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Abstract 110 
Completely carbonated peridotites represent a window to study reactions of carbon-rich fluids 111 
with mantle rocks. Here we present details on the carbonation history of listvenites close to the 112 
basal thrust in the Samail ophiolite. We use samples from Oman Drilling Project Hole BT1B, 113 
which provides a continuous record of lithologic transitions, as well as outcrop samples from 114 
listvenites, metasediments and metamafics below the basal thrust of the ophiolite. 87Sr/86Sr of 115 
listvenites and serpentinites, ranging from 0.7090 to 0.7145, are significantly more radiogenic 116 
than mantle values, Cretaceous seawater, and other peridotite hosted carbonates in Oman. The 117 
Hawasina sediments that underlie the ophiolite, on the other hand, show higher 87Sr/86Sr values 118 
of up to 0.7241. d13C values of total carbon in the listvenites and serpentinites range from -119 
10.6‰ to 1.92‰. We also identified a small organic carbon component with d13C as low as -120 
27‰. Based on these results, we propose that during subduction at temperatures above >400°C, 121 
carbon-rich fluids derived from decarbonation of the underlying sediments migrated updip and 122 
generated the radiogenic 87Sr/86Sr signature and the fractionated d13C values of the serpentinites 123 
and listvenites in core BT1B. 124 

 125 
Plain Language Summary 126 

Samples from Oman Drilling Project Hole BT1B provide a record of interactions of fluids rich in 127 
carbon dioxide with mantle rocks. This interactions lead to the formation of listvenites, rocks 128 
composed mainly by magnesite and quartz. Here we describe the formation of listvenites in the 129 
Oman ophiolite using Strontium and Carbon isotopes to characterize the source and nature of the 130 
fluid that pervasively transform the mantle rocks that now store vast amounts of carbon dioxide. 131 

1 Introduction 132 

Hydration and carbonation of ultramafic rocks are important processes in the carbon and 133 
water cycle of our planet (Alt et al., 2013; Fruh-Green et al., 2004). These alteration reactions are 134 
sinks of water and carbon where peridotites are exposed on the seafloor  forming alteration 135 
minerals like serpentine and carbonates (Alt et al., 2013; Klein et al., 2020; Macdonald & Fyfe, 136 
1985; Paulick et al., 2006) which are carried back into the mantle in convergent margins. Fluids 137 
derived from the subducted slab can migrate and interact with the mantle wedge in subduction 138 
zones, so that the “leading edge of the mantle wedge” aka the “cold nose”,  can be partially 139 
hydrated and carbonated (Blakely et al., 2005; Hyndman & Peacock, 2003; Kelemen & 140 
Manning, 2015). This  is usually inferred from seismic data (e.g. DeShon and Schwartz, 2004; 141 
Kamiya and Kobayashi, 2000; Tibi et al., 2008; Tsuji et al., 2008). Understanding the interaction 142 
of carbon-bearing hydrous fluids with peridotites is important to supplement and constrain 143 
geophysical observations.  144 

 145 
Fully carbonated peridotites, also known as listvenites (Halls & Zhao, 1995), provide a 146 

window into the alteration processes that occur in the “cold nose” of the mantle wedge above 147 
subduction zones, where mantle peridotite reacts with hydrous and carbonated fluids likely 148 
derived from the subducting slab at moderate temperatures and pressures (Beinlich et al., 2012; 149 
Boskabadi et al., 2017, 2020; Falk & Kelemen, 2015; Menzel et al., 2018). Formation of 150 
listvenites appears to be restricted to particular conditions requiring high carbon concentrations 151 
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in the fluid (Falk & Kelemen, 2015; Hansen et al., 2005; Kelemen et al., 2021; Menzel et al., 152 
2018). For example, complete carbonation of peridotites to form listvenites is not observed near 153 
the surface in ophiolites (e.g. Clark and Fontes, 1990; de Obeso and Kelemen, 2020, 2018; 154 
Garcia del Real et al., 2016; Kelemen and Matter, 2008; Noël et al., 2018; Quesnel et al., 2016; 155 
Schwarzenbach et al., 2016). It is also not observed near the seafloor, where serpentinization and 156 
formation of carbonate veins are common (e.g Bach et al., 2011; Delacour et al., 2008; 157 
Schwarzenbach et al., 2013). Fluid sources for complete carbonation have been associated with 158 
subduction in different listvenite localities. Menzel at al. (2018) attributed carbonation of 159 
harzburgite in the Advocate ophiolite (Canada) to fluxing by slab-derived, CO2-rich fluids. 160 
Isotopic data (d13C, d18O and 87Sr/86Sr) of listvenites in the Late Cretaceous ophiolites of eastern 161 
Iran point to carbon-bearing fluids  derived from subducted sedimentary units as the source of 162 
carbon (Boskabadi et al., 2020).  163 

In Oman, listvenites occur along the basal thrust of the ophiolite (Nasir et al., 2007; 164 
Wilde et al., 2002). Previous studies have investigated their formation conditions and the nature 165 
of the carbonation fluids without reaching conclusive answers on the source of the fluids 166 
(Beinlich et al., 2020; Falk & Kelemen, 2015; Nasir et al., 2007; Stanger, 1985). In this paper, 167 
we present 87Sr/86Sr and d13C data on samples from Oman Drilling Project Hole BT1B and the 168 
underlying sediments of the Hawasina Formation. We show that devolatization of the subducting 169 
sediments similar to the Hawasina Formation likely generated the carbonation fluids which 170 
reacted with the mantle wedge in this fossil subduction zone to form listvenites. These processes 171 
probably operate in subduction zones worldwide, where fluids migrate updip along the slab 172 
mantle interface, and then react with hanging wall peridotites storing large amounts of carbon. 173 

