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a b s t r a c t

A wide variety of techniques have been developed to homogenize transport equations in multiscale and

multiphase systems. This has yielded a rich and diverse field, but has also resulted in the emergence of

isolated scientific communities and disconnected bodies of literature. Here, our goal is to bridge the gap

between formal multiscale asymptotics and the volume averaging theory. We illustrate the methodolo-

gies via a simple example application describing a parabolic transport problem and, in so doing, compare

their respective advantages/disadvantages from a practical point of view. This paper is also intended as a

pedagogical guide and may be viewed as a tutorial for graduate students as we provide historical context,

detail subtle points with great care, and reference many fundamental works.

1. Introduction

The effective behavior of multiscale, multiphase materials has
been of interest to researchers from the 19th Century. The earliest
examples include Maxwell’s work on the conductivity of dilute
suspensions [1] and Einstein’s analysis of the viscosity of a dilute
suspension of neutrally buoyant hard spheres [2]. Several precur-
sory ideas were presented in these studies, in particular the con-
cepts of effective conductivity and viscosity. The continued use of
these early results as limit cases or approximate correlations serves
to illustrate how fundamental and remarkable they were. Nowa-
days, effective theories have applications as diverse as composite
materials [3], biological tissues [4], biofilms [5], networks of
large-scale bodies such as buildings [6], the mechanics of masonry
structures [7], reservoirs with large faults [8] or transport in vascu-
lar networks [9].

A typical multiscale problem is illustrated in Fig. 1 for a porous
medium. Pore-scale properties, such as the indicator field describ-
ing the phase geometry, vary rapidly with the spatial coordinates
relative to the scales of the macroscopic domain. In Fig. 1, this is

to say that the characteristic lengthscales l and ‘ are much smaller
than a characteristic large-scale length, L,

l; ‘ � L: ð1:1Þ

Discretization of domains that satisfy Eq. (1.1) necessarily yields a
substantial amount of mesh cells, making it challenging to compute
solutions of partial differential equations in such multiscale sys-
tems. A solution to this numerical problem is to adopt a macro-
scopic viewpoint and use models in which high frequency
fluctuations have been filtered out (see Fig. 2).

In most cases, such effective medium approaches were first for-
mulated from an empirical point of view, e.g., Darcy’s law [10], the
dispersion equation [11–13], and the generalized Darcy’s laws for
multiphase flows [14]. Later on, the hypothesis that these descrip-
tions could be obtained theoretically by averaging microscale
equations found its way into the scientific community, before the
sixties, and with a rapid pace thereafter. One of the first fundamen-
tal analyses related to porous media was devised in the fifties by
Taylor [15] and Aris [16]. It was concerned with solute transport
in a Poiseuille flow and deriving an asymptotic equation that
would describe the transport of the average cross-section concen-
tration in a tube. Taylor and Aris showed that this average satisfies
a one-dimensional advection–dispersion equation and that the
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dispersion coefficient is proportional to the square of the Péclet
number. This result is valid only asymptotically (in the long-time
limit), the relevant timescale being the time for a molecule of sol-
ute to travel the entire width of the tube. Hence, the analysis is par-
ticularly useful when the width of the tube is much smaller than
the total length. More generally, this notion of separation of scales,
Eq. (1.1), is central to the development of macroscale theories (see
[17] or [18] for broad historical perspectives on mechanics).

Not only have averaging approaches led to thousands of contri-
butions, but also a proliferation of theoretical frameworks (see [19]
for a review). Generic homogenization techniques include deter-
ministic methods such as volume averaging, multiscale asymptot-
ics, mixture theories and the generalized method of moments (or
Taylor–Aris–Brenner method, see [20]); and stochastic approaches
based on ensemble averaging, i.e., where macroscale quantities are
sought as mathematical expectations [21–24]. These frameworks
led to significant advances in the field and to the development of
new application areas such as optimal design [25] or shape optimi-

zation [26]. However, this enormous volume of works (with little
connection between them) has also resulted in a lot of confusion.
Indeed, how many times have we heard arguments about the rela-
tionship between the different theories, even from the most prom-
inent contributors themselves? Surprisingly, there has been little
effort to clarify these questions. One of the authors remembers
hours of discussion at UC Davis with Stephen Whitaker during,
or after, the visits of known contributors to porous media theories:
Bourgeat, Cushman, Dagan, Gray, to cite a few. These discussions
raised interesting and fundamental questions. However, on only
one occasion did this lead to a public contribution: a short note
(in French) comparing asymptotic homogenization and the method
of volume averaging [27]. The goal that the authors outlined in this
short paper remains largely unachieved and the purpose of this
contribution is to advance further in this direction.

2. Historical background: volume averaging and multiscale

asymptotics

2.1. Volume averaging

The idea underlying volume averaging is that macroscale vari-
ables can be defined through the use of spatial averaging. Early
works in the sixties include [28–31]. For example, Marle [28,29]
tried to justify Darcy’s law using irreversible thermodynamics
and out of equilibrium fundamental relationships (Onsager reci-
procal relations). The idea that macroscale models should be com-
patible with thermodynamical principles was not new (see
[12,32,33]), but the introduction of the volume averaging
framework initiated a highly productive methodology that was

Fig. 1. Illustration of the different coordinate systems and the hierarchy of scales for a priori non-periodic (left-hand side) and periodic (right-hand side) media. The

dimensionalized system corresponds to the spatial variable x where l is a pore-scale characteristic length, ‘ is the size of the averaging volume and L is a macroscale

characteristic length. Further, we have illustrated two additional coordinate systems that correspond to the spatial variables xH (macroscale) and yH (microscale),

nondimensionalized with L and ‘ respectively.

Fig. 2. Schematic diagram illustrating micro- and macroscale descriptions. The

microscale differential operator, L, applying to u, is transformed into a macroscale

operator,M, that involves effective parameters and applies to the average value uh i.

The microscale geometry exhibits high-frequency fluctuations that have been

filtered out in the macroscale geometry.



subsequently used by several authors (for instance by Hassani-
zadeh and Gray [34] and Bennethum and Cushman [35]). This
methodology bears connections with developments belonging to
the theory of mixtures (see [36]). Averaging balance equations typ-
ically yields additional terms that can be interpreted heuristically
via physical notions such as tortuosity, dispersion, permeability
or interphase exchanges (see [31,37]). Such empirical approaches
have been used to interpret microscale numerical simulations
and to propose new forms of macroscale equations (e.g., in
[38,39]). Alternatively, macroscale equations may be derived via
the method of volume averaging with closure, as developed by
Whitaker (see [40]), which relies on a perturbation analysis and
scaling approximations.

2.2. Multiscale asymptotics

In mathematics, asymptotic methods are often used to study
differential operators involving rapidly oscillating coefficients. It
is far beyond the scope of this paper to provide an exhaustive re-
view of asymptotic methods, so we will focus on developments
in the field of partial differential equations that appeared in the sev-
enties (for reference, example works on ordinary differential equa-
tions include [41,42]). The term homogenization was first coined in
a computational context by Babuška [43], where he presents mul-
tiscale asymptotic developments for an application to periodic do-
mains in nuclear reactors. Early works also include contributions
by Sanchez-Palencia for applications to a variety of problems
(e.g., [44–46]). The methodology of Sanchez-Palencia, which is
the core of the formal multiscale asymptotics that will be pre-
sented in this paper, consisted of a perturbative decomposition (a
two-scale expansion) of variables as a function of a (very) small
parameter e, defined as the ratio of micro- and macro-lengthscales,
e ¼ ‘

L
(see Eq. (1.1)). One of the most important references in the

field, that discusses formal approaches along with convergence
proofs, is the book by Bensoussan et al. [47].

These early results focused on periodic multiscale asymptotics.
Non-periodic results, which were developed concomitantly in the
seventies, are based on more general and powerful convergence
principles such as Cÿ;Gÿ or Hÿ convergence (see e.g., [48,49]
for a broad perspective regarding such developments). We remark
that a specific advantage of periodic homogenization, which is par-
ticularly interesting for practical engineering applications, is that it
may enable effective parameters to be determined as functions of
tensor fields that are calculated locally over a unit-cell. For further
references on multiscale asymptotics, we refer also to the book
[50], the paper by Auriault [51] and the many contributions of Al-
laire, Arbogast, Auriault, Ene, Hornung, Lions, Mei, Mikelić, Papani-
colaou, Sanchez-Palencia and Tartar.

3. Objectives and organization

Several branches of volume averaging and multiscale asymptot-
ics were developed in parallel. Although they share similar goals,
their nature is significantly different. In this work, we will study
the particular type of volume averaging presented in Whitaker’s
book [40]. We will compare this technique to formal periodic

asymptotics, as developed in the early works of E. Sanchez-Palencia,
in [47] or in [52]. We will not consider ‘‘mathematical homogeni-
zation’’ and convergence aspects, although we will discuss some
results in Section 9.

In addition to serving as a comparison of multiscale asymptotics
and volume averaging, this paper may be viewed as a tutorial for
graduate students and researchers. We have taken particular care
to detail nontrivial points that are rarely explained in the litera-
ture. To further clarify presentation, we use ‘‘Technical Notes’’

throughout the paper, in order to distinguish essential material
from more advanced points. We recommend that on first reading,
these notes are ignored. We remark that learning homogenization
theories takes time and effort, but it is a worthwhile investment.
The process of averaging can provide additional insight into many
different problems in physics and mathematics.

The remainder of this paper is organized as follows. We will
first illustrate formal asymptotics and volume averaging via an
example application to a transport problem in a hierarchical mul-
tiscale system. This is done in three steps through Sections 4–6. In
Section 4, we define the physical framework and the example
transport problem. In Section 5, we explain how the method of vol-
ume averaging may be used to homogenize this problem. In Sec-
tion 6, we present results obtained via formal multiscale
asymptotics. In Section 7, we discuss fundamental properties of
the homogenized problem and show how they can be used to
check for errors and missing terms. Section 8 is dedicated to com-
paring both methods in terms of final results, assumptions and
algorithms. Again, this comparison is done in the context of a practical

application. Finally, in Section 9, we discuss more advanced aspects
of the methods, including current open problems and highlight
important contributions to the field.

4. Definitions and problem formulation

4.1. Notations and algebra

Algebraic notations often differ from one paper to another,
making it difficult for researchers to fight their way through the
jungle of symbols. The variety of alternatives used to represent
similar objects (e.g., whether to use matrices, dyadics, vectors or
tensors; index or Gibbs notation; upper or lower indices; nesting
or other conventions; tensor or Kronecker symbols for outer prod-
ucts) can be bewildering to say the least. To further complicate
matters, conventions and notations are often only implicitly de-
fined. In this paper, we will work with tensors and tensor fields
as presented below (for detailed introductions to this topic, see
[53,54]).

For the Gibbs (symbolic compact) notations, we will use the fol-
lowing notations:

� zero-order tensors (scalar) or zero-order tensor fields (scalar
fields) with Roman characters, e.g., A 2 R;

� first-order tensors (vector) or first-order tensor fields (vector
fields) with bold Roman characters, e.g., A 2 R

n (for our pur-
poses we will focus on n � 3). Roman subscripts will identify
the components of a vector, e.g., Ai;

� second-order tensors (dyadic or matrix) or second-order tensor
fields (dyadic fields) with bold sans serif characters, e.g.,
A 2 R

n � R
n. We will refer to each component of this tensor as

Aij.

For the index notation, we will use Einstein’s summation conven-
tion via repeated indices:

Aixi �
X

i

Aixi: ð4:1Þ

We will not perform changes of bases (except for rescaling), so that
we will not worry about covariance and contravariance.

Apart from tensor addition and multiplication by a scalar, two
additional operations are needed in this work. First, we will use
the outer product of two vectors defined by

AB � C; ð4:2Þ

with Cij ¼ AiBj.



Second, we will use the dot-product (inner product) that will
follow the nesting convention, i.e., the last index of the first tensor

is contracted with the first index of the last tensor. To be explicit,
we have

� Vector � Vector ¼ Scalar: A � B � AiBi.
� Vector � Dyadic ¼ Vector: A � B � C with Ci ¼ AjBji. We remark
that this operation is illegal in matrix algebra and may yield
confusion. This is, however, a convenient convention for partial
differential equations as it unambiguously defines the operation
$ � A in which nabla is seen a vector with components $i ¼ @ i.

� Dyadic � Vector ¼ Vector: B � A � C with Ci ¼ BijAj.
� Dyadic � Dyadic ¼ Dyadic: A � B � C with Cij ¼ AikBkj. This may
also be written with vectors as ABð Þ � CDð Þ ¼ A B � Cð ÞD.

� Dyadic : Dyadic ¼ Scalar: A : B � C ¼ AijBji.

For clarity, we will use both the Gibbs (symbolic representations of
tensors) and index notations (component representation of ten-
sors) when necessary.

4.2. Parabolic transport problems

In this subsection, we present example transport problems that
are described by pure diffusive equations, before proposing a pro-
totypical mathematical formulation in the next subsection. One
such problem is heat conduction in composite systems or porous
media (see e.g., [55]). Energy conservation within each region is of-
ten written as

@tT ¼ $ �
k

qcp
$T

� �
; ð4:3Þ

where T [K] is the temperature, k [Wmÿ1 Kÿ1] the thermal conduc-
tivity, q [kg mÿ3] the mass density and cp [J kgÿ1 Kÿ1] the specific
heat capacity.

Another example problem is the diffusion of a solute in multi-
phase or multi-region systems. Mass conservation yields (assum-
ing no reactions or sources/sinks of solute)

@tc ¼ $ � D xð Þ � $cð Þ; ð4:4Þ

with c [mol m3] the solute concentration and D [m2 sÿ1] the diffu-
sion tensor.

For weakly compressible isothermal fluids (see a discussion of
these points in [56]), the deviation of mass density q [kg m3] from
its reference value q0 may be approximated by q � q0 1þ c Pÿð½

P0Þ� with c [Nÿ1 m2] the fluid compressibility, P [N mÿ2] the pres-
sure and P0 [N mÿ2] is the reference pressure corresponding to
q0. For porous media flows with negligible gravitational effects,
mass conservation combined with Darcy’s law may yield

@tP ¼ $ �
K xð Þ

�cl
� $P

� �
; ð4:5Þ

where K [m2] is the permeability tensor, � is the porosity, and l
[N mÿ2 sÿ1] is the dynamic viscosity.

All these examples lead to a similar diffusion equation and we
will use this equation as a generic example throughout this paper.
We remark that terms such as qcp or �cl are considered constant
through time and space, otherwise their introduction in the
divergence term would not be possible. A generalization to non-
constant coefficients would lead to additional complexity which
is beyond the scope of this work.

