiment were only apparent when microbial

diversity was high (and fish were present). Two previous

experiments have addressed the effects of varying fungal

diversity in the presence and absence of detritivores, but

neither was designed to test for interactive effects of

fungal and detritivore diversity (Lecerf et al. 2005; Reiss

et al. 2010). Nevertheless, in line with our results, both

found generally stronger diversity effects (either positive

or negative) when both trophic levels were present. This

reinforces the conclusion suggested by our multitrophic

experiment that reducing community complexity curtails

biodiversity effects on ecosystem processes.

Detritivores feeding on leaf litter are key intermediate

consumers linking microbial decomposers and top preda-

tors in detritus-based systems (Srivastava et al. 2009;

Gessner et al. 2010). Accordingly, detritivore feeding

could be influenced by both bottom-up (i.e. presence and

diversity of microbial decomposers) and top-down forces

(i.e. presence of predators). The bottom-up effect, termed

conditioning, relates to the enhancement of leaf palatabil-

ity, particularly by fungal biomass accumulation and

changes in the properties of leaves resulting from partial

enzymatic degradation (Suberkropp 1992). As palatability

of different fungal species varies among detritivores

(Suberkropp 1992), there is scope for complementary

resource use when multiple detritivore species encounter

diverse fungal communities. Positive fungal diver-

sity 9 detritivore diversity effects on decomposition can

thus arise, driven by distinct feeding preferences. This

hypothesis is supported by our finding that diverse aqua-

tic hyphomycete communities enhanced consumer perfor-

mance in the multi-species detritivore treatment (Fig. 3).

However, this effect was only significant when fish were

present, revealing that bottom-up and top-down forces

acted together to produce a detritivore diversity effect on

decomposition. This again highlights the significance of

complex interactions in communities composed of multi-

ple species within the same and at different trophic levels.

The observed cascading top-down effect from predators

to detritivores and decomposition was clearly due to

changes in detritivore feeding rates arising from non-
trophic mechanisms, as fish scent rather than live trout

was varied in our experiment. This finding demonstrates

that non-consumptive (i.e. trait-mediated) responses (K!efi

et al. 2012) of primary consumers can elicit biodiversity

effects on ecosystem processes in complex communities,

similar to effects propagating in trophic cascades

(Mooney et al. 2010; Strong & Frank 2010; Terborgh &

Estes 2010). Clearly, trait-mediated species interactions

not only can change trophic structure, but also rates of

key ecosystem processes.

Fish can affect detritivore behaviour and consequent

effects on ecosystems in at least two opposing ways. First,

positive responses to simulated fish presence could arise

through cascading bottom-up effects elicited by the release

of nutrients from fish waste products. Nutrients released

by fish (e.g. McIntyre et al. 2007), including NH4
+

(Table 1), can stimulate microbial litter decomposers

(Gulis & Suberkropp 2003), detritivores (Robinson &

Gessner 2000), or detritivore–microbe interactions, and

thus enhance decomposition rates. However, it is not clear

whether a fish-mediated nutrient effect was important in

the present study, because concentrations of dissolved P,

the limiting nutrient in microcosms as inferred from high

N : P ratios, were not measurably influenced by the pres-

ence of fish.

Alternatively, fish release specific chemical cues

(kairomones) that restrain the activity of prey who seek

to limit their vulnerability to predators (Chivers & Smith

1998; Br€onmark & Hansson 2012). In accordance with

this second mechanism, the two stonefly species in our

experiment reduced feeding in the presence of fish when

fungal diversity was low. However, at the high fungal

diversity level, the stoneflies maintained their feeding rates

even when fish were present (Fig. 4). One possible expla-

nation is that higher fungal diversity is associated with

Fig. 4. Detritivore performance for each
single-species treatment as a function of
aquatic hyphomycete species richness.
Mean (# SE; see Materials and methods
for calculation of detritivore performance)
in microcosm with fish present ( ) or
absent (s).