 174 

2 Geological setting 175 

2.1 The Samail ophiolite 176 

The Samail ophiolite, along the northeast coast of Oman and the United Arab Emirates 177 
(UAE), is one of the best-exposed block of oceanic crust and its underlying mantle in the world. 178 
It was thrust over adjacent oceanic lithosphere soon after magmatic formation, and then onto the 179 
margin of the Arabian subcontinent in the late Cretaceous. The mantle section of the ophiolite is 180 
mainly composed of highly depleted, residual mantle peridotites (mostly harzburgites, e.g. 181 
(Godard et al., 2000; Hanghøj et al., 2010; Monnier et al., 2006), together with 5 to 15% dunite 182 
(Braun, 2004; Braun & Kelemen, 2002; Collier, 2012). Near the basal thrust, interlayered dunites 183 
and refertilized harzburgites comprise the distinctive “Banded Unit” (Khedr et al., 2014). The 184 
peridotites are pervasively serpentinized, with serpentine (± brucite) making up ~ 30-100 wt% of 185 
“fresh” rock (Godard et al., 2000; Hanghøj et al., 2010; Monnier et al., 2006) and/or completely 186 
carbonated to form listvenites (Falk & Kelemen, 2015; Nasir et al., 2007; Stanger, 1985; Wilde 187 
et al., 2002). The listvenites only occur within a few km of the basal thrust of the ophiolite, and 188 
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within the tectonic melanges with a serpentine matrix just below the base of the ophiolite (Nasir 189 
et al., 2007; Stanger, 1985). 190 

2.2 Lithologies below the Samail ophiolite nappe 191 

Beneath the mantle section of the Samail ophiolite is a locally preserved “metamorphic 192 
sole”. This sole is exposed discontinuously along the basal thrust, juxtaposed with the overlying 193 
Banded Unit at the base of the Samail mantle section. It records peak metamorphic temperatures 194 
of 700-900°C and imprecise peak pressures of 0.8 to 1.4 GPa (Cowan et al., 2014; Hacker & 195 
Mosenfelder, 1996; Searle & Cox, 2002; Searle & Malpas, 1980; Soret et al., 2017). A lower 196 
temperature unit (∼450-550°C) with similar peak pressures  (0.8 to 1.2 GPa) has also been 197 
identified from the metamorphic section of Oman DP Hole BT1B (Kotowski et al., 2021). The 198 
base of the sole is in fault contact with low grade allochthonous sediments of the Hawasina 199 
formation, which is composed of pelagic clastic units interlayered with limestones (Bechennec et 200 
al., 1988, 1990) deposited from the late Permian to the Cretaceous. The Hawasina sedimentary 201 
units were thrusted over autochthonous Mesozoic to Proterozoic platform sediments of the 202 
Arabian continental margin, forming nappes between the autochton and the ophiolite. 203 

2.3 OmanDP Hole BT1B and Oman Listvenites 204 

Hole BT1B was drilled in March 2017 in Wadi Mansah (23.364374°N, 58.182693°E), 205 
which yielded a total length of 300.1 m with 100% recovery (Kelemen et al., 2020). The upper 6 206 
meters are composed of alluvial gravels followed by an ultramafic sequence comprised of 207 
listvenites (carbonated peridotites) interlayered with two serpentinite bands (80-100 m depth and 208 
181 to 186 m depth).  A thick (0.42 m) layer of grey-green fault gouge at 196.6 m–197.1 m depth 209 
separates the ultramafic units from the metamorphic sole composed of fine-grained metabasalts 210 
(Godard et al., 2021; Kelemen et al., 2021; 2020). To the first order, alteration of peridotite to 211 
form serpentinite and listvenite in Hole BT1B was nearly isochemical except for the addition of 212 
H2O and CO2. Average bulk rock Mg/Si, Fe/Si, Al/Si, Fe/Mg, and Cr/Al ratios in serpentinite 213 
and listvenite are close to the average composition of the Samail peridotite (Kelemen et al. 2020, 214 
2021, Godard et al. 2021) and similar to the composition of previously studied listvenites from 215 
the outcrops extending north and northeast from the drill site (Falk & Kelemen, 2015). The core 216 
provides a unique record of the interaction between peridotites in the leading edge of the mantle 217 
wedge and hydrous fluids rich in CO2. For an expanded version of the geology of Oman DP Hole 218 
BT1B and MoD mountain we refer the reader to the Proceedings of the Oman Drilling Project 219 
(Kelemen et al., 2020) and Kelemen et al. (2021).  220 