4.3. Prototypical initial boundary value problem

In Sections 5 and 6 of this paper, we will study homogenization
of the following partial differential equation (a more mathematical
formalization is described in Technical note 1),

@tu|{z}
rate of change

¼ $ � A xð Þ � $uð Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
diffusion

¼ @xi Aij@xju
� �

; ð4:6Þ

in which u is a scalar field that may correspond to a variety of phys-
ical parameters (e.g., pressure, temperature or concentration). We
will assume that the system is subject to the following Dirichlet
boundary condition,

u ¼ f x; tð Þ on @XD; ð4:7Þ

and the initial condition

u x;0ð Þ ¼ 0: ð4:8Þ

This problem can be generalized by incorporating source terms into
Eq. (4.6) and considering nontrivial initial conditions in place of
Eq. (4.8). Additionally, a spatially varying weight could be included
in front of the rate of change term, a xð Þ@tu, on the left-hand side of
Eq. (4.6). In order to highlight the differences between volume aver-
aging and multiscale asymptotics, we will focus on the simplest
problem defined by Eqs. (4.6) to (4.8).

In Eq. (4.6), we have assumed that A varies with position x. This
will enable us to analyze materials with smoothly varying coeffi-
cients without explicitly needing to incorporate different phases.
This approach is only valid when there are no jumps in the vari-
ables and no sources or sinks on the boundaries between phases.
In practice, weak derivatives (and partial differential equations de-
fined in the sense of distributions) may be used to relax such
restrictions.

Technical note 1: The same problem may be written more

rigorously as follows. Let X be an open bounded subset of

R
n with boundary @XD. We consider the following parabolic

problem

@tu ¼ $ � A xð Þ � $uð Þ in X� R
þ;

along with the boundary condition

u ¼ f x; tð Þ on @XD � R
þ;

and the initial condition u x;0ð Þ ¼ 0 in X, wherein A xð Þ is a

dyadic field defined on X ¼ X [ @XD. We may further complete

this problem by defining functional spaces and properties of

the problem, e.g., u 2 L2 Xð Þ, A is positive-definite, symmetric,

or there exist a;b 2 R
þ� with a 6 b such that a nj j2 6 Aijninj 6

b nj j2. In the remainder of this paper, however, attention

focuses on formal asymptotic developments, with little con-

cern for functional spaces, topologies and convergence

(mathematical approaches that can be used to address such

issues are discussed in Section 9).

4.4. Nondimensionalization

We consider a hierarchical system, as illustrated in Fig. 1, for
which natural lengthscales, ‘ and L, characterize the micro- and
macroscales, respectively. Using these lengthscales, we define the
dimensionless spatial variables xH � x

L
and yH � x

‘
(see Fig. 1) where

x is the dimensional variable. The dimensionless lengths are often
referred to as the micro- (yH is O 1ð Þ at the microscale) and macro-
(xH is O 1ð Þ at the macroscale) variables (see also Fig. 1), with the



relationship yH ¼ eÿ1xH with e � ‘
L
� 1, see Eq. (1.1). We scale time

t ¼ TtH with T ¼ L2

A
(where A is the norm of the arithmetic mean of

A xð Þ), AH xHð Þ ¼ TA xð Þ

L2
, uH xHð Þ ¼ u xð Þ

u0
and fH xH; tH

ÿ �
¼ f x;tð Þ

u0
where u0 is

a reference value, e.g., u0 ¼ max jf j. We rescale Eqs. (4.6)–(4.8) to
give

@tHu
H ¼ $xH � A

H xH
ÿ �

� $xHu
H

ÿ �
; ð4:9Þ

uH ¼ fH; ð4:10Þ

uH xH;0
ÿ �

¼ 0: ð4:11Þ

Henceforth, we remove the stars on the dimensionless variables for
simplicity. Further, we will assume that A exhibits only high (spa-
tial) frequency fluctuations, i.e., varies with a characteristic length-
scale which is O eð Þ. In the next two sections, we will present
homogenization of this initial boundary value problem.

5. Homogenization via volume averaging

The volume averaging approach relies on direct spatial averag-
ing of the partial differential equations. To do this, we proceed
schematically as follows:

1. Define the averaging process.
2. State theorems that allow the interchange of spatial averaging

and differential operators.
3. Average equations and use an ‘‘average-plus-perturbation’’

decomposition.
4. Make assumptions, primarily concerning the timescales and

lengthscales of the processes, to simplify the problem and
obtain an approximate form of the perturbations.

5. Derive a closed form of the macroscopic equations.

A more detailed description of the theory’s algorithm is given in
Section 8 (see Fig. 10).

5.1. Definitions of averaging volume and moving average

In Section 4.3, the initial boundary value problem which de-
scribes u was defined for u 2 X � R

n with n a positive integer. In
practice, we will focus on cases for which n � 3 with a particular
emphasis on n ¼ 3. In the volume averaging literature, the notation
used often reflects this specific choice, with sets measured as ‘‘vol-
umes’’. To avoid confusion and simplify comparison with previous
works, we will follow this terminology and denote by V xð Þ � X the
averaging (closed) set at point x, and by V its volume (V �

R
V xð Þ

dV)
(see Fig. 3).

For any tensor w (including scalars, vectors and dyadics), we de-
fine the moving volume average (a more general definition is given
in Technical note 2) as

wh i x; tð Þ �
1

V

Z

n2V xð Þ

w n; tð ÞdVn; ð5:1Þ

or equivalently,

wh i x; tð Þ ¼
1

V

Z

f2V 0ð Þ

w xþ f; tð ÞdV f: ð5:2Þ

We will assume that V � constant and suppose that V xð Þ is the
closed ball Br xð Þ with radius r centered at point x. In multiphase
systems, we also often define the phase and intrinsic averages.
For phase a (the closed set Va within the averaging volume V, see
Fig. 3), these correspond to

Phase average: wah i ¼
1

V

Z

n2Va xð Þ

wa n; tð ÞdVn ð5:3Þ

and

Intrinsic average: wah ia ¼
1

Va

Z

n2Va xð Þ

wa n; tð ÞdVn; ð5:4Þ

where wa is the restriction of w to the subset Va and Va is the vol-
ume associated with Va. With these notations, we have the simple
relationship

Fig. 3. A schematic representation of the averaging sets and interfaces, their positions and the coordinate system notations. In this figure, the centroid of the averaging

volume V xð Þ is represented using the variable x and the integration vector using the vectors f or n. The surface delineating between V xð Þ and the rest of the medium is Sex xð Þ. If

the averaging contains multiple phases, each portion of phase a contained in V xð Þ is denoted Va xð Þ with internal and external boundaries Sain xð Þ and Saex xð Þ, respectively.



wah i ¼
Va

V
wah ia: ð5:5Þ

Technical note 2: Moving averages are more generally de-

fined by (see [57–60])

wh im �

Z

R
n

m nð Þ�w xÿ n; tð ÞdVn � mH
�w; ð5:6Þ

where H denotes the spatial convolution, m : Rn ! R is a

smoothing function that has compact support in R
n and is nor-

malized so that
R
R
n m nð Þdn � 1. Further, �w denotes an exten-

sion of w outside �X,

�w ¼
w

�w

in �X;

in R
n n �X;

(

where �X is the closure of X and the function �w remains to

be defined. This extension is required to define averages

close to domain boundaries. In most cases, since the bound-

ary layer on which the difficulty exists is O eð Þ and since

we are interested in the limit e! 0, we proceed ‘‘as if’’

the domain was unbounded. However, this treatment is

not always satisfactory, e.g., the error may propagate fur-

ther than O eð Þ or this may yield difficulties in the treatment

of the macroscale boundary conditions. The reader is re-

ferred to Prat [61] for a discussion of this issue. A similar

problem for multiphase systems and solutions via jump

boundary conditions are discussed in, e.g., [62,63]. An

advantage of using the convolution definition is that further

mathematics can be simplified by choosing m 2 C1
, i.e., is

continuous and has continuous derivatives of all orders.

An example of one such possible choice for mðnÞ is:

m nð Þ ¼
C exp ÿðr2 ÿ jnj2Þ

ÿ1
� �

if nk k < r;

0 if nk kP r:

8
<
: ð5:7Þ

We may also obtain wh im ¼ wh i by considering the discontinu-

ous functional

m nð Þ ¼
1 if nk k 6 r;

0 if nk k > r:

�

5.2. Theorems

Application of the volume averaging methodology relies heavily
upon the following three theorems (proofs are available in, among
others, [58,59,64–66]) for sufficiently smooth (see Technical note 3)
tensor fields Ta, Ta and Ta defined in phase a.

Theorem 1.

$ � Tah i ¼ $ � Tah i þ
1

V

Z

Sain x; tð Þ

na � Ta dS

and

$ � Tah i ¼ $ � Tah i þ
1

V

Z

Sain x; tð Þ

na � Ta dS:

The equivalent index notations are @iTaih i ¼ @i Taih i þ 1
V

R
Sain x; tð Þ naiTai dS

and @iTaij


 �
¼ @i Taij


 �
þ 1

V

R
Sain x; tð Þ

naiTaij dS.

Theorem 2.

$Tah i ¼ $ Tah i þ
1

V

Z

Sain x; tð Þ

naTa dS

and

$Tah i ¼ $ Tah i þ
1

V

Z

Sain x; tð Þ

naTa dS:

The equivalent index notations are @iTah i ¼ @i Tah i þ 1
V

R
Sain x; tð Þ

nai Ta dS

and @iTaj

 �

¼ @i Taj

 �

þ 1
V

R
Sain x; tð Þ

naiTaj dS.

Theorem 3. @tTah i ¼ @t Tah i ÿ 1
V

R
Sain x; tð Þ

na �wað ÞTa dS. The equiva-

lent index notation is @tTah i ¼ @t Tah i ÿ 1
V

R
Sain x; tð Þ naiwaiTa dS.

In these equations, Sain x; tð Þ represents internal boundaries of
the phase awith centroid at x; na denotes the outward unit normal
vector to the boundary of phase a; and wa is velocity of the corre-
sponding boundary. In Theorems 1 and 2, the average of a deriva-
tive is systematically expressed as the sum of two terms. Loosely
speaking, this can be interpreted as a decomposition of the surface
terms that appear in the divergence theorem. For instance, we may
write

$ � Tah i ¼
1

V

Z

Saex x; tð Þ

na � Ta dSþ
1

V

Z

Sain x; tð Þ

na � Ta dS; ð5:8Þ

where Saex x; tð Þ is the intersection of Sex xð Þ, the surface external to
the averaging volume centered at x (see Fig. 3), with phase a. We
can demonstrate that 1

V

R
Saex x; tð Þ

na � Ta dS ¼ $ � Tah i (see [66]), which
provides an explicit representation in terms of average quantities.
The second term, however, corresponds to the integral over the
internal surface Sain x; tð Þ which characterizes microscale internal
heterogeneities.

To facilitate solution, in Section 4, we defined a problem that
has no explicit internal phase boundaries. This means that we
may average via the operator 1

V

R
V
�dV , as opposed to averaging

via 1
V

R
Va

�dV , so that we can treat the medium ‘‘as a single phase’’
with (smoothly) spatially varying coefficients. We remark, how-
ever, that this approach is only valid when there are no jumps in
the variables that are differentiated and no sources or sinks on
the boundaries between phases (no singularities, see Technical
note 3). If these assumptions hold, we can write Sin x; tð Þ ¼ ; and
all the second terms in Theorems 1 to 3 vanish so that averages
and derivatives can be readily interchanged. Therefore, Theorems
1 to 3 simplify to.

Theorem 4. $ � Th i ¼ $ � Th i and $ � Th i ¼ $ � Th i.

Theorem 5. $Th i ¼ $ Th i and $Th i ¼ $ Th i.

Theorem 6. @tTh i ¼ @t Th i.

In many cases, this simplification does not apply. For example,
if we consider porous media then we must deal with perforated
domains, internal solid interfaces and, possibly, source terms on
boundaries. Further, jumps and discontinuities in the concentra-
tions or fluxes across phase boundaries may need to be ac-
counted for via surface integrals (see Technical note 3).



Technical note 3: A condition underlying Theorems 1 and 2 is

that Ta, Tai and Taij are continuous and have continuous

derivatives, i.e., are C1 within phase a. Theorems 4 and 5 fur-

ther require that T; T i or Tij are C1 over the averaging volume,

i.e., that there are no jumps on the boundaries of internal

phases. To relax such assumptions and accommodate dis-

continuities, we must use weak derivatives and partial differ-

ential equations defined in the sense of distributions. In

particular, for functions that are piecewise C1 (Cn functions al-

most everywhere are relatively common in mathematical rep-

resentations of multiphase systems, whereby fields are

smooth within phases and exhibit singularities on bound-

aries), we can use Schwartz’s jump formula (see [67]). For

example, for n ¼ 3 and a surface discontinuity,

$f ¼ $fð Þ
u
þ fþ ÿ fÿð Þnÿþr in which $fð Þ

u
is the usual gradient

within C1 parts; fþ and fÿ are continuous prolongations of f on
the þ and ÿ sides, respectively; nÿþ is the unit vector normal

to the discontinuous surface Sjump oriented from ÿ to þ; and

r is the surface ‘‘Dirac distribution’’ such that
1
V

R
V
rfdV ¼ 1

V

R
Sjump

fdS. This representation is particularly

interesting when used in conjunction with the convolution

representation of the moving average, as it yields a more

concise formalism for which averaging theorems are more

rigorously defined and demonstrated (see [58,59]).

5.3. Average-plus-perturbation decomposition

We introduce the following decomposition of u x; tð Þ into an
average component, uh iðx; tÞ, and a perturbation, ~uðx; tÞ (for an-
other definition of the perturbation, see Technical note 4):

uðx; tÞ ¼ uh iðx; tÞ þ ~uðx; tÞ: ð5:9Þ

In many branches of mathematics, e.g., linear stability analysis, a
perturbation analysis is introduced in order to study the influ-
ence of small deviations from a reference or equilibrium state.
This often leads to confusion with the different purposes of mul-
tiscale perturbation decompositions. To further complicate the
matter, it often happens that the multiscale perturbations are

small (i.e., uh i ¼ O 1ð Þ and ~u ¼ O eð Þ where 0 < e � 1) but this is
not necessarily the case. In Eq. (5.9), we do not require ~u to be

small. At this stage, we do not impose any constraint on the per-
turbations. In Section 5, we will however use this decomposition
to impose constraints on the spatial and temporal variations of ~u

and uh i. More specifically, spatial localization will be obtained by
imposing that spatial frequencies of uh i are O 1ð Þ, while ~u con-
tains larger frequencies of order O eÿ1

ÿ �
(see Fig. 4). Similarly,

we will impose scalings of the temporal frequencies for uh i

and ~u.

Technical note 4: In the literature, for example in Bear’s work

(see e.g., [68]), the perturbation has also been defined in the

following way. Consider the unique field uðx; tÞ and the aver-

age value, uh iðv; tÞ, at point v such that we may have v– x.
We can define the perturbation decomposition as

uðx; tÞ ¼ uh iðv; tÞ þ�uðx; t; vÞ:

This equation defines the perturbation at any given point x

relative to the average value at any point v in the system. In

most cases, we will have �uðx; t; v1Þ–�uðx; t; v2Þ if v1 – v2

and �uðx; t; v1Þ ¼�uðx; t; v2Þ if v1 ¼ v2, even though �uðx; t; v1Þ

and �uðx; t; v2Þ always refer to the same x; tð Þ.