greater small-scale resource heterogeneity, which would

allow stoneflies to maintain their feeding activity in their

immediate surroundings, even if the presence of fish con-

strains active foraging over a larger area. In contrast to

the stoneflies, Sericostoma personatum, a large caddisfly

larva armoured by a case of coarse sand grains, increased

its feeding rate in the presence of fish (Fig. 4). Protection

by a sturdy case reduces vulnerability to predation, con-

sistent with the observation that various cased caddisfly

taxa, including Sericostoma, are insensitive to fish chemi-

cal cues (Pestana et al. 2009). Thus, our data on detriti-

vore feeding performance indicate that their lower

vulnerability could allow cased caddisflies to take advan-

tage of reduced competition from other detritivore species

that reduce feeding activity in the presence of vertebrate

predators.

Biodiversity experiments assessing the consequences of

species loss on ecosystem processes have been criticized

for their simplicity (Duffy 2008), which limits extrapola-

tion of results from such experiments to natural ecosys-

tems. The study presented here overcomes one of the

major limitations of those previous studies by explicitly

testing for effects on litter decomposition that result from

species interactions occurring simultaneously within and

across trophic levels. Although still reflecting a simplified

experimental setting, this design improves realism of

the experimental food-web configurations. Densities of the

detritivores in our experiment were high relative to the

amount of food available. However, densities were not

completely unrealistic (cf. Malmqvist, Nilsson & Svensson

1978; Hieber & Gessner 2002), especially in view of the

fact that leaf-shredding detritivores show strong aggrega-

tion behaviour on leaf litter patches in streams (Presa

Ab!os et al. 2006) and that such patches become scarce

following resource depletion as a result of litter decompo-

sition or downstream transport during floods (Argerich

et al. 2008). Therefore, our results are most relevant for

field situations in winter when litter resources have

become scarce and consumer biomass is still high,

although discrepancies between our experimental and nat-

ural field densities were within limits suggesting that our

results could apply for situations even during leaf fall

in autumn.

One could also argue that our experimental set-up
might have exaggerated the effects of fish presence on det-

ritivore performance, because even though addition of

three pebbles provided some refuge in our microcosms,

the caged detritivores were unable to move away from the

fish scent imposed on them. However, such is the situa-

tion even in natural streams, where it is impossible for

consumers to evade fish scent, which is ubiquitous along

stream reaches with healthy fish populations and induces

changes in the activity of stream consumers via trait-
mediated mechanisms, as has been demonstrated in a field

experiment (Peckarsky et al. 2002). Consequently, it is

unlikely that fish scent in our microcosms triggered unnat-

ural detritivore behaviour.

Ecosystems worldwide are suffering unprecedented

rates of biodiversity loss at present (Dudgeon et al. 2006;

Butchart et al. 2010), with top predators often most

vulnerable to extinction (Duffy 2003). It has long been

understood that such extinctions can affect multiple eco-

system properties through trophic cascades (Terborgh &

Estes 2010). Our results from a detritus-based model

food web involving invertebrates and vertebrate consum-

ers indicate that the situation is yet more complex in that

top predator extinction is likely to interact with biodiver-

sity declines at lower trophic levels to alter ecosystem

functioning. Indeed, according to our results, it is the

coupling between top predator loss and diversity declines

at either the microbial or detritivore level that reduces

decomposition rates most strongly.