3 Materials and Methods 221 

Samples analyzed for this study comprise a suite of drill core samples from OmanDP 222 
Hole BT1B (listvenites n=50, serpentinites n=14, metamorphic sole rocks n=11) and hand 223 
samples of the Hawasina formation (n=18) and metamorphic sole sediments (n=2). Location of 224 
Oman DP Hole BT1B and Hawasina samples are shown in Figure 1. Drill core samples 225 
encompass all the identified lithologies from Hole BT1B. Major element compositions for Hole 226 
BT1B samples were reported in the Proceedings of the Oman Drilling Project (Kelemen et al., 227 
2020) with the exception of samples in the 181-186m depth interval which are reported by 228 
Godard et al. (2021). Trace element compositions of Hole BT1B samples can be found in 229 
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Godard et al. (2021). Trace element compositions and loss on ignition for Hawasina formation 230 
outcrop samples were analyzed at Lamont Doherty Earth Observatory (LDEO). Rb and Sr 231 
concentrations were analyzed using a VG PlasmaQuad ExCell quadrupole ICP-MS following 232 
HNO3-HF digestion. Major element compositions of the Hawasina samples are available in 233 
supplementary table 1.  Additional Sr isotopes were measured on samples from outcrops 234 
northeast of Hole BT1B (Falk & Kelemen, 2015).  235 

 236 

Figure 1. Simplified geologic map of Wadi Mansah and vicinity of Oman DP Hole BT1B 237 
compiled after Villey et al. (1986), Google Earth and field observations. Hand samples collected 238 
for this study are marked with red circles with number of samples collected per location in black. 239 

For Sr isotope analysis, bulk rock powder was fully digested in a HNO3-HF mixture 240 
overnight and redissolved in 3N HNO3 prior to column chemistry using the Eichrom® Sr resin. 241 
Purified Sr were analyzed for isotopic compositions interspersed with US National Institute of 242 
Standards and Technology (NIST) SRM 987 on a Thermo Scientific Neptune multi-collector 243 
ICP-MS at LDEO. In-run mass fractionations were normalized to 86Sr/88Sr=0.1194. Unknowns 244 
were normalized to SRM 987 87Sr/86Sr value of 0.701248. International standards BHVO-2 245 
yielded 87Sr/86Sr value of 0.703509±41 (2s, n = 3) and BCR-2 yielded 0.705046±34 (2s, n = 3), 246 
which agree with published values from Weis et al. (2006). 247 

 Total Carbon (TC) was measured from the same bulk rock powder splits as for Strontium 248 
isotopes. Total Organic Carbon (TOC, or reduced carbon) was measured from the residual rock 249 
powder after the removal of Inorganic Carbon (carbonate carbon) through reaction with dilute (3 250 
N) HCl for at least 3 days, followed by washing with Millipore® water. Concentrations and d13C 251 
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ratios of Total Carbon (TC) and Total Organic Carbon (TOC), were determined using a Costech 252 
element analyzer coupled with a Thermo Scientific Delta V plus mass spectrometer at LDEO. 253 
Sample runs were calibrated using Acetanilide for carbon contents (R2=0.9998). For d13C we 254 
used USGS40 (d13C =-26.77±0.16‰ V-PDB, n=4), USGS41 (d13C =37.63±0.12‰ V-PDB, n=4) 255 
and USGS24 (d13C =-16.04±0.13‰ V-PDB, n=4). All measured values of d13C standards agree 256 
with accepted values reported by the United States Geological Survey (USGS). Inorganic carbon 257 
contents and d13C of total inorganic carbon (TIC) were estimated by mass balance between TC 258 
and TOC. 259 

3 Results 260 

Depth profiles of 87Sr/86Sr, Sr and Rb concentrations, carbon concentrations, Total 261 
Carbon and Total carbon d13C are shown in Figure 2 and Table 1 and 2. The Hawasina 262 
metasediments are plotted as the horizontal map distance to the closest mapped metamorphic 263 
sole/ultramafic contact. 264 

 265 

Figure 2. Depth profiles of OmanDP Hole BT1B (top panels) and distance from basal thrust for 266 
Hawasina metasediments (bottom panels). From left to right 87Sr/86Sr (measured), 87Sr/86 age 267 

corrected at 96 Ma, Sr concentrations, Rb concentrations, total carbon (TC) concentration, total 268 
carbon d13C, (squares in metamorphic sole from Zeko (2021). Black dashed line in top panels 269 

correspond to basal thrust. Green reference bands in all panels indicate, from left to right: 270 
87Sr/86Sr range of MORB (Average ± 2s)  (Gale et al., 2013; Hofmann, 2013), Sr and Rb 271 

concentration range of Oman harzburgite (Average ± 2s) (Godard et al., 2000; Hanghøj et al., 272 
2010; Monnier et al., 2006), total carbon content of Oman harzburgite (Average ± 2s)  (Kelemen 273 
& Manning, 2015) and mantle d13C (Average ± 2s) (Deines, 2002). The distance from the basal 274 
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thrust for the Hawasina metasediments is measured as the horizontal distance to the closest 275 
mapped metamorphic sole/ultramafic contact.  276 

Table 1. Lithological information, depth, strontium, rubidium and carbon concentrations and Sr 277 
and C isotope ratios of samples from OmanDP Hole BT1B 278 

Table 1 attached as Excel spreadsheet 279 

 280 
Abbreviations SE= Standard error, TC= Total Carbon, TOC= Total Organic Carbon, V-PDB= Vienna Pee Dee 281 

Belemnite standard, n.d.=not determined 282 

 283 
 284 
Table 2. Lithological information, location, strontium, rubidium and carbon concentrations and 285 
Sr and C isotope data of samples for Hawasina and metamorphic sole samples 286 