5.4. Averaging

We first average both sides of Eq. (4.9) to obtain

@tuh i ¼ $ � A xð Þ � $uð Þh i: ð5:10Þ

Since there are no internal boundaries, we apply Theorems 4 to 6
which yield

@t uh i ¼ $ � A xð Þ � $uh i: ð5:11Þ

Again, we emphasize that we are manipulating a special case here:
in general, boundary conditions should be introduced carefully
when averaging.

We now introduce the ‘‘average-plus-perturbation’’ decomposi-
tion (Eq. (5.9)), and obtain

@t uh i ¼ $ � A xð Þ � $ uh i þ $~uð Þh i: ð5:12Þ

At this stage of the development, we have obtained an average
version of Eq. (4.9) with only few constraints upon the fields
(e.g., no separation of scales). This equation involves $~u, so that
its resolution requires knowledge of ~u. We often say that the
macroscopic equation is not in a ‘‘closed form’’ since it does
not involve only uh i. In order to obtain a closed form, we seek
an approximate expression for ~u that will simplify the coupling.
To this end, we must derive the initial boundary value problem
which is satisfied by ~u and then obtain a convenient form of
the solution.

5.5. Perturbation

Subtraction of Eq. (5.12) from Eq. (4.9) (consider that
~u ¼ uÿ uh i, so that it becomes an intuitive operation) yields

@t~u ¼ $ � A xð Þ � $~uð Þ ÿ $ � A xð Þ � $~uh i þ $ � A xð Þ � $ uh ið Þ

ÿ $ � A xð Þ � $ uh ih i; ð5:13Þ

Fig. 4. Illustration of the average plus perturbation decomposition for: (top line)

the case where the size of the averaging volume is similar to that of the signal

wavelength; and (bottom line) the case where the size of the averaging volume is

much larger the signal wavelength.



with boundary and initial conditions

~u ¼ f ÿ uh i on @XD; ð5:14Þ

~u x; 0ð Þ ¼ 0: ð5:15Þ

Although we have obtained an initial boundary value problem that
is solved by ~u, this problem involves source terms
$ � A xð Þ � $ uh ið Þ ÿ $ � A xð Þ � $ uh ih i and uh i that act on the macro-
scale. If possible, this micro/macro coupling should be eliminated:
otherwise we will have to solve for ~u, coupled with uh i, over the en-
tire domain, gaining no practical advantage as compared to a direct
resolution of the microscopic problem (or we could use Green’s
functions as discussed in Technical note 5).

Technical note 5: Without further assumptions, we may ex-

ploit the nature of the differential operator to obtain a solu-

tion in terms of the Green’s function G x; x0; t; t0ð Þ (see [69–

71]). ~u can then be expressed as an integral form that in-

volves G or eG ¼ Gÿ Gh i, along with the source terms that

appear in Eq. (5.13) ($ � A xð Þ � $ uh ið Þ ÿ $ � A xð Þ � $ uh ih i) and

the boundary data f ÿ uh i. In this case, G or eG needs to

be solved microscopically over X and we have gained no

advantage as compared to a direct resolution of the initial

problem. Further, the mathematical expressions are rather

tedious and the process leads to a complex integrodifferen-

tial form of Eq. (5.12). Such integral descriptions are gener-

ally termed nonlocal (see discussion in Section 5.7). While

these problems are undoubtedly complex, they are of inter-

est because of the mathematical and physical insight that

they can provide.

5.6. Assumptions

To facilitate solution and decoupling of the micro- and macro-
scales, we formulate the following concepts (which are explained
in further detail in the next subsection):

5.6.1. The averaging volume as a representative volume element (RVE)

ðA1Þ: The system is hierarchical and we can define a represen-
tative volume element, i.e., a relatively small portion of X over
which parameter fields (not variables such as u) are spatially qua-
si-stationary. Further, we choose a RVE and fix the averaging vol-
ume V as this RVE, so that e corresponds to the size of the
averaging volume/RVE.

5.6.2. Localization

For our test problem, we aim to construct a homogenized model
that is local in space and time, i.e., parameter fields and variables
behave locally. To this end, we will constrain the variations of
fields relative to the value of e that was fixed in (A1). Here, we as-
sume that:

(A2): Nondimensionalized spatial frequencies of an average
quantity, wh i (e.g., uh i), are O 1ð Þwhereas ~w contains larger frequen-
cies of order O eÿ1

ÿ �
with e � 1, i.e., wh i varies very slowly in space

compared to ~w.
(A3): Nondimensionalized temporal frequencies of uh i are O 1ð Þ

and those of ~u are O dÿ1
ÿ �

with d � 1 , i.e., temporal variations in
uh i are much slower than in ~u. Further, we assume that d is ‘‘small
enough’’ to justify temporal quasi-stationarity of the perturbation
problem.

5.6.3. Unit-cell and periodicity

(A4): We can express ~u xð Þ in terms of a macroscale variable, x,
and a microscale variable, y, so that ~u xð Þ ¼ ~w x; yð Þ. We will further
assume that ~w x; yð Þ is periodic in y with a corresponding unit-cell Y
of size O eð Þ.

5.7. Discussion of assumptions

5.7.1. Discussion of the representative volume element (RVE)

(A1) The notion of RVE (sometimes also termed representa-
tive elementary volume (REV), see Technical note 6) is of par-
ticular importance to the volume averaging approach. In the
definition, the term ‘‘representative’’ implies that only a rela-
tively small part of X is representative of the entire domain,
i.e., can be used to determine equivalent parameters associ-
ated with the macroscale equations. This notion is closely re-
lated to the quasi-stationarity of the parameter fields (see
[72,73]), which can be defined intuitively in the following
way. Consider the porosity of a porous medium consisting of
a solid structure and a saturated fluid phase, c. We can define
the porosity in the averaging volume as the ratio of the fluid
phase and the volume of the averaging set, Vc

V
. Further, we po-

sition the center of the averaging ball within the solid phase,
so that for r sufficiently small, the porosity is equal to zero.
The dependence of the porosity upon the radius of the averag-
ing ball may exhibit various features, some of which are repre-
sented in Fig. 5.

On the left-hand side in Fig. 5, we observe the following
behavior: below the minimum critical value r < rmin (dimen-
sional coordinate system), the porosity fluctuates with spatial
heterogeneities. In the range rmin 6 r 6 rmax, new heterogeneities
are introduced within the averaging set but its volume is suffi-
ciently large to smooth out fluctuations and the porosity be-
comes quasi-stationary. Beyond the maximum critical value
r > rmax, the system of interest exhibits larger scale heterogene-
ities that will induce a deviation from the quasi-stationary va-
lue. For such hierarchical systems, the RVE corresponds to
choosing the radius, r0 ¼ ‘

2, of the averaging ball to lie in the
range rmin 6 r0 6 rmax and ‘ is the diameter of the RVE. In the
volume averaging literature, this constraint for disordered media
is often expressed by imposing l� ‘. We remark, however, that
this constraint does not automatically apply to classes of orderedmed-
ia, as illustrated in the periodic domain represented on the left-hand
side of Fig. 6, for which ‘ ¼ O lð Þ.

In the literature, the averaging volume is often defined ab

initio as a RVE, so that simplifications can be made initially. If
it exists, a RVE is a convenient choice of averaging volume be-
cause it simplifies mathematical developments and splits the
problem into a hierarchy of scales by allowing a decomposition
of the parameter fields into high and low spatial frequency
components. However, RVEs are only a small subset of possible
averaging volumes. A priori, we can average over any volume
that suits our purposes, for instance via megascale averaging
(see e.g., in [66]), even if a RVE does not exist for the system
of interest.

There are situations for which the system of interest is not
hierarchical, parameter fields are not quasi-stationary and RVEs
cannot be defined. This is the case for the medium represented
on the right-hand side of Fig. 5 for which characteristic length-
scales evolve continuously. This is also the case for fractal por-
ous media, which have received an increasing amount of



attention in the last couple of decades. Although the details are
beyond the scope of this paper, it is important to mention that
continuum average descriptions of such systems can be used in
many instances. For example, we may exploit self-similarity or
the appearance of cutoff lengths (e.g., in microvascular systems
in [9]) in order to describe the non-hierarchical nature of the
system via parameter gradients, e.g., volume fraction (see an

example for dendritic solidification in [74] and mushy zones
in [75]), permeability and dispersion coefficients, or nonlocal
formulations involving fractional derivatives. We may also
generate random fields of effective parameters to approximate
spatial heterogeneities (see [76] for an example application to
the volume averaging framework in the case of heterogeneous
permeabilities, and [77] in the case of dispersion coefficients).

Fig. 5. Evolution of the porosity as a function of the radius, expressed in the dimensional coordinate system, of the averaging volume for hierarchical (left-hand side) and non-

hierarchical (right-hand side) porous media. In the latter case, a RVE cannot be defined as characteristic lengthscales evolve continuously. For the hierarchical medium, rmin

and rmax are defined as the bounds of the interval over which the porosity is quasi-stationary. A RVE is an averaging volume of radius r0 , such that rmin 6 r0 6 rmax . We will

further denote, ‘ ¼ 2r0 , the diameter of this RVE.

Fig. 6. Schematics illustrating the difference between the pore-scale characteristic length, l, and the RVE diameter, ‘, for a case where ‘ ¼ O lð Þ (left-hand side) and ‘ � l
(right-hand side) in the dimensional coordinate system.



Technical note 6: RVE vs. REV In the literature, the RVE is of-

ten replaced by the notion of ‘‘representative elementary vol-

ume’’ (REV), for instance in most of Whitaker’s work. The REV

terminology introduces the concept of ‘‘elementary’’ volume

which further constrains the range of radii allowed. ‘‘Elemen-

tary’’ implies that this is the smallest representative volume

that can be defined. In Fig. 5, it means that the RVE can be

anywhere inbetween rmin and rmax, while the radius of the

REV is equal to rmin. In ordered porous media, for instance

in the purely periodic case represented in Fig. 1, the REV

can be uniquely and unambiguously defined. In practice,

however, the REV may be difficult to determine as we often

deal with disordered porous media for which the ‘‘elemen-

tary’’ size will depend on the process of interest. In such

cases, the size of the REV will be different for different classes

of effective parameters, say, permeability or volume frac-

tions. A variety of tools may be used to characterize such real

systems and determine the size of the REV directly from

three-dimensional images, obtained for example using X-

ray tomography. A non-exhaustive list includes correlation

lengths, fractal dimensions, wavelet or Fourier analysis of a

phase indicator function or numerical resolution of partial dif-

ferential equations. An excellent generic review of methods

that can be used to analyze X-ray tomography to quantify

pore-scale structures can be found in [78].

5.7.2. Discussion of localization

A spatially local macroscale operator, Ml, is one for which, for all
x 2 X, we can verify that Ml uh i x; tð Þ ¼ 0 in any arbitrarily small
neighborhood of x. A spatially nonlocal macroscale operator, Mn, is
one for which we need information at a large distance from x to ver-
ify Mn uh i x; tð Þ ¼ 0 . An example case that illustrates ‘‘action at a dis-
tance’’ is the homogenization of randomwalks, including Lévy flights,
yielding nonlocal diffusion at the macroscale, that may be described

via fractional derivatives (see [79]). Another example for time nonlo-
cality (see Technical note 7) involves history and temporal delays.

Localization assumptions are central to most upscaling method-
ologies and, in general, represent the strongest form of constraint
upon the fields. Paradoxically, they may be relaxed to obtain non-
local formulations. This paradox stems from the fact that nonlocal
homogenized models have a broader domain of validity, but are
more complex to derive and more intensive to compute. We must
trade-off information for a smaller computational cost, but the ex-
tent to which that has to be done is a delicate choice which is both
user- and problem-specific.

ðA2Þ In the volume averaging literature, this assumption is often
written in terms of the geometrical constraint, ‘ � L in dimen-
sional form, or e � 1 in nondimensional form. Loosely speaking,
we often think about this constraint as: average quantities are
approximately constant over the lengthscale of the RVE (the diffi-
culty in this assertion being to clearly define what we mean by
approximately). The idea is that there are primarily two length-
scales characterizing the spatial variations of the variables and
therefore we use the average plus perturbation decomposition to
separate high- and low-frequencies.

We emphasize that this constraint is only conceptual and does
not reflect the process-dependence of the lengthscales. In other
words, the lengthscales that matter are not those associated with
the geometry of the system but with the spatial evolution of the
variable fields. In many instances, the constraint e � 1 is deemed
sufficient since the characteristic length for microscale processes
is O ‘ð Þ while the characteristic length for macroscale processes is
O Lð Þ, but it is not always so simple. A basic example is the propaga-
tion of a pulse through a porous medium for which the initial
width of the pulse is close to zero and there is no obvious separa-
tion of scales (although, geometrically we still have e � 1). There-
fore, in (A2), we have defined the separation of scales via
constraints applied to spatial frequencies that characterize the sig-

Technical note 7: Nonlocal models generally take the form of

integrodifferential equations. For instance, consider the non-

local time-dependent diffusion model described by

@t uh i ¼ $ �

Z t

0

@sA sð Þ$ uh i t ÿ sð Þds
� �

¼ $ � @tAHt$ uh ið Þ; ð5:16Þ

where Ht is a temporal convolution. We remark that the inte-

gration
R t

0 is equivalent to the integration
Rþ1

ÿ1
, when we weight

functions in the integrand of the convolution by the unit-step

function. This equationmay be used to describe high frequency

fluctuations for transport phenomena in porous media. The

expression on the right-hand side involves a time convolution

that accounts for history dependence. In other words, the rate

of change term @t uh i does not only depend on the divergence

of the flux at time t but also at all other previous times

(
R t

0 �ð Þds). Spatial nonlocal effects may be described in a similar

way, using, for example, fractional derivatives (note that the

fractional derivative is simply a nonlocal model with a specific

type of kernel). Such models are generally not desirable be-

cause their resolution is computationally intensive. In the

above example, the numerical resolution would require that

all time steps are readily accessible in memory. For spatial non-

locality, this often means that long distance interactions occur,

resulting in spatial discretization schemes involving dense

matrices that are numerically intensive to invert. Other models,

that are also termed nonlocal (although, strictly speaking, they

are local), are higher order gradient theories. Here, the ‘‘action

at a distance’’ is partly captured by higher (but finite) spatial

order derivatives (e.g., consider the matrices with larger bands

produced by spatial discretization of high order derivatives).