In natural systems, predators alter food-web interac-

tions not only through behavioural (i.e. trait-mediated)

mechanisms (Werner & Peacor 2003; Mooney et al. 2010),

as examined here, but also through direct consumption,

and they can exert strong control on ecosystem processes,

especially when primary consumers face multiple predator

species (Zhang, Richardson & Negishi 2004). Thus, the

range of possible interactions between vertical and hori-

zontal diversity with repercussions on ecosystem process

rates is likely to be even greater in nature than observed

in our experiment. The implication of the results pre-

sented here is that mimicking scenarios of trophic

complexity in experiments as realistically as possible is

likely to strengthen rather than weaken evidence for the

importance of biodiversity effects on the functioning of

ecosystems.
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ler, D.J., Lévêque, C., Naiman, R.J., Prieur-Richard, A.-H., Soto, D.,
Stiassny, M.L.J. & Sullivan, C.A. (2006) Freshwater biodiversity: impor-
tance, threats, status and conservation challenges. Biological Reviews,
81, 163–182.

Duffy, J.E. (2003) Biodiversity loss, trophic skew and ecosystem function-
ing. Ecology Letters, 6, 680–687.

Duffy, J.E. (2008) Why biodiversity is important to the functioning of
real%world ecosystems. Frontiers in Ecology and the Environment, 7,
437–444.

Duffy, J.E., Cardinale, B.J., France, K.E., McIntyre, P.B., Th!ebault, E. &
Loreau, M. (2007) The functional role of biodiversity in ecosystems:
incorporating trophic complexity. Ecology Letters, 10, 522–538.

Gamfeldt, L., Hillebrand, H. & Jonsson, A. (2005) Species richness
changes across two trophic levels simultaneously affect prey and con-
sumer biomass. Ecology Letters, 8, 696–703.

Gessner, M.O., Thomas, M., Jean-Louis, A.-M. & Chauvet, E. (1993)
Stable successional patterns of aquatic hyphomycetes on leaves decaying
in a summer cool stream. Mycological Research, 97, 163–172.

Gessner, M.O., B€arlocher, F. & Chauvet, E. (2003) Qualitative and quan-
titative analyses of aquatic hyphomycetes in streams. Freshwater Mycol-
ogy (eds C.K.M. Tsui & K.D. Hyde), pp. 127–157. Fungal Diversity
Press, Hong Kong.

Gessner, M.O., Swan, C.M., Dang, C.K., McKie, B.G., Bardgett, R.D.,
Wall, D.H. & H€attenschwiler, S. (2010) Diversity meets decomposition.
Trends in Ecology & Evolution, 25, 372–380.

Gulis, V. & Suberkropp, K. (2003) Leaf litter decomposition and micro-
bial activity in nutrient%enriched and unaltered reaches of a headwater
stream. Freshwater Biology, 48, 123–134.

Hairston, N.G., Smith, F.E. & Slobodkin, L.B. (1960) Community struc-
ture, population control and competition. American Naturalist, 94,
421–425.

Hieber, M. & Gessner, M.O. (2002) Contribution of stream detrivores,
fungi, and bacteria to leaf breakdown based on biomass estimates. Ecol-
ogy, 83, 1026–1038.

Hillebrand, H. & Matthiessen, B. (2009) Biodiversity in a complex world:
consolidation and progress in functional biodiversity research. Ecology
Letters, 12, 1405–1419.

Hooper, D.U., Adair, E.C., Cardinale, B.J., Byrnes, J.E.K., Hungate,
B.A., Matulich, K.L., Gonzalez, A., Duffy, J.E., Gamfeldt, L. &
O’Connor, M.I. (2012) A global synthesis reveals biodiversity loss as a
major driver of ecosystem change. Nature, 486, 105–108.

Isbell, F., Calcagno, V., Hector, A., Connolly, J., Harpole, W.S., Reich,
P.B., Scherer-Lorenzen, M., Schmid, B., Tilman, D., Van Ruijven, J.,
Weigelt, A., Wilsey, B.J., Zavaleta, E.S. & Loreau, M. (2011) High plant
diversity is needed to maintain ecosystem services. Nature, 477, 199–202.

K!efi, S., Berlow, E.L., Wieters, E.A., Navarrete, S.A., Petchey, O.L.,
Wood, S.A., Boit, A., Joppa, L.N., Lafferty, K.D., Williams, R.J.,
Martinez, N.D., Menge, B.A., Blanchette, C.A., Iles, A.C. & Brose, U.
(2012) More than a meal… integrating non%feeding interactions into
food webs. Ecology Letters, 15, 291–300.