 287 
Table 2 attached as Excel Spreadsheet 288 

 289 
Abbreviations SE= Standard error, TC= Total Carbon, T V-PDB= Vienna Pee Dee Belemnite standard, 290 

n.a.= not available, n.d.=not determined 291 
 292 

3.1 Strontium Isotopes 293 

Measured 87Sr/86Sr values in Oman DP Hole BT1B lithologies show clear differences 294 
between (a) the metamorphic sole and (b) the listvenites and serpentinites. The listvenites and 295 
serpentinites vary from a minimum value of 0.709 in the upper serpentinite band to a maximum 296 
of 0.715 in some listvenites. 87Sr/86Sr values in the listvenites increase with depth from the 297 
surface to 150 m while the serpentinite band between 80-100 m have lower values. Below 150 298 
m, 87Sr/86Sr values are relatively constant with increasing depth, until the second serpentine band 299 
at 181-186 m. Below the basal thrust, 87Sr/86Sr values are significantly lower in the metamorphic 300 
sole from 0.704 to 0.706, followed by lower 87Sr/86Sr values with greater depths (Figure 2). 301 
Although the metamorphic sole contains meta-basalts (Godard et al., 2021; Kelemen et al., 2021; 302 
Kotowski et al., 2021; Searle & Malpas, 1980), all of the samples have higher 87Sr/86Sr than 303 
typical mid-ocean ridge basalts (MORB) (Gale et al., 2013; Hofmann, 2013). The Sr isotope 304 
values of the listvenite and serpentinite samples from BT1B are similar to those of listvenites in 305 
nearby outcrops (Falk and Kelemen, 2015, Figure 2), which are significantly more radiogenic 306 
than 87Sr/86Sr values of Oman peridotites (Gerbert-Gaillard, 2002; Lanphere et al., 1981; 307 
McCulloch et al., 1981) and Cretaceous to modern seawater (McArthur et al. 2001), but less 308 
radiogenic than some Hawasina and autochthonous sediments (Weyhenmeyer, 2000). Our 309 
serpentinites and listvenites are enriched in Sr and more radiogenic than similar litologhies in the 310 
Birjand ophiolite in eastern Iran (Boskabadi et al., 2020).  Our samples of the Hawasina 311 
metasediments, and those collected from the same region by Falk and Kelemen (2015) have 312 
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87Sr/86Sr values ranging from 0.7082 to 0.7241. Six of these Hawasina samples are more 313 
radiogenic than any of the samples from Hole BT1B (Figure 3).  314 

 315 

Figure 3. 87Sr/86Sr values, both measured (left) and age corrected to 96 Ma (right), plotted versus 316 
inverse Sr concentration for core samples from OmanDP Hole BT1B and other lithologies 317 
measured in Oman and Iran. Data from Falk and Kelemen (2015) for samples of the same 318 

lithologies as those documented here are shown as inverted triangles, employing the same color 319 
scheme as used for samples in this study. Data for Hawasina sediments are from this study and 320 
Falk and Kelemen (2015), those for Oman peridotites are from Gerbert-Gaillard (2002, leached 321 
samples only), those for autochthonous sediment samples are from Weyhenmeyer (2000) and 322 

those for Iran samples are from Boskabadi et al. (2020).  Rb concentrations were not reported for 323 
the autochthonous clastic metasediments from Weyhenmeyer (2000), so we assume a Rb upper 324 
bound concentration of 200 ppm (twice the maximum measured in Hawasina metasediments). 325 
This Rb concentration was used with the measured 87Sr/86Sr and Sr concentration, to estimate a 326 
minimum Sr isotope ratio at 96 Ma for these samples. Seawater and Cretaceous seawater values 327 

from McArthur et al. (2001). 328 

3.2 Carbon concentrations and d13C 329 

3.2.1 Total Carbon 330 

The carbon contents of samples from Hole BT1B are highly dependent on lithology 331 
(Figure 2). All samples of ultramafic origin contain some carbon, mainly as Mg-rich carbonates, 332 
with serpentinites containing 0.2 to 5 wt% carbon, and listvenites containing 6 to 12 wt%. 333 
Samples from the metamorphic sole below 200 m depth contain 0.02 to 0.27 wt% carbon. In 334 
contrast, the Hawasina metasediments have highly variable carbon contents. Some are almost 335 
pure metamorphosed limestones and dolomites with carbon contents of up to 11 wt%, while 336 
some have less than 0.05 wt% carbon. 337 

d13C in the upper 200m of Hole BT1B varies significantly between serpentinites and 338 
listvenites (Figure 2). Serpentinites contain significantly lighter carbon than listvenites, as 339 
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observed in the depth profile (Figure 2). The lower serpentinite band contains two samples (74-2 340 
0.0-5.0 cm and 74-3 42.0-47.0 cm) that contain significantly lighter carbon than any serpentinite 341 
in the upper band. In general, carbon concentrations correlate positively with d13C values in the 342 
upper 200 m (Figure 4).  Metamorphic sole samples in the bottom 100 m have low carbon 343 
contents and did not yield enough CO2 for isotopic analysis. Total carbon d13C values in the 344 
Hawasina nappes range from -5.52‰ to 3.69‰, which almost encompasses the entire range of 345 
variation observed in Hole BT1B and appears to decrease with lower carbon contents. 346 