Technical note 8: The assumption (A2) has various conse-

quences, including the important relationships wh ih i ’ wh i

and h~wi ’ 0. This can be readily demonstrated by considering

the average of the perturbation decomposition equation (5.12)

wh i ¼ wh ih i þ h~wi ð5:17Þ

The average of the average, wh ih i is given by

wh ih i ¼
1

V

Z

V

wh i xþ f; tð ÞdV f: ð5:18Þ

In this equation, we consider dimensionless variables x and f

so that fk k ¼ O eð Þ. Therefore, we introduce the following sca-

lings f ¼ ef̂ and V ¼ e3 bV with f̂

 ¼ O 1ð Þ and bV ¼ O 1ð Þ. With

these notations, Eq. (5.18) becomes:

wh ih i ¼
1
bV

Z

V

wh iðxþ ef̂; tÞdV f: ð5:19Þ

In (A2), we have assumed that e� 1 so that we can Taylor

expand about x. We find that

wh ih i ¼ wh i þ e$xhwi �
1
bV

Z

V

f̂dV f þ Oðe2Þ: ð5:20Þ



nals uh i and ~u, not to the geometry. An important consequence of
(A2) is discussed in Technical note 8.

We remark that (A1) and (A2) are similar in nature. The essen-
tial difference between these two assumptions is that (A1) applies
to parameter fields (e.g., A), while (A2) applies to all tensor fields of
interest (including A and the variable u). In practice, however, it is
necessary to treat them separately, so that we can first determine
the size of the RVE by studying known parameter fields, e.g., A or
the porosity, and then use this RVE to impose constraints (A2)
and (A3) on u.

5.7.3. Discussion of temporal quasi-stationarity

(A3) In the volume averaging literature, this assumption is
known as the quasi-stationarity of the perturbation problem, Eq.
(5.13). Its physical basis is that microscale processes generally re-
lax much faster than macroscale ones. Hence, the perturbation
problem can often be considered steady while evolution still oc-
curs at the macroscale. In our problem, we may assume that micro-
scale and macroscale timescales are O ‘2

A

� �
and O L2

A

� �
, respectively

wherein the notation A represents a norm of an average value of
the tensor A. In nondimensional form, with T ¼ L2

A
, this means that

micro- and macro-timescales are O e2
ÿ �

and O 1ð Þ, respectively.
Hence, we may write d ¼ O e2

ÿ �
, which is often termed a diffusive

scaling. In Technical note 9, we discuss how the assumption of qua-
si-stationarity may be relaxed.

5.7.4. Discussion of unit-cell and periodicity

(A4) In addition to the RVE, we introduce here the (different)
concept of the unit-cell. The unit-cell can be extracted directly
from images of real porous media and, in most cases, is of size
O eð Þ. However, it does not necessarily have to be a subset of X.
Rather, it represents a conceptualized medium which is utilized
to capture the most important topological features of the real sys-
tem. For instance, it may be composed artificially from statistical
properties of the porous medium.

Further, we treat ~u xð Þ as a function of the micro- (y) and macro-
scale (x) variables, ~u xð Þ ¼ ~w x; yð Þ and suppose that ~w is periodic in y

(see Technical note 10). To build a periodic geometry from a non-
periodic one, we may use symmetry operations, i.e., reflect copies
of the original unit cell, although this may lead to a critical loss of
information such as anisotropic features. We may also treat ~w as
periodic in y with a non-periodic geometry and parameter jumps
on the interfaces, although this may be erroneous if the system is
close to the percolation threshold (see Fig. 7 for an illustration of a
fractured porous medium). Other boundary conditions can be used,
such as linear gradients (see discussions and references in [83,84]).

Finally, we will consider that, for quantities that are defined in
the periodic unit-cell, the spatial averaging operator �h i corre-
sponds to averaging over the unit-cell, independent of the initial
averaging support and the geometry of the unit-cell.

Technical note 10: The periodicity condition in (A4) has

strong limitations. If we consider Technical note 5, this

means that the macroscale boundary conditions have a neg-

ligible impact upon the Green’s function corresponding to

Eqs. (4.6)–(4.8). The idea that the perturbation is only weakly

coupled to the macroscale boundary conditions is closely

linked with the separation of scales and the fact that we con-

sider e � 1. We remark, however, that this is not always cor-

rect, a typical example being an advection–diffusion problem

for which the microscale Péclet number scales as eÿ1.

Since the origin of the RVE is at its centroid and the medium is

not perforated, we have
R
V̂
f̂dV f ¼ 0, so that we obtain the

result:

wh ih iðx; tÞ ¼ wh iðx; tÞ þ Oðe2Þ: ð5:21Þ

We remark that substitution of this result back into Eq. (5.17)

yields

h~wiðx; tÞ ¼ Oðe2Þ: ð5:22Þ

Perforated domains may yield further difficulties as is dis-

cussed in [59].

Technical note 9: The assumption (A3) is not mandatory, i.e.,

the perturbation problem may be treated in a completely tran-

sient form. However, relaxing (A3) yields a structure of the per-

turbation that ‘‘mixes’’ the micro- and macro- timescales via

temporal convolutions, as discussed in Technical note 7. This

Fig. 7. A conceptual representation of a fractured porous medium with low density of fractures on the left-hand side and a larger density of fractures on the right-hand side.

We remark that for the case on the left-hand side, the intersections of fractures with boundaries do not match between the left/right and top/bottom boundaries, whereas

some do for the case on the right-hand side. Therefore, application of periodic conditions for flow in such systems will eliminate percolation (red thicker line, single

preferential flow) on the left-hand side while it may preserve the correct percolation properties on the right-hand side (much larger percolation). (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)

may be interpreted as a Green’s function solution of the per-

turbation problem. The resulting macroscale equation will

therefore involve temporal nonlocal effects (see discussions

in [80–82]). In this context, the quasi-stationarity assumption

may be formalized by studying the correlation structure of

the kernels (see [71]). Loosely speaking, this corresponds to

a kernel that relaxes to equilibrium with a timescale that is

much faster than the macro-timescale.



5.8. Simplifications to Eq. (5.13)

We recall that the perturbation problem Eqs. (5.13) to (5.15) is

@t~u ¼ $ � A � $~uð Þ ÿ $ � A � $~uh i þ $ � A � $ uh ið Þ ÿ $

� A � $ uh ih i; ð5:23Þ

with conditions

~u ¼ f ÿ uh i; ð5:24Þ

~u x; 0ð Þ ¼ 0: ð5:25Þ

Further, recall that our goal is to simplify further Eqs. (5.23) to (5.25),
so that we may obtain an approximate solution for the perturbation.
A rigorous derivation of this solution uses order of magnitudes esti-
mate of each term as powers of e, and is developed in Appendix A.
For simplicity, we will only present a simplified derivation using
the approximation symbol, ’, to ‘‘hide’’ the tedious analysis of higher
order terms. Assumptions (A1) to (A4) are then used as follows:

� Application of (A1): We first decompose A ¼ hAi þ ~A. In (A1),
we assume that our system is hierarchical so that we can use
a RVE as the averaging volume. This means that hAi varies with
a characteristic lengthscale that is O 1ð Þ while ~A captures higher
frequencies. To further simplify the example, we have imposed
in Section 4.4 that hAi does not vary at all, i.e.,
Ah i xð Þ � constant � Ah i.

� Application of (A2): With the size of the averaging volume fixed
by (A1), we now apply (A2) that yields $y uh i ’ 0,
$ � A xð Þ � $ uh ih i ’ $ � Ah i � $ uh ið Þ and ~uh i ’ 0 (see Technical note
8, loosely speaking we may say that average quantities do not
vary over the lengthscale of the RVE and can be treated as con-
stant). Therefore, we obtain

$ � A � $ uh ið Þ ÿ $ � A � $ uh ih i ’ $ � ~A � $ uh i
ÿ �

: ð5:26Þ

We can further simplify this expression by neglecting higher-order
terms, e.g., $$ uh i (see Appendix A for a more rigorous approach).
This yields

$ � ~A � $ uh i
ÿ �

¼ ~A : $$ uh i þ $ � ~A
ÿ �

� $ uh i

’ $ � ~A
ÿ �

� $ uh i: ð5:27Þ

Therefore, Eq. (5.23) simplifies to

@t~u ¼ $ � A � $~uð Þ ÿ $ � A � $~uh i þ $ � ~A
ÿ �

� $ uh i: ð5:28Þ

� Application of (A3): On imposing quasi-stationarity, we can
write Eq. (5.28) as

ÿ $ � ~A
ÿ �

� $ uh i ¼ $ � A � $~uð Þ ÿ $ � A � $~uh i: ð5:29Þ

Finally, we write this equation in the microscale coordinate
system:

ÿ$y � ~A
ÿ �

� e$ uh i ¼ $y � A � $y~u
ÿ �

ÿ $y � A � $y~u

 �

: ð5:30Þ

5.9. Structure of the solution for the perturbation (closure)

In what follows, it will be convenient to assume that there exist
b xð Þ and c yð Þ such that

~u ¼ b xð Þ � $ uh i xð Þ;

and

~u ¼ ec yð Þ � $ uh i xð Þ: ð5:31Þ

We have not formulated these solutions arbitrarily, but rather are
proposing a solution that exploits the linearity of the problem to

separate contributions at the micro- and macroscale (reminiscent
of a standard separation of variables). In other words, we have ex-
pressed the perturbations as ~u ¼ p yð Þ � g xð Þ. Introducing Eq. (5.31)
into Eq. (5.30), we obtain the following equation for c yð Þ

ÿ$y � ~A ¼ $y � A � $yc
ÿ �

ÿ $y � A � $yc

 �

: ð5:32Þ

� Application of (A4): We now assume that Eq. (5.32) can be solved
over a unit-cell in which we replace Eq. (5.24) by periodic bound-
ary conditions. The operator �h i now refers to the average over the
periodic unit-cell. This yields $y � A � $yc


 �
¼ 0 (periodic boundary

conditions) and

ÿ$y � ~A ¼ $y � A � $yc
ÿ �

; ð5:33Þ

with the condition,

Periodicity in y: ð5:34Þ

Finally, we remark that the solution of this problem is unique up to
a constant. We recall that ~uh i ’ 0 (see Technical note 8), so that we
fix the constant by imposing

ch i ¼ 0: ð5:35Þ

5.9.1. Macroscale equation

Recall that the unclosed Eq. (5.12) has the following form

@t uh i ¼ $ � A � $ uh i þ $~uð Þh i: ð5:36Þ

Applying Eq. (5.31) supplies

$~u ¼ eÿ1
$y~u ’ $yc � $ uh i; ð5:37Þ

and we obtain the following closed form of the macroscale
equation:

@t uh i ¼ $ � Ae � $ uh ið Þ; ð5:38Þ

with

Ae ¼ A � Iþ $yc
ÿ �
 �

: ð5:39Þ

6. Homogenization via multiscale asymptotics

We now focus on homogenization of the same parabolic prob-
lem via multiscale asymptotics.

Fig. 8. Illustration of a sequence of geometries associated to a variation of e for a

fixed value of the macroscopic lengthscale, L.



6.1. Assumptions

When using an asymptotic approach, we start by making a ser-
ies of assumptions that enable us to cast the problem in a more
convenient form. These can be summarized as follows, with sub-
scripts e to distinguish them from the volume averaging
assumptions:

6.1.1. One physical problem as a fictitious sequence of problems

(A1)e: We homogenize by considering the limit e ! 0 of a se-
quence of problems, ueð Þ0<e<1, rather than the problem defined by
Eqs. (4.9) to (4.11) which implicitly contains a fixed, finite (but
small) value of the scales ratio, e0. We use a similar notation for
the corresponding sequence of parameter fields.

6.1.2. Scalings

(A2)e: In the current nondimensional setting, Aeij scales as O 1ð Þ

and we can write Ae ¼ A0 with A0ij ¼ O 1ð Þ. In addition, we recall
that in SubSection 4.4 we assumed that A0 exhibits only high-fre-
quency fluctuations, i.e., A0 ¼ A0

x
e

ÿ �
.

6.1.3. Formal two-scale expansion

(A3)e: We assume that we can use the series approximation
ue xð Þ ¼ uz

e x; xe
ÿ �

¼
P

ui x;
x
e

ÿ �
ei, with ue : R

n !R and uz
e : R

n�R
n !R.

It is implicit (but fundamental) in this decomposition that
ui ¼O 1ð Þ for i¼ 0;1;2; . . ..

6.1.4. Unit-cell and periodicity

(A4)e: We consider that our physical problem is periodic or that
it can be approximated by a conceptual periodic setting. The fun-
damental periodic unit is referred to as the unit-cell. Further, we
assume that ui x; yð Þ is periodic in y for i ¼ 0;1;2; . . ..

6.2. Discussion of assumptions

A1ð Þe Eqs. (4.9) to (4.11) were written for a fixed geometry and
therefore a fixed value of e. In multiscale asymptotics, we are inter-
ested in the sequence ueð Þ0<e<1 in the limit e ! 0. This sequence
corresponds to varying geometrical properties of the system, as
illustrated in Fig. 8 for a fixed value of L. We remark further that
our physical problem of interest corresponds to a fixed finite
(small) value of e, so that by considering the limit e ! 0, we will
obtain only an asymptotic approximation.

A2ð Þe In the current setting, we require that Aeij ¼ O 1ð Þ. The sys-
tem was nondimensionalized with the macroscopic lengthscale, L,
and A ¼ O 1ð Þ means that we use the timescale T ¼ L2=A in Sec-
tion 4.4 for global diffusion (a more general approach is discussed
in Technical note 11). This is a natural choice for a diffusive system
for which we seek the global behavior. More generally, the choice
of nondimensionalization and scalings are both subtle and funda-
mentally important for the multiscale asymptotic method. The
scaling of all dimensionless parameters as series of e must be
decided carefully: alternative choices lead to different macroscale
equations. Although in the current setting, our attention is re-
stricted to diffusive transport, the challenges associated with scal-
ing can be well illustrated for an advection–diffusion problem (see
Technical note 12). In practice, each scaling decision is equivalent
to choosing the timescale of interest (e.g. that of diffusion or advec-
tion) on the macroscopic lengthscale. Whilst the multiscale asymp-
totics method cannot, therefore, be applied to a system with
arbitrary physical properties without defining their relative impor-
tance, it lends itself naturally to approaches in applied modeling
and engineering.

Technical note 11: There are two natural timescales in our

problem: the timescale for transport at the macro- and micro-

scales (there may be more, see [47]). We expect there to be

orders of magnitude separation between these characteristic

times since they depend on the micro- and macro-length-

scales and we have e � 1. Therefore, we may define a second

small parameter as eh with h 2 N and, as for the spatial

operators, we decompose time so that t ! t; s ¼ eÿhtð Þ. Fur-
ther, we may use ue x; tð Þ ¼ uy

e x; t; sð Þ, so that @tue x; tð Þ ¼
@tu

y
e x; t; sð Þ þ eÿh@su

y
e x; t; sð Þ. Performing such developments

for temporal derivatives is consistent with the spatial analysis

(for a detailed discussion, see [47]).

Technical note 12: Consider a situation where transport oc-

curs by advection and diffusion (coefficient D constant) in a

perforated (porous) medium (for a detailed discussion of

advection–diffusion problems, see [52]). We often character-

ize transport by defining local (Pe‘ ¼ U‘=D) and global

(PeL ¼ UL=D) Péclet numbers with PeL ¼ eÿ1Pe‘ (the Péclet

number describes the ratio of diffusive to advective time-

scales and takes the form Ud=D where U is a typical flow

velocity, d the lengthscale of interest and D a diffusion coeffi-

cient). We consider the following cases:

� If diffusion is much stronger than advection locally

(Pe‘ ¼ O e2
ÿ �

) then it also dominates at the macroscale

(PeL ¼ O eð Þ). This situation yields at the macroscale a dis-

persion tensor with only tortuosity effects.