Knight, T.M., McCoy, M.W., Chase, J.M., McCoy, K.A. & Holt, R.D.
(2005) Trophic cascades across ecosystems. Nature, 437, 880–883.

Lawton, J.H. (1994) What do species do in ecosystems? Oikos, 71,
367–374.

Lecerf, A., Dobson, M., Dang, C.K. & Chauvet, E. (2005) Riparian plant
species loss alters trophic dynamics in detritus%based stream ecosys-
tems. Oecologia, 146, 432–442.

Loreau, M. (2010) Linking biodiversity and ecosystems: towards a unify-
ing ecological theory. Philosophical Transactions of the Royal Society of
London B, Biological Sciences, 365, 49–60.

Malmqvist, B. (1993) Interactions in stream leaf packs: effects of a stonefly
predator on detritivores and organic matter processing. Oikos, 66,
454–462.

Malmqvist, B., Nilsson, L.M. & Svensson, B.S. (1978) Dynamics of detri-
tus in a small stream in southern Sweden and its influence on the distri-
bution of the bottom animal communities. Oikos, 31, 3–16.

McIntyre, P.B., Jones, L.E., Flecker, A.S. & Vanni, M.J. (2007) Fish
extinctions alter nutrient recycling in tropical freshwaters. Proceedings
of the National Academy of Sciences of the USA, 104, 4461–4466.

McKie, B.G., Woodward, G., Hladyz, S., Nistorecu, M., Preda, E., Pope-
scu, C., Giller, P. & Malmqvist, B. (2008) Ecosystem functioning in
stream assemblages from different regions: contrasting responses to var-
iation in detritivore richness, evenness and density. Journal of Animal
Ecology, 77, 495–504.

Mooney, K.A., Gruner, D.S., Barber, N.A., Van Bael, S.A., Philpott,
S.M. & Greenberg, R. (2010) Interactions among predators and the cas-
cading effects of vertebrate insectivores on arthropod communities and
plants. Proceedings of the National Academy of Sciences of the USA,
107, 7335–7340.

Naeem, S., Duffy, J.E. & Zavaleta, E. (2012) The functions of biological
diversity in an age of extinction. Science, 336, 1401–1406.

Peckarsky, B.L., McIntosh, A.R., Taylor, B.W. & Dahl, J. (2002) Predator
chemicals induce changes in mayfly life history traits: a whole–stream
manipulation. Ecology, 83, 612–618.

Pestana, J.L.T., Loureiro, S., Baird, D.J. & Soares, A.M.V.M. (2009) Fear
and loathing in the benthos: responses of aquatic insect larvae to the
pesticide imidacloprid in the presence of chemical signals of predation
risk. Aquatic Toxicology, 93, 138–149.

Petchey, O.L., Downing, A.L., Mittelbach, G.G., Persson, L., Steiner,
C.F., Warren, P.H. & Woodward, G. (2004) Species loss and the struc-
ture and functioning of multitrophic aquatic systems. Oikos, 104,
467–478.

Presa Ab!os, C., Lepori, F., McKie, B.G. & Malmqvist, B. (2006) Aggrega-
tion among resource patches can promote coexistence in stream–living
shredders. Freshwater Biology, 51, 545–553.

R Development Core Team (2011) R: A Language and Environment for
Statistical Computing. R Foundation for Statistical Computing, Vienna,
Austria.

Rasher, D.B. & Hay, M.E. (2010) Chemically rich seaweeds poison corals
when not controlled by herbivores. Proceedings of the National Academy
of Sciences of the USA, 107, 9683–9688.

Reiss, J., Bridle, J.R., Montoya, J.M. & Woodward, G. (2009) Emerging
horizons in biodiversity and ecosystem functioning research. Trends in
Ecology & Evolution, 24, 505–514.