3.2.2 Organic carbon 347 

Graphitic carbon was identified in the core both at the drill site and during core 348 
inspection aboard the D/V Chikyu (Kelemen et al, 2020, Kelemen et al. 2021). This organic 349 
component has a characteristic low d13C signature in listvenites and serpentinites from Hole 350 
BT1B, which extends to a minimum of -27.04‰, representing 0.05wt% of total carbon in the 351 
sample from 74-1 56.0-64.0cm (Figure 4). In some cases, the intermediate values likely represent 352 
mixtures of organic and inorganic carbon, as some of the magnesite in the listvenites is very 353 
resistant to 3N HCl attack and remain undissolved even after 5 days of leaching. The observed 354 
light isotopic compositions are similar to those observed in other ultramafic localities such as 355 
Cerro de Almirez and Liguria (Alt et al., 2013). These data confirm the presence of organic 356 
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carbon in Hole BT1B, which was observed during drilling operations, core description aboard 357 
D/V Chikyu and via Raman spectroscopy (Kelemen et al, 2020, Kelemen et al. 2021). 358 

 359 

Figure 4. Total Carbon (large circles) and Total Organic Carbon (small circles) versus d13C for 360 
listvenites, serpentinites and Hawasina metasediments. 361 

4 Discussion 362 

4.1 Temperature and pressure of listvenite formation 363 

Falk and Kelemen (2015) estimated the temperature range of listvenite formation based 364 
on conventional and clumped stable isotope thermometry (90±15°C), phase equilibria (80-365 
130°C), and rock textures. New clumped isotope measurements on BT1B drill core samples by 366 
Beinlich et al. (2020) widened the temperature range of listvenite formation and/or cooling from 367 
~ 50±5 °C to 250±50 °C. This range of values suggests that the infiltrating reactive fluids had 368 
variable temperatures, and/or clumped isotope values were reset during cooling, as proposed for 369 
fine-grained samples of peridotite-hosted carbonate veins (Garcia del Real et al., 2016). The 370 
pressure of listvenite formation is very poorly constrained due to the lack of pressure-sensitive 371 
assemblages and the small size of fluid inclusions. A minimum pressure of 0.3 GPa is provided 372 
by the P-T conditions recorded by the Arabian carbonate platform during ophiolite obduction 373 
(Grobe et al., 2019). For the upper limit, the listvenites must have formed at a pressure below the 374 
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maximum pressure reported for the metamorphic sole (~ 1.4 GPa) (Cowan et al., 2014; Searle 375 
and Cox, 2002).  376 

4.2 Timing of listvenite formation 377 

Falk and Kelemen (2015) used Rb/Sr and 87Sr/86Sr data on mineral separates to produce 378 
an imprecise isochron age of 97±29Ma for a listvenite sample. This age is broadly consistent 379 
with the ~96 Ma age of formation of igneous crust in the ophiolite, along with the same age of 380 
metamorphism for the underlying metamorphic sole just beneath the basal thrust of the ophiolite 381 
(Hacker, 1994; Hacker et al., 1996; Rioux et al., 2013, 2016). Moreover, listvenites are found in 382 
and near the basal thrust, from the UAE near the northwestern end of the ophiolite outcrop to the 383 
area around Hole BT1B, near the southeastern end of the ophiolite outcrop in Oman (Nasir et al., 384 
2007; Stanger, 1985). The extensive outcrop NE of Hole BT1B, known informally as MoD 385 
Mountain, exposes the Banded Horizon, a peridotite unit found at the base of the ophiolite 386 
mantle section composed of alternating 1- to 10-meter scale bands of dunite, harzburgite, and 387 
minor lherzolite. This unit has distinct geochemical characteristics, with higher Al and middle 388 
rare-earth-elements, compared to the residual mantle harzburgites that comprise most of the 389 
mantle section of the ophiolite (Boudier et al., 1988; Godard et al., 2021; Khedr et al., 2014; 390 
Prigent et al., 2018; Yoshikawa et al., 2015). The BT1B listvenites have compositions suggesting 391 
that they were formed after basal peridotites from the Banded Horizon (Godard et al, 2021). 392 

Throughout this region, the contacts of listvenite bands within and at the base of the 393 
Banded Unit are broadly parallel to banding in the peridotite, and to the contacts between 394 
listvenite, peridotite, metamorphic sole, and the Hawasina nappe. These data are consistent with 395 
our hypothesis that most of the listvenites formed by alteration of mantle peridotite during the 396 
subduction of the underlying sediments via intra-oceanic thrusting and/or later emplacement of 397 
the ophiolite onto the Arabian continental margin. 398 

On the basis of steep, fault-bounded contacts of listvenite with young, post-emplacement 399 
conglomerates, several workers have inferred that the listvenites formed during later uplift and 400 
extension (Nasir et al., 2007; Stanger, 1985; Wilde et al., 2002). Recently, Scharf et al. (2020) 401 
reported 60 ± 16 Ma and 58 ± 6 Ma U/Pb ages for two carbonate veins that cut listvenite, and 402 
structural observations indicating a top-down sense of shear along some faulted listvenite-403 
peridotite and listvenite-sole contacts. Following prior interpretations, they interpret these ages 404 
as formation ages of the listvenites after ophiolite emplacement during uplift of the nearby Jebel 405 
Akdar and Saih Hatat anticlinoria. We find that their interpretation is inconsistent with the field 406 
observations reported above and evidence of a multistage tectonic overprint after peridotite 407 
carbonation and listvenite formation as reported by Menzel et al. (2020) and Kelemen et al. 408 
(2020).  409 