� If diffusion dominates advection locally (Pe‘ ¼ O eð Þ) then

diffusion and advection are equally important at the mac-

roscale (PeL ¼ O 1ð Þ). This situation yields at the macro-

scale an advection–dispersion equation with a dispersion

tensor exhibiting only tortuosity effects.

� If diffusion and advection are in balance at the microscale

(Pe‘ ¼ O 1ð Þ) then advection is dominant at the macroscale

(PeL ¼ O eÿ1
ÿ �

). In this case, we obtain an advection–disper-

sion at the macroscale and the dispersion tensor exhibits

tortuosity and hydrodynamic dispersion effects.

A3ð Þe There are two aspects to this approximation. Firstly, we
transform the functional ue : R

n ! R, into a new functional
uz
e : R

n � R
n ! R (see Technical note 13 for a simple example).

The idea is that ue exhibits variations at two distinct lengthscales,
characterized by x and eÿ1x respectively so that we can separate
both contributions by creating a new function uz

e that depends on
these two variables. This is a key step in the method. In particular,
the chain rule yields

$ ¼ $x þ eÿ1
$y; ð6:1Þ

$� ¼ $x � þeÿ1
$y�; ð6:2Þ

$ � $ ¼ $x � $x þ eÿ1
$y � $x þ $x � $y

ÿ �
þ eÿ2

$y � $y: ð6:3Þ

Technical note 13: Consider the following function

ue : R ! R;

x # axþ e sin eÿ1x
ÿ �

: ð6:4Þ

We define uz
e by



The second step of this approximation is to assume the two-
scale expansion

uz
e x;

x

e

� �
¼

X

i

ui x;
x

e

� �
ei: ð6:8Þ

The decomposition is similar to that used for the decomposition in
terms of x and x

e, but is useful when considering partial derivatives.
Loosely speaking, the order of magnitude separation in the spatial
frequencies can be captured via an order of magnitude separation
in the amplitude of the derivatives.

A4ð Þe We limit our analysis to periodic domains, i.e., assume
that the system is periodic or that the periodic setting constitutes
a reasonable approximation (see also Technical note 10). We will
consider spatial averages as

wh ie x; tð Þ ¼
1

V e

Z

y2Ve xð Þ

we x; y; tð ÞdVy; ð6:9Þ

where Ve xð Þ is a sequence of sets with origin at its centroid x, and Ve

is the corresponding sequence of volumes. Further, since we have de-
fined the periodic domain a priori, the size of the averaging volume
corresponds to the size of the unit-cell and the variable of integration

is y, not x. We complete the concept of periodicity of a function h x; yð Þ

in y by imposing continuity (no jump) in the value of the function or
its flux, n � Ae � $yh

ÿ �
, where n is the unit outward facing normal to

the periodic boundary across the periodic unit. As a result, we have

$y � Ae � $yh
ÿ �
 �

e
¼ 0: ð6:10Þ

6.3. Derivation

Our goal here is to derive an initial boundary value problem for
u0, the first term in the asymptotic expansion for u.

� Application of A1ð Þe: We rewrite Eqs. (4.9)–(4.11) as

@tue ¼ $ � Ae � $ueð Þ; ð6:11Þ

ue ¼ fe; ð6:12Þ

ue x;0ð Þ ¼ 0: ð6:13Þ

� Application of A2ð Þe: Assuming that Ae ¼ A0 ¼ O 1ð Þ yields

@tue ¼ $ � A0 � $ueð Þ: ð6:14Þ

� Application of A3ð Þe: Formally applying Eqs. (6.1)–(6.3) to Eq.
(6.11) yields

@tue ¼ eÿ2
$y � A0 � $yue

ÿ �

þ eÿ1
$x � A0 � $yue

ÿ �
þ $y � A0 � $xueð Þ

� �

þ $x � A0 � $xueð Þ: ð6:15Þ

We then use the two-scale expansion up to second order, i.e.,
ue xð Þ ¼ u0 x; xe

ÿ �
þ eu1 x; xe

ÿ �
þ e2u2 x; xe

ÿ �
þ h:o:t.. Substituting this

expression into Eq. (6.15), we obtain a coupled problem for the
components ui. Now that we have explicitly expressed the complete

problem in terms of powers of e, we can consider the limit e ! 0
and, in so doing, decompose the unique problem into a sequence of

nested sub-problems. Equating coefficients of O eÿ2
ÿ �

in Eq. (6.15)
yields

$y � A0 � $yu0

ÿ �
¼ 0: ð6:16Þ

Equating coefficients of O eÿ1
ÿ �

in Eq. (6.15) yields the unit-cell
problem

$y � A0 � $yu1

ÿ �
þ $x � A0 � $yu0

ÿ �
þ $y � A0 � $xu0ð Þ ¼ 0:

ð6:17Þ

Equating coefficients of O e0
ÿ �

in Eq. (6.15) yields the equation

@tu0 ¼ $x � A0 � $xu0ð Þ þ $y � A0 � $yu2

ÿ �

þ $x � A0 � $yu1

ÿ �
þ $y � A0 � $xu1ð Þ: ð6:18Þ

Henceforth, we will consider that x and y can be treated as indepen-
dent variables.
� Application of A4ð Þe: By periodicity, the problem equation (6.16)

only admits solutions of the form, u0 ¼ �u xð Þ, i.e., u0 only varies
on the macro-lengthscale x and does not depend on the
micro-lengthscale y (for a proof, see Technical note 14).

Technical note 14: To simplify presentation, we will limit our

analysis to the case A0 ¼ A0I where I is the identity. From Eq.

(6.16) we deduce

u0$y � A0$yu0

ÿ �
 �
e
¼ 0; ð6:19Þ

which may be rewritten as

$y � u0A0$yu0

ÿ �
 �
e
ÿ A0 $yu0

 2
D E

e
¼ 0: ð6:20Þ

The periodicity assumption in A4ð Þe guarantees that the first

term in Eq. (6.20) is zero. Accordingly, we see that satisfying

Eq. (6.20) is equivalent to requiring $yu0

  ¼ 0, and so

u0 ¼ �u xð Þ.

With u0 ¼ �u xð Þ, Eq. (6.17) simplifies to

$y � A0 � $yu1

ÿ �
þ $y � A0 � $x�uð Þ ¼ 0; ð6:21Þ

together with periodicity of u1. We can also rewrite Eq. (6.18) as
follows

@t�u ¼ $x � A0 � $x�uð Þ þ $y � A0 � $yu2

ÿ �
þ $x � A0 � $yu1

ÿ �

þ $y � A0 � $xu1ð Þ: ð6:22Þ

uz
e : R� R ! R;

x; y xð Þ# axþ e sin y xð Þð Þ: ð6:5Þ

So that

ue xð Þ ¼ uz
e x; y xð Þ ¼ eÿ1x
ÿ �

: ð6:6Þ

Now, it follows that

due
dx

xð Þ ¼
@uz

e

@x
x; eÿ1x
ÿ �

þ eÿ1 @u
z
e

@y
x; eÿ1x
ÿ �

¼ aþ cos eÿ1x
ÿ �

: ð6:7Þ

We further remark that we have not assumed that x and y are

independent.

Technical note 15: Solvability conditions via the Fredholm

Alternative. To formally seek solutions to the systems of equa-

tions that arise when we equate coefficients of powers of e, we

could introduce an invariant distribution qðx; yÞ that solves the

homogeneous self-adjoint counterpart to Eq. (6.16). For the

simplified system considered in this paper, the local operator

is L� :¼ $y � A0 � $y�
ÿ �

, equipped with periodic boundary condi-

tions. This is a self–adjoint system, and so the invariant distri-

bution satisfies L�q ¼ $y � A0 � $yq
ÿ �

¼ 0, with periodic

boundary conditions. As for the O eÿ2
ÿ �

system defined by



The macroscale equation is derived by averaging Eq. (6.22) over
the unit-cell, which in this scenario is equivalent to introducing an
invariant distribution and applying the Fredholm alternative (see
Technical note 15). This yields

@t�uh ie ¼ $x � A0 � $x�uð Þh ie þ $y � A0 � $yu2

ÿ �
 �
e

þ $x � A0 � $yu1

ÿ �
 �
e
þ $y � A0 � $xu1ð Þ

 �

e
: ð6:26Þ

We consider the terms in order. On the left-hand side, we have

@t�uh ie ¼ @t �uh ie ¼ @t�u; ð6:27Þ

since �u depends only on the macroscopic variable x. For the first
term on the right-hand side, we recall that averaging applies to
the variable y and that x and y are treated as independent in the
limit e! 0, so that we have

$x � A0 � $x�uð Þh ie ¼ $x � A0 � $x�uh ie: ð6:28Þ

Using the periodicity of u2 and of the corresponding flux, the second
term on the right-hand side yields

$y � A0 � $yu2

ÿ �
 �
e
¼ 0: ð6:29Þ

We also have

$y � A0 � $xu1ð Þ

 �

e
¼ 0: ð6:30Þ

Therefore, Eq. (6.26) simplifies to

@t�u ¼ $x � A0 � $x�uþ $yu1

ÿ �
 �
e
: ð6:31Þ

6.4. Structure of the perturbation solution

To solve for u1, we exploit the linearity of Eq. (6.21) and write u1

in the form

u1 ¼ v yð Þ � $x�u ð6:32Þ

which is motivated by separating terms that depend on x and y.
Here, v depends only on the microscale coordinate y (see similar
discussion for volume averaging in SubSection 5.9). Substitution
of (6.32) into (6.21) yields a local ‘‘cell’’ problem for v given by

ÿ$y � A0ð Þ ¼ $y � A0 � $yv
ÿ �

; ð6:33Þ

with the condition

Periodicity in y: ð6:34Þ

We note that vmay be determined once the periodic geometry and
A0 are prescribed. Finally, v is only unique up to additive constants
in y, so to determine it uniquely we impose

vh ie ¼ 0: ð6:35Þ

6.5. Macroscale equation

We can introduce Eq. (6.32) into Eq. (6.31) to obtain

@t�u ¼ $x � Ae � $x�uð Þ; ð6:36Þ

with

Ae ¼ A0 � Iþ $yv
ÿ �
 �

e
: ð6:37Þ

A discussion of the dependence of variables x and y is given in Tech-
nical note 16.

Technical note 16: Should x and y be viewed as dependent

or independent variables? This is a delicate point that may

yield significant confusion (in the formal version of multi-

scale asymptotics at least). At the start, we transform the se-

quence of functions ue that are R
n ! R into a new sequence

of functions uz
e that are R

n � R
n ! R. Although this new func-

tion depends on two spatial variables x; yð Þ, we must consider

uz
e x; eÿ1x
ÿ �

¼ ue xð Þ. Therefore, x and y are, in some sense, re-

lated. This becomes clear when we wish to determine deriv-

atives and realize that we must apply the chain rule. We

remark further that in practical terms, x and y can be consid-

ered independent when solving Eqs. (6.33) to (6.37) (e.g., we

solve the unit-cell and macroscale equations separately). This

may be understood as follows. In Eq. (6.15), we view e as a

parameter (we may even think about it as being not particu-

larly small), use two-scale expansions and scale the complete

problem according to e. Only when each term in these equa-

tions has been explicitly expressed as powers of e, we can

consider the limit e ! 0 and decompose Eq. (6.15) into a se-

quence of nested sub-problems. In so doing, we treat x and

y as independent, only in the asymptotic limit e ! 0, a step

that corresponds to the intuitive idea of separation of scales.

7. Looking for errors

Given that the above case is one of the simplest that may be
studied, the process of homogenization, either via multiscale
asymptotics or volume averaging, is often rather involved. Errors
can occur at different steps in the developments, e.g., during the
initial theoretical derivation, the numerical resolution of the
unit-cell problem or the calculation of effective parameters. In
addition to careful calculations, it is important to develop tech-
niques for systematically checking results a posteriori. This can be
achieved, in part, by verifying that fundamental properties of effec-
tive tensors and unit-cell problems are satisfied.

7.1. Properties of the effective tensor

Effective tensors must often satisfy properties such as bound-
edness, positive definiteness or symmetry. For instance, in the
parabolic case, we can show that: Ae must be positive definite;
A symmetric implies Ae symmetric; and A diagonal does not
imply Ae diagonal. Further, several bounds exist for Ae that

Eq. (6.16), the only solution for the invariant distribution is that

q xð Þ is locally constant.

Finally, we remark that subsequent systems of equations

that arise when we equate coefficients of higher powers of e
(for example, Eqs. 6.17,6.18) may be written as non-homoge-

neous systems involving the same operator in the form

Lui ¼ $y � A0 � $yui

ÿ �
¼ gi; ð6:23Þ

(where the index i indicates the system of equations that arise

when we equate coefficients of powers of eiÿ2). By the Fred-

holm alternative, the solvability condition for these systems

takes the form

qLuih ie ÿ uiL
�qh ie ¼ qgih ie; ð6:24Þ

or, equivalently, for the current example

q$y � A0 � $yui

ÿ �
 �
e
ÿ ui$y � A0 � $yq

ÿ �
 �
e
¼ qgih ie: ð6:25Þ

We note that for the example problem under consideration, the

second term on the left-hand side of Eq. (6.25) is zero as the

invariant distribution q is locally constant. Therefore, applying

the solvability condition is equivalent to averaging (as defined

by Eq. (6.9)) the non-homogeneous equations (6.23) that arise

when we equate coefficients of each power of e. For more gen-

eral systems of partial differentiation equations, the relation-

ship between averaging and solvability is defined by Eq. (6.24).



correspond to different configurations. Such bounds have re-
ceived a considerable amount of attention from physical and
mathematical points of view, since these can be used to generate
approximate values of effective conductivities, elastic moduli for
composite materials, or equivalent permeabilities for porous
media, without the need to compute the unit-cell problem over
a specific geometry.

The fundamental bounds (or Reuss–Voigt–Wiener bounds, [85])
on Ae are the arithmetic and harmonic means. However, these are
usually sub-optimal and tighter bounds have been developed for
different cases. Consider for example, the famous Hashin and
Shtrikman bounds that apply to isotropic binary mixtures (see
[86]). A rigorous proof of these bounds can be derived via H-con-
vergence for non-symmetric A xð Þ (see discussions in [49]). There
is an incredible amount of work on the topic so here we only ref-
erence the works of Cardwell and Parsons [87], Matheron [88],
Rubinstein and Torquato [89], Ené [90]. A good review of these
problems in the context of equivalent permeabilities is given by
Renard and De Marsily in [83].