Reiss, J., Bailey, R.A., C!assio, F., Woodward, G. & Pascoal, C. (2010)
Assessing the contribution of micro%organisms and macrofauna to bio-
diversity–ecosystem functioning relationships in freshwater microcosms.
Advances in Ecological Research, 43, 151–176.

Robinson, C.T. & Gessner, M.O. (2000) Nutrient addition accelerates leaf
breakdown in an alpine springbrook. Oecologia, 122, 258–263.

Scherber, C., Eisenhauer, N., Weisser, W.W., Schmid, B., Voigt, W. &
Fischer, M. et al. (2010) Bottom%up effects of plant diversity on
multitrophic interactions in a biodiversity experiment. Nature, 468,
553–556.

Schmid, B., Hector, A., Huston, M.A., Inchausti, P., Nijs, I., Leadley,
P.W. & Tilman, D. (2002) The design and analysis of biodiversity exper-
iments. Biodiversity and Ecosystem Functioning: Synthesis and Perspec-
tives (eds M. Loreau, S. Naeem & P. Inchausti), pp. 61%75. Oxford
University Press, Oxford.

Schmitz, O.J. (2008) Effects of predator hunting mode on grassland eco-
system function. Science, 319, 952–954.

Sommer, U. (2008) Trophic cascades in marine and freshwater plankton.
International Review of Hydrobiology, 93, 506–516.



Srivastava, D.S. & Bell, T. (2009) Reducing horizontal and vertical diver-
sity in a foodweb triggers extinctions and impacts functions. Ecology
Letters, 12, 1016–1028.

Srivastava, D.S., Cardinale, B.J., Downing, A., Duffy, J.E., Jouseau, C.,
Sankaran, M. & Wright, J.P. (2009) Diversity has stronger top%down
than bottom%up effects on decomposition. Ecology, 90, 1073–1083.

Stachowicz, J.J., Bruno, J.F. & Duffy, J.E. (2007) Understanding the
effects of marine biodiversity on communities and ecosystems. Annual
Review of Ecology and Systematics, 38, 739–766.

Strong, D.R. & Frank, T.F. (2010) Human involvement in food webs.
Annual Review of Environment and Resources, 35, 1–23.

Suberkropp, K. (1992) Interactions with invertebrates. The Ecology of
Aquatic Hyphomycetes (ed F. B€arlocher), pp. 118%134. Springer Verlag,
Berlin, Germany.

Terborgh, J. & Estes, J.A. (2010) Trophic Cascades % Predators, Prey, and
the Changing Dynamics of Nature. Island Press, Washington, USA.

Th!ebault, E. & Loreau, M. (2003) Food%web constraints on biodiver-
sity%ecosystem functioning relationships. Proceedings of the National
Academy of Sciences of the USA, 100, 14949–14954.

Th!ebault, E. & Loreau, M. (2006) The relationship between biodiversity
and ecosystem functioning in food webs. Ecological Research, 21,
17–25.

Werner, E.A. & Peacor, S.D. (2003) A review of trait%mediated indirect
interactions in ecological communities. Ecology, 84, 1083–1100.

Wojdak, J.M. (2005) Relative strength of top–down, bottom–up, and con-
sumer species richness effects on pond ecosystems. Ecological Mono-
graphs, 75, 489–504.

Zhang, Y., Richardson, J.S. & Negishi, J.N. (2004) Detritus processing,
ecosystem engineering and benthic diversity: a test of predator–omni-
vore interference. Journal of Animal Ecology, 73, 756–766.

Received 13 September 2012; accepted 26 February 2013
Handling Editor: Guy Woodward

Supporting Information

Additional Supporting Information may be found in the online version

of this article.

Table S1. Contribution of each of 6 aquatic hyphomycete species

used to assemble 12 experimental communities.