We have age-corrected our 87Sr/86Sr to the 96 Ma age reported by Falk and Kelemen 410 
(2015). This correction gives the lowest possible 87Sr/86Sr for all the samples based on reported 411 
ages. For the corrections, we used Sr and Rb concentrations reported by Godard et al. (2021) for 412 
Hole BT1B and our analyses of Hawasina metasediments. While Rb/Sr is low in most BT1B 413 
samples and thus age corrections are small, this correction removes some of the apparent trends 414 
observed in measured 87Sr/86Sr versus depth. The age corrections particularly affect listvenites 415 
with relatively abundant chromian mica (fuchsite-muscovite solid solutions, Falk & Kelemen 416 
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2015, supplement) in the 115-163 m depth interval, as these micas host abundant Rb (Godard et 417 
al. 2021). The age correction also affects the estimated 87Sr/86Sr values of the metamorphic sole 418 
of BT1B and some of the Hawasina metasediments as their Sr and Rb concentrations are 419 
heterogeneous, ranging from 9 to 638 ppm for Sr and 0.4 to 97.7 ppm for Rb. Regardless, the 420 
age-corrected 87Sr/86Sr values of the listvenites are much higher than those of the mantle and 421 
Cretaceous seawater.  422 

4.3 Fluid source for carbonation of peridotites in Oman DP Hole BT1B  423 

 87Sr/86Sr and d13C data on MoD Mountain listvenites and Hole BT1B samples suggest 424 
that replacement of peridotite by serpentinite and listvenite resulted from reaction with a single 425 
fluid along a reaction path (Kelemen et al., 2021). The initial fluid was far from equilibrium with 426 
peridotite, which converted olivine and serpentine in the protolith to carbonates + quartz and 427 
approached equilibrium with serpentinite at higher extents of reaction progress and lower 428 
integrated water/rock ratios (Beinlich et al., 2020, Kelemen et al., 2021). Mg isotope data from a 429 
set of samples studied by Falk and Kelemen (2015) show significant differences between 430 
dolomite and magnesite listvenites. Dolomite listvenites (average δ26Mg ~ -1.33‰) are lighter in 431 
Mg isotopes than magnesite listvenites (average δ26Mg ~-0.33‰) (de Obeso et al., 2021), which 432 
suggests magnesite dissolution and dolomite formation. This is consistent with the modelled 433 
evolution of listvenites during fluid-rock reaction, with dolomite replacing magnesite at 434 
increasing water/rock ratios (Kelemen et al., 2021). The process of formation of dolomite veins 435 
at the expense of magnesite has been documented in other Cretaceous ophiolites (Boskabadi et 436 
al., 2020). 437 

As noted above, after the magnesite and dolomite listvenites formed they were 438 
cataclastically deformed, and then cut by late Ca-rich carbonate veins (Menzel et al. 2020). Thus, 439 
one might expect the veins to have formed from a later, geochemically distinctive fluid as 440 
suggested by variable clumped isotope (D47) derived temperatures (Beinlich et al., 2020) and 441 
changes in geochemical signatures in dolomite-dominated intervals (Godard et al. 2021). This 442 
can be further addressed in future studies via careful sampling of the post-cataclastic veins and 443 
dolomite-rich domains.  444 

 Returning attention to the source of the fluid that formed the bulk of the listvenites, 445 
assuming that Sr and CO2 were derived from the same fluid, Sr isotopes can be used to constrain 446 
the source of the carbonating fluids that formed the serpentinites and listvenites. Falk and 447 
Kelemen (2015) proposed three possible sources of fluids for carbonation: (1) compaction of 448 
pore waters from underlying Hawasina metasediments, (2) low temperature dehydration of opal 449 
and clay minerals in calcite-bearing Hawasina metasediments, and (3) higher-grade metamorphic 450 
devolatilization reactions involving subducted sediments similar to the Hawasina metasediments 451 
coupled with fluid that migrated up the subduction zone.  452 

Unlike younger, mantle-peridotite-hosted carbonates, the listvenites do not contain a 453 
significant fraction of seawater- or groundwater-derived Sr (Gerbert-Gaillard, 2002; Kelemen et 454 
al., 2011; de Obeso & Kelemen, 2018; Weyhenmeyer, 2000). The listvenites have 87Sr/86Sr ratios 455 
that are distinct from recent, low-temperature carbonate veins and travertine in the mantle section 456 
of the ophiolite (Kelemen et al., 2011; de Obeso & Kelemen, 2018; Weyhenmeyer, 2000). 457 
Almost all of the listvenites and associated serpentinites from BT1B core and MoD Mountain 458 
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outcrops have 87Sr/86Sr ratios at 96 Ma higher than Cretaceous seawater (Falk & Kelemen 2015, 459 
and this paper). In contrast, young, peridotite-hosted carbonate veins and travertines in the 460 
Samail ophiolite consistently have 87Sr/86Sr lower than 0.709 and appear to contain mixtures of 461 
Sr derived from seawater or groundwater and the mantle (Gerbert-Gaillard, 2002; Kelemen et al., 462 
2011; de Obeso & Kelemen, 2018; Weyhenmeyer, 2000).  463 