7.2. A quick trick for volume averaging

For volume averaging, we usually check that averaging the per-
turbation and unit-cell problems yields consistent results. On
imposing the condition that �h ih i ¼ �h i (spatial localization, see
Technical note 8), the averages of the left- and right-hand sides
of Eqs. (5.13) to (5.15) should both vanish. This procedure is often
useful for detecting missing terms or inconsistent assumptions
that will generate contradictions.

To be more explicit, consider a linear spatial differential opera-
tor L �ð Þ, an averaging operator �h i and suppose that L uð Þ ¼ Source.
The perturbation problem should have the following structure

L ~uð Þ ÿ L ~uð Þh i ¼ Sourceÿ Sourceh i ÿ L uh ið Þ þ L uh ið Þh i; ð7:1Þ

so that averaging this problem with the localization assumption
yields 0 ¼ 0. If terms are missing on the left- or the right-hand side,
this will usually yield source terms in these equations that do not
disappear upon averaging.

7.3. Validation and convergence

For a variety of operators and boundary conditions, it is possible
to rigorously prove convergence (in a sense that is discussed in
more detail in Section 9) of the sequence of microscale solutions
ue towards u0 (or u0h i) or of the sequence of tensors Ae towards
Ae (see e.g., [47,49]). Such demonstrations are, however, based
on highly technical functional analysis. Further, there are many
cases for which formal homogenization provides a useful descrip-
tion of the physical system but convergence has not been proven.
In such cases, a more physical approach to studying convergence
involves either comparing the solution of the homogenized model
to experiments or to numerical solutions of the microscale prob-
lem. In the literature, the latter choice is often referred to as vali-
dation of the homogenized model against direct numerical
simulations (DNSs, see [91,92]). A DNS is a numerical procedure
that aims to solve the microscale problem over X. This requires sig-
nificant computational effort, so we often simplify the system by
reducing dimensionality or exploiting symmetries. This approach
can also be used to assess the domains of validity of the homoge-
nized model by exploring a broad range of scalings/values for
dimensionless parameters, a crucial step in homogenization (see
Sections 8 and 9).

8. Comparison of volume averaging and formal asymptotics

In this section, we compare both techniques in terms of the def-
initions of the different terms, the final results, the algorithms and

Fig. 9. Schematic representation of the different averaging sets considered in (a) volume averaging and (b) multiscale asymptotics. We show that three different concepts are

used in the volume averaging theory: the averaging volume is the moving set over which variables are averaged; the RVE corresponds to a particular size of averaging volume,

‘, specific to hierarchical mediawhich is large enough to capture the microscale features (i.e., is representative) and small enough so that properties can vary at the macroscale;

and the unit-cell is a fictitious entity with, in most cases, periodic boundary conditions that is used to calculate effective properties of spatially local homogenized models. In

the multiscale asymptotic framework, the medium is periodized a priori so that there is only one averaging set: the unit-cell.



the approximations. We also give a personal viewpoint of the rel-
ative advantages of the two methods.

8.1. Difference in the definitions of the averages

Asymptotics are often associated with L being fixed and ‘ ! 0,
whereas averaging is usually associated with ‘ fixed and L ! 1.
In most cases, however, this is simply a matter of definition since
the relevant parameter is e, not ‘ or L. We remark that there are
special cases for which fields do not scale with e (e.g., gravitational
terms in momentum transport equations) and for which particular
care is needed.

A more important difference concerns the nature of the sets that
are used for averaging. The first step of volume averaging consists in
applying an averaging operator to the boundary value problems of
interest. This is done via a spatial convolution with a smoothing func-
tion that has compact support. This support may be a ball, a polyhe-
dron or any set that suits our purposes. In many cases, we will
average over a closed ball since, a priori, there is no reason to favor
one direction (e.g., the diagonals of a cuboid). If the medium is hier-
archical, the second step consists in determining an averaging vol-
ume that will facilitate mathematical developments. This particular
averaging volume is the RVE. In the final step, we often assume that
closure fields and effective parameters can be solved over periodic
unit-cells. These notions are different and are schematized in Fig. 9.
With asymptotics, the averages are defined only over unit-cell cu-
boids, in a way that is compatible with periodicity.

Henceforth, we will focus on more fundamental differences by
assuming that averaging over the periodic cuboids is equivalent
to averaging over the RVE/unit-cell combination. Therefore, we
will simply use the notation �h i to denote any form of spatial aver-
aging. We remark that this assumption is rigorously true only if the
choice of the RVE matches the unit-cell used for volume averaging
and multiscale asymptotics.

8.2. Differences between u0 and uh i

In the example parabolic problem, we have the relationship
u0 ¼ uh i. To understand this equality, consider the following aver-
age of the two-scale expansion up to the first order

uh i ¼ u0h i þ e u1h i; ð8:1Þ

with the uniqueness condition u1h i ¼ 0 (combine Eqs. 6.35 and
6.32). Further, we have shown that u0 does not depend on y, so that
u0h i ¼ u0 and uh i ¼ u0.

More generally, there is a fundamental difference between u0

and uh i : u0 may depend on the micro- and macroscales, x and y,
whereas the assumption A2ð Þ imposes that uh i varies only at the
macroscale. Quantities that are equivalent in both frameworks
are in fact uh i and u0h i. Loosely speaking, we may average the gen-
eric two-scale expansion

ueh i ¼ u0h i þ
X

i

uih iei; ð8:2Þ

to obtain uh i ¼ u0h i (for further detail, see Technical note 17).

8.3. Comparison of macroscale and unit-cell problems

Recall for volume averaging that the approximate representa-
tion of u (that we shall denote uV for clarity) is obtained by com-
bining Eq. (5.9) with Eq. (5.31) (see Section 5), so that

uV x; yð Þ ¼ uh i xð Þ þ ec yð Þ � $ uh i xð Þ; ð8:3Þ

where c solves

ÿ$y � ~A ¼ $y � A � $yc
ÿ �

; ð8:4Þ

with conditions

Periodicity in y; ð8:5Þ

ch i ¼ 0: ð8:6Þ

Similarly, the approximate asymptotic representation of u (that we
shall denote uA) is obtained by combining Eqs. (6.8) and (6.32) (see
Section 6) to give

uA x; yð Þ ¼ uh i xð Þ þ ev yð Þ � $x uh i; ð8:7Þ

where v solves

ÿ$y � A0 ¼ $y � A0 � $yv
ÿ �

; ð8:8Þ

with conditions

Periodicity in y; ð8:9Þ

vh i ¼ 0:

While there appear to be several discrepancies between these re-
sults, these differences are only superficial. First, consider that
A ¼ A0 by definition (A0 yð Þ � A xð Þ). Next, consider that
$y � ~A ’ $y � A since $y � Ah i ’ 0. Given the uniqueness of solutions
of these problems, it follows that c ¼ v and uA ¼ uV . Therefore, the
macroscale equations and effective parameters obtained via volume
averaging, Eqs. (5.38) and (5.39), are identical to those obtained via
multiscale asymptotics, Eqs. (6.36) and (6.37). This result was also
obtained by Bourgeat et al. [27].

8.4. Comparison of algorithms

In Figs. 10 and 11, algorithms for volume averaging and multi-
scale asymptotics respectively are presented as flowcharts. Both
flowcharts share the same starting and ending actions: ‘‘Identify
microscale initial boundary value problems (IBVPs)’’; ‘‘Go to
SOLVE’’ if the procedure has been successful and we can go to
the SOLVE flowchart, Fig. 13, corresponding to the resolution of
the homogenized problem; and ‘‘Use another method’’ if the proce-
dure has not yielded a model which domain of validity matches
our needs.

The volume averaging method can be summarized as follows.
The first steps involve averaging the microscale IBVP, using the
perturbative decomposition and then obtaining the perturbation
IBVP. From this point, we make several assumptions (these are de-
tailed in Section 5 for the parabolic transport problem) in order

Technical note 17: In the most general case, there is a funda-

mental difference between u0 and uh i. In the volume averag-

ing theory, assumption A2ð Þ means that uh i varies with

frequencies of O 1ð Þ (i.e., it depends only on x). In the multi-

scale asymptotics framework, however, u0 may depend on

x and y: a priori, there is no reason why u0 should depend

on x only. In the methodology exposed above, it follows from

the O eÿ2
ÿ �

boundary value problem and the two-scale

expansion.

Finally, we mention an important result of two-scale con-

vergence (see definition in Section 9): if ue 2 L2 Xð Þ two-scale

converges to u0 x; yð Þ 2 L2 X� Yð Þ then ue converges toR
Y
u0 x; yð ÞdVy weakly in L2 Xð Þ (see [95]), where Y is the unit

cube. This suggests that u0h i and uh i are equivalent, rather

than u0 and uh i.



to obtain an approximate solution to the perturbation IBVP. This
approximate solution is then introduced into the unclosed form
of the average equation and may yield a local or nonlocal homog-
enized problem. If the problem is local in space (that was the case
of the example parabolic problem), effective parameters can be ex-
pressed as function of closure variables that may be calculated sep-
arately over the unit-cell.

For the formal asymptotics method, the process starts with

assumptions, so that the initial problem can be casted into a form
that is better suited to homogenization. These assumptions imply
that we can explicitly express the dependence of each term upon
the scale ratio, e, so that we may consider the limit e ! 0. In so
doing, we obtain a coupled series of IBVPs from which we can ex-
tract the homogenized model. In the previous parabolic case, we
can simplify the coupling between these IBVPs and obtain a mac-
roscale equation that involves effective parameters that are ex-
pressed as functions of variables that may be calculated

separately over the unit-cell. We remark that, in many cases, it
may not be possible to simplify coupling and we may obtain non-
local or mixed scale formulations. As for volume averaging, we rec-
ommend decoupling the micro- and macroscale models as much as
possible.

Finally, for each method, we must specify the domains of
validity, i.e., translate assumptions into clear physical restrictions.
In the example problem presented in Section 4, the assumptions
associated with each method and their physical interpretation
were thoroughly discussed in Sections 5 and 6. Example repre-
sentations of more complex domains of validity, in particular
involving a broader set of dimensionless numbers, can be found
in [96]. Other examples include timescale limitations as dis-
cussed in [97]. If the domain of validity is compatible with the
physical system and satisfies criteria fixed by the user (e.g.,
‘‘the model should be accurate only in the time-asymptotic
regime’’ or ‘‘the model should be local in space’’), we can proceed

Fig. 10. Flowchart illustrating the algorithm used for volume averaging (see Section 5 for an example application to a parabolic problem).



to the resolution of the problems (see Section 9.3). If not, we may
consider different assumptions (e.g., relax the quasi-stationarity
assumption and develop a macroscale model that is nonlocal in
time). We may also try to average the problem differently, for in-
stance by splitting the domain into different regions and deriving
an explicit representation of the average flux. This will not
change the problem, rather it sheds new light on the equations,
which may in turn make novel approximations visible. This is
the case with two-equation models (see [93] and [94]) which
may be viewed as higher order approaches.

An important difference between volume averaging and formal
multiscale asymptotics, is, therefore, the chronology of actions in
the algorithms. In particular, the ‘‘Make assumptions’’ action,
which is the most important step in both techniques, occurs at dif-
ferent stages of the developments (compare Figs. 10 and 11). For
the formal asymptotics, the assumptions are made a priori, i.e.,
we transform our equations into a new sequence of problems that
are further away from the physical problem but more convenient
for homogenization. For volume averaging, we do not make strong
assumptions ab initio; instead, we start by using averaging results
that apply to most systems, even those that violate e � 1.

8.5. Comparison of approximations

Another important difference between the techniques is the
nature of the assumptions that are made. Since the final results
are identical, there are strong correspondences between these
assumptions. In this subsection, we aim to highlight these relation-
ships. A summary is available in Table 1.

(RVE and then periodic unit-cell) vs. (Periodic unit-cell). With mul-
tiscale asymptotics, we assume that the medium is periodic a pri-

ori, whereas volume averaging uses a periodic unit-cell a posteriori

only to calculate effective parameters. As a result, the averaging
volume in the multiscale asymptotics framework always corre-
sponds to the unit-cell. The volume averaging approach does not
require this approximation a priori via the notion of RVE.

In essence, the significance of the periodicity assumption is the
same in both cases: either the medium is periodic, or we assume
that effective properties can be approximated by considering a
periodic case. Further, periodicity also implies that the unit-cell
problem and effective parameters do not depend upon macroscale
boundary conditions (a strong assumption that allows the formu-
lation of uncoupled micro- and macroscale descriptions).

Fig. 11. Flowchart illustrating the algorithm used for formal asymptotics (see Section 6 for an example application to a parabolic problem).



(Average-plus-perturbation) vs. (Two-scale expansion). Both
methods rely on a perturbative decomposition of the initial fields,
but the initial decompositions are rather different. With volume
averaging, we decompose the microscale fields into a spatially
averaged term and a perturbation, without imposing a more spe-
cific structure of the perturbation. With formal asymptotics, we as-
sume that the dependent variables can be expanded as power
series of e (the two-scale expansion ansatz), and that each ui is a
function of x and y, so that the perturbation structure is con-
strained from the start. Further, the first terms in both decomposi-
tions, u0 and uh i, are not identical, as is shown in SubSection 8.2.

However, we have proved in SubSection 8.3 that the final
expressions are identical for both decompositions. This results
from the additional constraints that are imposed on the perturba-
tion in the volume averaging methodology (in the ‘‘Make assump-
tions’’). In particular, we assume in SubSection 5.6 that the
dimensionless spatial frequencies of any average quantity, �h i, are
O 1ð Þ and ~w contains larger frequencies of order O eÿ1

ÿ �
. This yields

results similar to using a two-scale expansion with terms that de-
pend on the slow, x, and rapid, y, spatial variables.

(Neglecting higher order spatial terms) vs. (Two-scale series, scal-

ing of A and limit e ! 0). To obtain an approximate structure of
the perturbation, both techniques rely on the fact that there is a

separation of spatial scales, e� 1, so that we can approximate
the system by considering the asymptotic limit e ! 0. In multiscale
asymptotics, we explicitly detail all e dependencies via the two-
scale expansion and the scaling of A. In the volume averaging
framework, the scaling of A is arbitrary and we adopt a more phys-
ical approach whereby we neglect higher-order terms a posteriori.
While this does not impact the results in the purely diffusive case,
it plays an important role in advection–diffusion problems for
which different scalings of the Péclet number yield different re-
sults. In the volume averaging approach, these results are typically
contained in the same equations, whereas in the formal asymptotic
approach these different scalings are analyzed one by one. As dis-
cussed in Technical note 18, an advantage of multiscale asymptot-
ics is that it enables the identification of scalings that result in non-
homogenizablesystems.

Technical note 18: In the most general case, the relative scal-

ing of dimensionless numbers will influence spatial localiza-

tion and some scalings may yield problems for which a

local solution does not exist. Such cases are sometimes re-

ferred to as ‘‘non-homogenizable systems’’. They arise when

there is a strong coupling between the micro- and macro-

scales. For instance, this is the case if the Péclet number

scales as eÿ1 (see [52] and Technical note 12). This does not

appear in our previous analysis as we have used only one

scaling and the problem exhibits only one dimensionless

number.