Core samples of the sole have 87Sr/86Sr ratios that are similar to Indian Ocean MORB and 464 
near-ridge Pacific seamounts (Hofmann, 2013), which are systematically lower than the Sr 465 
isotope ratios of the listvenites. Perhaps the metamorphic sole metabasalts are remnants of a 466 
subducted seamount, similar to accreted seamounts along the Cascadia margin of North America 467 
(e.g., Duncan, 1982), which derived from the enriched mantle source of some Indian Ocean 468 
MORB. Alternatively, the 87Sr/86Sr ratios may have increased during alteration. The stark 469 
difference in 87Sr/86Sr between the metamorphic sole and the listvenites indicates that fluids 470 
derived from the sole are not responsible of the 87Sr/86Sr  enrichment observed in the ultramafic 471 
lithologies in Wadi Mansah. 472 

In contrast, age-corrected Sr isotope ratios for Hawasina metasediments underlying the 473 
ophiolite and the metamorphic sole, north and northeast of Hole BT1B, have 87Sr/86Sr up to 474 
0.7134 at 96 Ma (Figure 2). The samples with the most radiogenic 87Sr/86Sr are clastic sediments 475 
containing minor amounts of carbonates. Hawasina limestones, on the other hand, have lower 476 
87Sr/86Sr values, which is consistent with calcite precipitated from seawater that incorporated a 477 
minor, radiogenic clastic component. Based on these observations, the most likely source of the 478 
fluids that formed the listvenites are derived from the Hawasina metasediments. 479 

Thermodynamic modeling of fluid-rock reactions (Kelemen et al. 2021) shows that the 480 
characteristic listvenite mineral assemblages – magnesite + quartz – are attained from fluids with 481 
~20,000 ppm dissolved C for listvenite formation at 100-300 °C and 0.5 to 1 GPa, similar to the 482 
assemblages modeled by Klein and Garrido (2011) at lower pressures. Such high dissolved 483 
carbon contents are impossible to attain by congruent dissolution of pure calcite in aqueous 484 
fluids at these P-T conditions (Kelemen & Manning, 2015), which rules out silicate-poor 485 
limestones such as those from the continental margin as a carbon source. On the other hand, 486 
metamorphic devolatilization of rocks composed of silicate-carbonate mixtures can produce C-487 
rich fluids at temperatures above 400 °C and low to moderate pressures, depending on the rock 488 
composition. Thus, we infer that the fluids that formed the listvenites derived from 489 
devolatilization of subducting metasediments. During prograde subduction metamorphism, calc-490 
silicate rocks, containing both clastic and carbonate components, undergo extensive 491 
devolatilization at 2-3 GPa and 500 to 700°C (Gorman et al., 2006; Stewart & Ague, 2020) and 492 
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lose significant amounts of their CO2 in this PT range due to reactions similar to the simplified 493 
reaction: 494 

CaMg(CO3)2 (dolomite) + CaMgSi2O6 (diopside) + 2 CaAl2Si2O7(OH)2·H2O (lawsonite) 495 

= 2 Ca2MgAl2Si3O12 (garnet) + 4 H2O + 2 CO2 496 

In contrast, carbonate-rich compositions (limestone, dolomite, marble) are predicted to 497 
retain most of their CO2 during subduction (e.g, Kerrick & Connolly, 2001; Stewart & Ague, 498 
2020).  499 

 These decarbonation reactions are possible for both the metamorphic sole and Hawasina 500 
sediments. The modelling approach of Kelemen et al. (2021) suggests that fluids derived from 501 
the sole and clastic Hawasina metasediments will have enough dissolved carbon to react with 502 
peridotite and result in magnesite-quartz rocks, the characteristic listvenite assamblage. 503 
However, if fluids derived from the sole are the source of the carbon, admixing of a different 504 
fluid derived from Hawasina metasediments is required to explain the 87Sr/86Sr measured in the 505 
listvenites. On the other hand, Kelemen et al. show that fluids derived from a rock with 506 
composition analogous to Hawasina OM20-17 contain enough dissolved carbon for 507 
serpentinization and carbonation of peridotite with increasing water/rock (W/R) ratios. This, 508 
combined with the radiogenic 87Sr/86Sr composition of OM20-17, suggests that a single fluid 509 
could be responsible for carbonation of the peridotites. We test this scenario using the reaction 510 
path proposed by Kelemen et al. (2021). Their model generates a fluid with ~14,000 ppm carbon 511 
at  400°C and 1GPa from decarbonation of a rock with composition such as OM20-17. Under 512 
these modelled conditions (400 °C, 1 GPa) a lithology like OM20-17 will lose ~65% of its 513 
carbon, other Hawasina samples require less decarbonation to produce fluids capable of 514 
carbonating the peridotites. If this fluid is then cooled to 200°C and depressurized to 0.5GPa 515 
without losing much of its carbon before reacting with peridotites, listvenites are predicted to 516 
form at water/rock (W/R)~100.  517 