(Temporal quasi-stationarity of the perturbations) vs. (Two-scale

series, scaling of A and limit e ! 0). With the volume averaging
technique, we suppose that the unit-cell problem is quasi-steady.
As detailed in Section 5, this means that the timescale for relaxa-
tion of the transient unit-cell problem is extremely rapid compared
to characteristic timescales for the macroscale problem. With for-
mal asymptotics, we obtain a steady problem on u1 as a result of
the diffusive scaling choosen for A. This diffusive scaling, however,
represents the ratio of characteristic times associated with the mi-
cro- and macroscale processes, so that both assumptions have the
same physical significance. We remark further that these assump-
tions may be relaxed to obtain a nonlocal form of the macroscale
problem.

8.6. A more personal comparison

The two communities that led the development of volume aver-
aging and multiscale asymptotics become self-evident when we
consider the advantages and disadvantages of the two methods
(see Fig. 12). The volume averaging approach was proposed by

Table 1

Summary highlighting the principal differences between volume averaging and multiscale asymptotics.

Volume averaging Multiscale asymptotics

Definitions Averaging operator �h i �h ie
Expansions u ¼ uh i xð Þ þ ~u x; xe

ÿ �
ue xð Þ ¼

P
ui x; xe
ÿ �

ei

First term uh i xð Þ u0 x; yð Þ

Equivalent averages uh i u0h i

Results Final models One model for all scalings One model for one scaling

Algorithms Chronology A posteriori assumptions A priori assumptions

Approximations Set up One problem Sequence of problems

Averaging volumes RVE and then unit-cell Unit-cell

Periodicity A posteriori periodicity A priori periodicity

Spatial localization Neglecting higher order terms Two-scale expansion, scaling of A and limit e ! 0

Temporal localization Quasi-stationarity of the perturbations Two-scale expansion, scaling of A and limit e ! 0.

Fig. 12. Spiderweb diagram showing a personal view of the advantages associated

with volume averaging (dashed red) and formal multiscale asymptotics (blue). (For

interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)



physicists and engineers, whereas asymptotics was developed by
mathematicians. This has led to fundamental differences in the
way in which assumptions are expressed and in the algorithms
that are used, even though the final results are the same. The vol-
ume averaging method provides a more physical framework that
brings both advantages and disadvantages. One of its principal
strengths is that the whole process remains more faithful to the
physical systems. Further, we do not have to make approximations
at the outset (for instance, we do not have to explicitly scale
parameters as functions of e): the first step involves only averaging
in space. This yields a physical interpretation of the averaging pro-
cedure that facilitates physical intuition, especially in multiphase
systems (see Technical note 19) where interfacial terms are more
easily dealt with.

The multiscale asymptotics method, on the other hand, is more
upfront, introduces a clearer scaling of parameters in terms of e
and provides a more systematic framework with a higher level of
conceptualization. Once the model is defined in a mathematical
form, the method is straightforward to apply and just requires cal-
culations to be performed, without a strong need to ‘‘think’’ about
the physics.

Technical note 19: Consider the diffusive transport of a solute

through two regions (c andx). We denote the solute concen-

trations in each phase by cc and cx, and by Dc and Dx the cor-

responding diffusion coefficients. Transport may be

described by the following transmission problem

@tcc ¼ $ � Dc$cc
ÿ �

;

@tcx ¼ $ � Dx$cxð Þ;

with continuity of concentrations and their fluxes across

phase boundaries. On averaging the two transport equations

within each phase, we obtain

@t cc

 �

¼ $ � Dc $cc

 �ÿ �

þ
1

V

Z

Sc

ncx � $ccdS;

@t cxh i ¼ $ � Dx $cxh ið Þ þ
1

V

Z

Sx

nxc � $cxdS:

The structure of this averaged system provides insight into the

physics before homogenization assumptions are made. In par-

ticular, we remark that 1
V

R
Sc
ncx � $ccdS ¼ ÿ 1

V

R
Sx

nxc � $cxdS is

the average interfacial flux. This suggests that it is also possible

to derive an alternative two-equation macroscale model which

includes solute exchange between the two phases.

If our purpose is to tackle a real problem, then neither tech-
nique is more rigorous than the other. While multiscale asymptot-
ics may seem to be more rigorous, our viewpoint is that this is a
false impression created by the strong simplifications of the prob-
lem made at the start. Once this has been done, the later stages are
straightforward but the relationships with the original physical
problem and the validity of the two-scale expansions are less clear.
In any case, the reader should bear in mind that, from a mathemat-
ical point of view, neither technique is exact: function spaces and
metrics are not defined, convergence is not proven, the two-scale
decomposition is an ansatz, the volume averaging method uses
many order of magnitude estimates. Rigorous analyses exist for
some cases (see Section 9).

8.7. Which method should you use?

Ideally, we recommend that you learn and use both methods as
this will give you a unique perspective upon multiscale problems.

From our point of view, dogmatism and sectarianism of the scien-
tific communities are part of the reasons that both methods devel-
oped separately for so many years. We hope that this paper will
motivate new generations of researchers to go beyond the confines
of one school of thought.

9. One step further

This section is a succinct introduction to supplementary mate-
rial that may assist the interested reader to take one step further
and enter contemporary research areas. We acknowledge that the

content is by no means exhaustive and reflects choices of the authors.

9.1. Corrector results

Corrector results refer to reconstructions of the microscale
fields from the solutions of the unit-cell and macroscale problems.
These apply to volume averaging and multiscale asymptotics in ex-
actly the same way.

To be explicit, let us consider the case of the previous parabolic
problem. The resolution of the macroscale problem yields the value
of uh i over X, which, by definition, filters high frequency spatial
components of the microscale variable u. From the solution of
uh i, we can also determine the vector field $ uh i pointwise and
use the solution of the unit-cell problem, b ¼ ec ¼ ev, to calculate
the approximate value of the fluctuations, ~u ’ b � $ uh i. From these
results, we can construct the corrector result as

ucor ¼ uh i þ b � $ uh i:

The corrector results are important in many instances. First, they al-
low us to access the approximated value of the microscale field and
may provide useful information for specific problems. For example,
it can be convenient when making comparisons with experiments
(see [98]) or DNS (see in [99]). Second, because it captures micro-
scale fluctuations, it modifies convergence properties and, without
going into (important) details, yields a ‘‘strong’’ convergence of u
to ucor when e ! 0, as opposed to a ‘‘weaker’’ convergence of u to
uh i(or to u0). In other words, it gives us a much better approxima-
tion of u, without extensive computational efforts.

9.2. SOLVE algorithm

In Fig. 13, we present the algorithm used for the resolution of a
homogenized problem. We include nonlocal descriptions, so that
micro- and macroscale equations may still be coupled. If that is
the case the numerical resolution of the problem will be much
more intensive than the resolution of a purely local system. If these
are decoupled, then we can solve the unit-cell problem separately,
use it to compute the effective parameters and then solve the mac-
roscale equations.

9.3. Examples of unit-cell problems and homogenized models

The goal of this subsection is to explain how the homogenized
model may be applied to particular cases of interest, and to provide
examples of unit-cell solutions and macroscale models. We will
first study the case of a two-dimensional stratified medium and
then solve the unit-cell problem for a complex three-dimensional
geometry.

9.3.1. Analytical solution for a stratified porous medium

We consider the two-dimensional (spatial variables in the y

coordinate system are y1 and y2) cell geometry given in Fig. 14,
where the parameter A is now a scalar that is piecewise constant,
given by



A ¼
Ar for a 6 y2 6 b;

Ax for 0 < y2 < a and b < y2 < 1;

(

where Ax and Ar are both constants.
The unit-cell problem is

ÿ$ � eAI
� �

¼ $ � A$cð Þ;

with periodicity and the zero-average constraint. For piecewise con-
stant A, we can use Schwartz’s derivatives so that

nxrr Ar ÿ Axð Þ ¼ $ � A$cð Þ;

where r is the interfacial Dirac distribution. Equivalently, we can
split this problem as Dca ¼ 0 within each phase a ¼ x or r (open
sets) with boundary conditions,

nxr � Ax$cx ÿ Ar$crð Þ ¼ nxr Ar ÿ Axð Þ;

cx ¼ cr:

Resolution of this problem and integration yields (see Appendix B)

Ae ¼
Aa 0

0 Ah

� �
;

where the components are the weighted arithmetic mean,
Aa ¼

P
/iAi, with /i the volume fraction of phase i, and the

weighted harmonic mean, Ah ¼ 1=
P /i

Ai

� �
. For the case where Ax

and Ar are generic second order tensors, equivalent relationships
have been derived by Quintard and Whitaker [100]. Such unit-cell
problems that can be solved analytically, either exactly or approxi-
mately, are rare (another example consists of a sphere embedded in
a matrix see [1,4,101,102]).

9.3.2. Validation against analytical solutions and comparison with

direct numerical simulations

We validate the homogenization of the diffusion operator by com-
paring the solution of the microscale problem with analytical and
numerical solutions of the homogenized equations for a collection
of test problems. In all cases, we consider N strips of length 10 units
in the y1-direction, and 1 unit in the y2-direction, stacked on top of
each other in the y2-direction. The domain therefore occupies
0 < y1 < 10, 0 < y2 < N. Inside each individual strip, diffusion is
homogeneous and the diffusion coefficient alternatively takes the va-
lue of Ax and Ar: we therefore have diffusion coefficient A given by

A ¼
Ar; n < y2 < nþ 1 if n is an odd integer;

Ax; n < y2 < nþ 1 if n is an even integer:

�
ð9:1Þ

Noting that /x ¼ /r ¼ 0:5, this gives rise to a homogenized diffu-
sion tensor Ae given by

Ae ¼
0:5ðAx þ ArÞ 0

0 1
2Ax

þ 1
2Ar

� �ÿ1

0
@

1
A: ð9:2Þ

In all simulations below we fix Ax ¼ 1 and Ar ¼ 0:1.
Our microscale problem is, for 0 < y1 < 10;0 < y2 < 100, find u

such that

$ � A$uð Þ ¼ S; ð9:3Þ

where both u and A@u=@n are continuous across the interface be-
tween strips, and A is given by Eq. (9.1). The corresponding homog-
enized problem is, for 0 < y1 < 10;0 < y2 < 100, find hui such that

$ � Ae � $huið Þ ¼ S; ð9:4Þ

where Ae is given by Eq. (9.2).
We will now investigate the choice of different boundary condi-

tions and the source/sink term, S. The derivation of the homoge-
nized diffusion tensor, as presented above with multiscale
asymptotics and volume averaging, did not take account of Neu-
mann boundary conditions and the source term, S. We therefore
consider two different sets of model problems: first those without
Neumann boundary conditions and with S ¼ 0 (where the analysis
is more likely to hold), and those with Neumann boundary condi-
tions and S – 0 (where the analysis may not hold). In all cases, the
numerical solutions were calculated using the finite element
method.

Model Problems without Neumann boundary conditions and with

S ¼ 0. Our first model problem in this section uses S ¼ 0 and
boundary conditions

u ¼ hui ¼ 1; y1 ¼ 0;

u ¼ hui ¼ 0; y1 ¼ 10;

u; hui; periodic on y2 ¼ 0;100:

Fig. 13. Flowchart illustrating the resolution algorithm (referred to as SOLVE in

Figs. 10 and 11).

Fig. 14. The stratified cell problem geometry.



This problem has solution

u ¼ hui ¼
10ÿ y1

10
;

for any choice of Ax and Ar, so that the micro- and macroscale solu-
tions are equal.

Our second model problem in this section has boundary
conditions

u ¼ hui ¼ 1; y2 ¼ 0;

u ¼ hui ¼ 0; y2 ¼ 100;

u; hui; periodic on y1 ¼ 0;10: ð9:5Þ

This problem has solution

u ¼ uðy2Þ;

hui ¼ huiðy2Þ ¼ 1ÿ
y2
100

:

The solution for u is shown in Fig. 15(a), and the solution for hui (so-
lid line), and the corrector (broken line) are shown in Fig. 15(b). We
see that the correction works exactly in this case. We remark that
we would need to adjust boundary conditions to obtain h~ui ¼ 0.

Model Problems with Neumann boundary conditions and S – 0.
For our first model problem in this section, we take N ¼ 100, the
sink S ¼ ÿ0:01, and apply the following boundary conditions:

u ¼ hui ¼ 1; y1 ¼ 0;

@u

@n
¼

@hui

@n
¼ 0; on other boundaries: ð9:6Þ

Contour plots of the solution for u and hui are presented in Fig. 16(a)
and (b). We see that the solution for u exhibits fluctuations with the
same frequency as the microstructure due to the combination of the
diffusion coefficient for the microscale problem varying between
strips and the sink term. As expected this microscale feature is not
observed for hui, the solution to the homogenized problem, and
would not be captured by a corrector result either. Nevertheless,
away from the boundaries y2 ¼ 0;100 the solution to the homoge-
nized problem does an excellent job of approximating the macroscale
features. At the boundaries y2 ¼ 0;100 the microscale and homoge-
nized models diverge in order to satisfy the respective asymmetric
boundary conditions (top and bottom). To verify that no flux bound-
ary conditions are the cause of this boundary effect we solve a second
model problem with N ¼ 100 and boundary conditions given by

u ¼ hui ¼ 1; y1 ¼ 0;

@u

@y1
¼

@hui

@y1
¼ 0; y1 ¼ 10;

u; hui; periodic on y2 ¼ 0;100: ð9:7Þ

A contour plot of the solution for u is shown in Fig. 16(c). We see
that in this case, boundary effects are no longer present, as
expected.

To demonstrate the inhomogeneities in the homogenized diffu-
sion tensor that arise from the microscale problem, we consider a
further model problem with boundary conditions given by

u ¼ hui ¼ 1; y1; y2 ¼ 0;

@u

@n
¼

@hui

@n
¼ 0; on other boundaries: ð9:8Þ

Contour plots of the solutions for u and hui are presented in Fig. 17(a)
and (b). As in Fig. 16(a) and (b), we see that the microscale fluctua-
tions of u caused by the microstructure and the no flux boundary
conditions, are not captured by the homogenized solution, hui. Nev-
ertheless, the macroscale features of u are evident in hui.

9.3.3. Solution of the unit-cell problem on a complex geometry

In most cases, analytical solutions of the generic unit-cell problem
are not available and it must instead be solved numerically. In
Fig. 18(a), we present the three dimensional geometry used to com-
pute c yð Þ ¼ v yð Þ as per Fig. 18(b). The geometry consists of nine (blue)
cuboids (see Fig. 18(a)) embedded within a cubic unit-cell so that:

A ¼
0:1 for the blue cuboids ðvolume fraction 0:570Þ:

1:0 for the transparent matrix ðvolume fraction 0:430Þ:

�

The numerical procedure is based on a finite volume formulation
detailed by Quintard [103]. We remark that the results have the
same reflection symmetries as the geometry.