At temperatures greater than ~ 300°C, dissolved CO2 in aqueous fluids have d13C values 518 
that are higher than those of co-existing calcite and dolomite (Chacko et al., 1991; Deines, 2004; 519 
Horita, 2014). Thus, for example, fluid in equilibrium with calcite with d13C between -5.5‰ to -520 
3.5‰ (as in Hawasina clastic metasediments) would contain dissolved CO2 with d13C of -1.9‰ 521 
to 0.1‰ at 400°C. At lower temperatures, like those estimated for listvenite formation in the 522 
Samail ophiolite, calcite and dolomite have d13C higher than co-existing fluids. Thus, dolomite 523 
and magnesite in equilibrium with fluids with d13C of -1.9‰ to 0.1‰ would have d13C in the 524 
range of -0.2‰ to 1.8‰, similar to the d13C observed in the listvenites from Hole BT1B and the 525 
surrounding outcrops. 526 

Figure 5a illustrates that the listvenites and serpentinites from Hole BT1B lie along the 527 
reaction path used by Kelemen et al., (2021). In our calculations, we assume that reacting fluids 528 
enriched in Sr (250 ppm), with 87Sr/86Sr values at 96 Ma that are similar to those of clastic 529 
Hawasina metasediments (0.7110 to 0.7135), reacted with the peridotite with mantle-like 530 
87Sr/86Sr (0.7027±0.0011). In the model serpentinites plot at low W/R between 1 to 5 while 531 
listvenites require significantly more fluid at W/R between 5-100.  The listvenites and 532 
serpentinites follow a mixing trend (Figure 5b) between mantle peridotite like compositions 533 
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(Sr=1.5 ppm, 87Sr/86Sr=0.7027±0.0011, C=680ppm and d13C=-6.0±2.0‰) and low temperature 534 
carbonates that crystallized from a fluid produced by high-pressure, high-temperature 535 
devolatilization with Sr isotope ratios in the range of the Hawasina clastic metasediments 536 
(Sr=250ppm, 87Sr/86Sr~0.7100 to 0.7135) and fractionate carbon isotopes as described above. 537 
These trends together suggest that the CO2-bearing aqueous fluids that formed the listvenites 538 
from Hole BT1B and surrounding outcrops were derived by devolatilization of calc-silicate 539 
metasediments, with 87Sr/86Sr and d13C similar to clastic sediments in the Hawasina Formation 540 
along a subduction zone geotherm. These fluids migrated updip to lower pressures and 541 
temperatures to form the listvenites.  542 

 543 

 544 

Figure 5. (left) Total carbon (wt%) vs. 87Sr/86Sr at 96 Ma. Black lines are reaction paths of 545 
carbon rich fluid reacting with peridotite at 200°C and 0.5GPa at variable water/rock (dashed tie 546 

lines) from Kelemen et al. (2021). The reacting fluid is assumed to have 87Sr/86Sr values of 547 
0.7100 to 0.7135 like those of clastic Hawasina metasediments. (right) Inorganic carbon d13C vs. 548 

87Sr/86Sr at 96 Ma. Black lines are mixing lines between mantle and carbonate minerals 549 
precipitated from a metamorphic fluid. The fluid has the same carbon concentration as the 550 

reaction path on the figure 5a and the d13C fractionation between the carbonate and the fluid are 551 
described in the body of the text, with values for high and low PT  shown as red and blue boxes 552 

respectively. We assume that the fluid has the Sr isotope ratios of Hawasina clastic 553 
metasediments. 87Sr/86Sr values for the depleted mantle are from mid-ocean-ridge-basalt 554 

(MORB) from Hofmann (2013) . Mantle d13C is from Deines (2002). 555 

5 Conclusions 556 

Listvenites and spatially associated serpentinites from Hole BT1B and surrounding 557 
outcrops that replace residual mantle peridotites from the base of the Samail ophiolite have Sr 558 
isotope ratios that are more radiogenic than their peridotite protoliths, Cretaceous seawater, 559 
modern seawater, groundwater in the ophiolite, and the underlying metamorphic sole. We 560 
suggest that the radiogenic Sr isotope component was transported via carbon-rich aqueous fluid 561 
that reacted with the peridotite to form the listvenites and serpentinites. The 87Sr/86Sr values of 562 
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this component resemble those of calcite-bearing clastic sediments in the Hawasina Formation 563 
underlying the ophiolite. However, the fluid must have contained higher dissolved carbon 564 
contents than feasible for congruent dissolution of pure calcite at < 2 GPa and/or < 550°C. Thus, 565 
we hypothesize that this fluid was derived by devolatilization of carbonate- and silicate bearing 566 
meta-sediments akin to the Hawasina clastic metasediments at 0.5 to 2.3 GPa and 400 to 700°C 567 
in the subduction zone (Searle et al., 1994). This fluid then migrated updip to react with hanging 568 
wall peridotite at <1 GPa and <250°C, forming the listvenites and serpentinites. Carbon isotope 569 
fractionation during high temperature devolatilization followed by low temperature carbonate 570 
precipitation during the reaction with peridotite likely controlled the isotopic characteristics of 571 
the listvenites and the serpentinites with d13C from -10.6‰ to 1.92‰ and 87Sr/86Sr from 0.7090 572 
to 0.7145.   573 
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