Note that, throughout this subsection, we present approximate
values rounded to the third decimal. The effective tensor corre-
sponding to this unit-cell is calculated to be

Ae ¼ 0:387I;

where I is the identity tensor. Harmonic and arithmetic bounds are
0.163 and 0.487, respectively. Hashin–Shtrikman bounds (that ap-
ply only to the isotropic case) are approximately 0.243 and 0.411
(see Section 7.1 for more details).

9.4. Homogenization of a variety of differential operators

Application of the two formal methods presented in this paper
are not restricted to the parabolic problem presented in Section 4.
They can be applied to numerous differential operators that relate
to different applications, provided that a notion of separation of
scales or a small parameter can be defined and that the nature of
the initial operator remains deterministic and linear. Volume
averaging and formal periodic asymptotics can be used to deal
with elliptic, parabolic or hyperbolic equations for numerous
applications including: Newtonian and non-Newtonian Stokes
and Navier–Stokes, advection–diffusion-reaction, acoustic wave
propagation, Schrödinger’s, solid mechanics, Maxwell’s, Reynolds’
and poromechanics problems.

Some results exist for nonlinear differential operators (see an
example discussion in [95]), but these are typically of mathemati-
cal, rather than practical, interest. Further, such results are primar-
ily nonlocal (i.e., there is still a strong coupling between micro- and
macroscale equations). This considerably reduces their practical
value, as it increases the computational cost associated with a real
model resolution. From our viewpoint, the development of practi-
cal models in homogenization of nonlinear differential operators
remains a considerable challenge.

There is also no particular scale restriction that applies to these
methods. They have been used to study problems ranging from the
cellular level within biological tissues (see [104]) to large-scale
averaging of dispersion equations in aquifers [105], through uptake
in plant roots [106] or transport in bioreactors [107]. Further, reit-
erated or successive homogenization can be performed to obtain
macroscale equations (see, for instance [108] or [47] for nonlinear
monotone operators). One example of a reiterated averaging lead-
ing to a practical model is the successive upscaling of Stokes equa-
tions to Darcy’s law and then from Darcy’s law to a two-pressure
model (see [56,109]).

9.5. Non-uniqueness of macroscale models

In general, there are several macroscale models associated with
a given (unique) microscopic problem. Therefore, the development
of the homogenized model cannot be fully decoupled from the
physical situation of interest and the corresponding assumptions
that are made during upscaling. Consider, for example, the differ-
ent models that are used to describe momentum transport in por-



0

0.1
0.1

0.1

0
.1
0
.1

0
.1

0
.1

0
.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.2

0
.2

0
.2

0
.2

0
.2

0
.2

0.2

0.3

0
.3

0
.3

0
.3

0
.3

0.3

0
.4

0
.4

0
.4

0
.4

0
.4

0.5

0
.5

0
.5

0
.5

0.5

0
.6

0
.6

0
.6

0
.6

0
.7

0
.7

0
.7

0
.7

0
.8

0
.8

0
.8

0
.8

0
.9

0
.9

0
.9

0
.9

1
1

1

y

y

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

1

2

0
.1

0
.1

0
.1

0
.2

0
.2

0
.2

0
.3

0
.3

0
.3

0
.4

0
.4

0
.4

0
.5

0
.5

0
.5

0
.6

0
.6

0
.6

0
.7

0
.7

0
.7

0
.8

0
.8

0
.8

0
.9

0
.9

0
.9

1
1

1

y

y

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

1

2

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0
.2

0
.2

0
.2

0
.2

0
.2

0
.2

0
.2

0
.3

0
.3

0
.3

0
.3

0
.3

0
.4

0
.4

0
.4

0
.4

0
.4

0
.5

0
.5

0
.5

0
.5

0
.6

0
.6

0
.6

0
.6

0
.7

0
.7

0
.7

0
.7

0
.8

0
.8

0
.8

0
.8

0
.9

0
.9

0
.9

1
1

1

y

y

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

1

2

Fig. 16. (a) The solution for u satisfying boundary conditions given by Eq. (9.6), (b) the solution for hui satisfying boundary conditions given by Eq. (9.6) and (c) the solution

for u satisfying boundary conditions given by Eq. (9.7).

Fig. 15. (a) The solution for u satisfying boundary conditions given by Eq. (9.5); (b) the solution for hui (solid line), and the corrected hui (broken line), satisfying boundary

conditions given by Eq. (9.5). Figures (c) and (d) are corresponding zoomed in representations.



ous media, i.e., Darcy, Darcy with memory effects (a time nonlocal
formulation [110]), Darcy–Brinkman (including the viscous term in
the macroscale equation [111]) or Darcy–Forcheimer (including
higher order velocity expansions in the macroscale equation to
deal with inertial effects, see discussions in [112]).

An obvious modification that generates different models is the
choice of scaling that is applied during the asymptotic develop-
ments. Again, this choice should be closely related to the physics
of the system of interest. An important example of this corre-
sponds to the scaling of the Péclet number during homogenization
of advection–diffusion equations (see Technical note 12). The form
of the dispersion coefficients will strongly depend upon scalings.
Other macroscale problems can be obtained by modifying the spa-
tial averages (see [59]), or via mixed scales formulations (e.g., one
phase is described at the pore-scale while the other is described at
Darcy’s scale and both are coupled, see [96]).

In multiphase systems, assumptions relative to spatial gradients
of the microscale fields may yield different macroscale models. For
instance, if the variations of the microscale field over the length-
scale of the unit-cell are relatively small, we may assume that aver-
age values of the field within each phase are approximately the
same, an assumption termed ‘‘local equilibrium’’ (see Fig. 19 and
[113]). If this is not the case, then asymptotic models or higher or-
der homogenization theories may be used (see e.g., [97]). In the
volume averaging theory, higher order approaches often take the
form of two- (or more) equation models in which the macroscale

flux between phases is explicit. There are also many semi-heuristic
models in hydrology that account for exchange dynamics between
multiple regions, including formulations such as multi-rate trans-
port models [114]. There are considerable challenges associated
with understanding these models from a homogenization
viewpoint.

9.6. Domains of validity

Determining the domains of validity of macroscale models is an
essential step of homogenization. Constraints associated with
homogenized models are often restrictive, and it is fundamental
for practical applications to express them clearly. Further, we must
understand how different macroscale models relate to each other
(see [115] for a link between one- and two-equation models) and
how they apply to specific situations. Open questions include:
can we develop consistent higher order theories? Is there a sys-
tematic way of choosing models depending on the position in the
space of dimensionless parameters? Can we combine different
descriptions and create hybrid models that increase the domains
of validity?

9.7. Weighted averages

In general, we expect average quantities to behave smoothly, so
that they can be described by partial differential equations at the

Fig. 18. Resolution of the unit-cell problem in the three dimensional geometry (a). In (b), we plot the contour lines (center of the cube), the amplitude of c yð Þ ¼ v yð Þ within

two orthogonal cutting planes and the vector fields as arrows (glyphs) with origins within these same planes.
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Fig. 17. (a) The solution for u satisfying boundary conditions given by Eq. (9.8), and (b) the solution for hui satisfying boundary conditions given by Eq. (9.8).



macroscale. In the volume averaging framework, weighted aver-
age, as described in Technical note 2, may be used to regularize
spatial fields, i.e., we can often choose the weight function so that
it eliminates singularities. Further, weighted averages are also used
to simplify macroscale expressions. For example, Quintard and
Whitaker [58,59] show that, in classes ofordered porous media,

Darcy’s law is obtained for the hydrostatic problem only for a care-
ful choice of weighted average.

9.8. Mathematical homogenization

From a purely mathematical point of view, the methods pre-
sented in this paper are formal but not rigorous. For example, the
ansatz that ue can be expressed as a two-scale expansion is gener-
ally not correct at all orders. Consequently, an entire branch of
homogenization has been developed, that we will term ‘‘mathe-
matical homogenization’’ for the remainder of this discussion.
Mathematical homogenization is concerned with constructing
the function spaces, topologies and notions of convergence that al-
low a rigorous study of the problem.

In this paper, we focused on periodic homogenization since it
lends itself very well for engineering applications. We emphasize
that there are homogenization methods that apply to nonperiodic
cases. These are based on convergence concepts such as C-conver-
gence, G-convergence or H-convergence (see e.g., [49]). These
methods are extremely powerful and can provide great mathemat-
ical insight into the problems, but do not generally yield a unit-cell
problem and explicit formulae.

More recently, a particularly popular mathematical homogeni-
zation technique was introduced for periodic media. Initial propo-
sitions were made by Ngutseng [116] and the theory was further
developed by Allaire (see [95]). It relies on the notion of two-scale
convergence, a special type of weak convergence that is defined in
the Technical note 20, and its properties, in particular regarding
the existence and uniqueness of two-scale limits. Its popularity
stems from the fact that it is a self-contained rigorous method that
does not require two separate steps (formal asymptotics and then
convergence), as was the case for early convergence results (see
e.g., [47]).

Technical note 20: Let ue be a bounded sequence in L2 Xð Þ.
There exists a subsequence, still denoted ue, and a function

u0 x; yð Þ 2 L2 X� Yð Þ (Y is the unit cube) such that

lim
e!0

Z

X

ue xð Þw x; yð Þdx ¼

Z

X

Z

Y

u0 x; yð Þw x; yð Þdxdy;

for any smooth function w x; yð Þ, which is Y-periodic in y. This

sequence ue is said to two-scale converge to u0 x; yð Þ.

10. Conclusions

This paper was initiated on the basis that very few works have
studied relationships between different homogenization methods.
As a result, there is little connection and exchange of knowledge
between larger bodies of the literature. In this paper, we have pro-
vided a detailed comparison of volume averaging with closure and
formal periodic asymptotics based on multiscale expansions. We
have shown that, in a simple parabolic case, the main differences
between both methods are not the results themselves, but the
methodologies, the insight that they provide, the algorithms and
the formalisms of assumptions. We have also detailed many points
of the developments that are rarely discussed in the literature,
which we hope will help graduate students and researchers enter-
ing this field.

We anticipate that this work will inspire researchers to fight dog-
matic conflicts between different communities and focus on under-
standing relationships between the many upscaling methods that
are available. These include, for instance, the generalized Taylor-
Aris-Brenner method of moments, a variety of stochastic approaches
or mixture theories. Comparison of volume averaging and multiscale
asymptotics should also be performed in more complex cases, e.g.,
the case with sources and/or drift (see e.g., [117]) or the use of
one- and two-equation models (see e.g., [118]). From our viewpoint,
such knowledge would be an important step towards facilitating ac-
cess to many important papers in the literature and could possibly
shed a new light on multiscale problems.
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Appendix A. Rigorous derivation for volume averaging

Here, our goal is to provide a brief overview of a more rigorous
manner to perform the order of magnitude analysis in the
volume averaging methodology. Similar derivations for other
approximations using the symbol ’ in Section 5 are straightfor-
ward, so that we will only perform calculations up to the point
where we obtained the simplified form of the perturbation
problem.

Recall that the quasi-stationary perturbation problem is

0 ¼ $ � A � $~uð Þ ÿ $ � A � $~uh i þ $ � A � $ uh ið Þ ÿ $

� A � $ uh ih i: ðA:1Þ

The last term on the right-hand side can be written

$ � A � $ uh ih i ¼ $ � Ah i � $ uh ið Þ þ h:o:t:: ðA:2Þ

This stems from the Taylor expansion about x within the ‘‘average
of the average’’ expression, i.e., (for a similar discussion, see Techni-
cal note 8)

A � $ uh ih i ¼ Ah i � $ uh i þ A � fh i � $$ uh i þ h:o:t:; ðA:3Þ

so that we have

$ � A � $ uh ið Þ ÿ $ � A � $ uh ih i ¼ $ � ~A � $ uh i
ÿ �

ÿ $ � A � fh i

� $$ uh i þ h:o:t:: ðA:4Þ

Fig. 19. Schematics illustrating the concept of local equilibrium between two

phases.



Further, we can decompose the first term on the right-hand side
as

$ � ~A � $ uh i
ÿ �

¼ $ � ~A
ÿ �

� $ uh i þ ~A : $$ uh i; ðA:5Þ

so that

0 ¼ $ � A � $~uð Þ ÿ $ � A � $~uh i þ $ � ~A
ÿ �

� $ uh i þ ~A

: $$ uh i ÿ $ � A � fh i � $$ uh i þ h:o:t:: ðA:6Þ

We rewrite derivatives of terms that vary at the microscale in the y

coordinate system, so that

0 ¼ eÿ2
$y � Ay � $~u

ÿ �
ÿ eÿ2

$y � A � $y~u

 �

þ eÿ1
$y � ~A

ÿ �
� $ uh i

þ ~A : $$ uh i ÿ $y � A � fH yð Þ

 �

� $$ uh i þ h:o:t:; ðA:7Þ

where fH yð Þ ¼ eÿ1f xð Þ. Multiplying by e2 on both sides yields

0 ¼ $y � Ay � $~u
ÿ �

ÿ $y � A � $y~u

 �

þ e$y � ~A
ÿ �

� $ uh i

þ O e2
ÿ �

: ðA:8Þ

Appendix B. Analytical resolution of the unit-cell problem for

the stratified case

The orientation of strata is such that the unit normal vector on
the interface pointing from x to r is nxr ¼ 0;1½ �T where T denotes
transpose. Symmetries yield a one dimensional problem with vari-
ations along the y2-axis:

d
2
cax

dy
2
2

¼ 0 and
d
2
cay

dy
2
2

¼ 0:

The flux boundary conditions read Ax
dcxy2
dy2

ÿ Ar
dcry2
dy2

¼ Ar ÿ Ax and
Ax

dcxy1
dy1

ÿ Ar
dcry1
dy1

¼ 0. We will denote byx1 the phase corresponding
to 0 < y2 < a;r the phase corresponding to a < y2 < b and x2 the
phase corresponding to b < y2 < 1. The continuity of the vectors
yields cx1y2 0ð Þ ¼ cx2y2 1ð Þ, cx1y2 að Þ ¼ cry2 að Þ and cx2y2 bð Þ ¼ cry2 bð Þ. It
is straightforward to show that cay1 ¼ 0. Further, we obtain

cx1y2 ¼ B
y2
/x

; cx2y2 ¼ B
y2 ÿ b

/x

ÿ
1

2

� �
; cry2 ¼ ÿB

y2 ÿ a

/r
ÿ
1

2

� �
;

with B ¼ /x/r ArÿAxð Þ
/rAxþ/xAr

and /r ¼ bÿ a, /x ¼ 1ÿ bþ a ¼ 2a (the unit-
cell is symmetric so that 1ÿ b ¼ a). The effective tensor reads

Ae ¼ A y2ð Þ Iþ $cð Þh i ¼ A y2ð Þ
1 0

0 1þ
dcy2
dy2

" #* +
:

So that

Aey2y2 ¼ /xAx 1þ
B

/x

� �
þ /rAr 1ÿ

B

/r

� �
¼

AxAr
/rAx þ /xAr

¼
1

P /i

Ai

;

which is the weighted harmonic mean. Further,

Aey1y1 ¼ /xAx þ /rAr;

which is the weighted arithmetic mean.
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