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Abstract— One of the main challenges in performing thermal-
to-visible face image translation is preserving the identity across
different spectral bands. Existing work does not effectively
disentangle the identity from other confounding factors. In
this paper, we propose a Latent-Guided Generative Adversarial
Network (LG-GAN) to explicitly decompose an input image
into identity code that is spectral-invariant and style code that
is spectral-dependent. By using such a disentanglement, we
are able to analyze the identity preservation by interpreting
and visualizing the identity code. We present extensive face
recognition experiments on two challenging Visible-Thermal
face datasets. We show that the learned identity code is
effective in preserving the identity, thus offering useful insights
on interpreting and explaining thermal-to-visible face image
translation.

I. INTRODUCTION

Face recognition beyond the visible spectrum allows for
increased robustness in the presence of different poses,
illumination variations, noise, as well as occlusions. Further
benefits include incorporating the absolute size of objects, as
well as robustness to presentation attacks such as makeup
and masks. Therefore, comparing RGB face images against
those acquired beyond the visible spectrum is of particular
pertinence in designing Face Recognition (FR) systems for
defense, surveillance, and public safety [7] and is referred to
as Cross-spectral Face Recognition (CFR). While CFR brings
the aforementioned benefits, it is more challenging than
traditional FR for both human examiners as well as computer
vision algorithms, due to following three limitations. Firstly,
there can be large intra-spectral variation, where within the
same spectrum, face samples of the same subject may exhibit
larger variations in appearance than face samples of different
subjects. Secondly, the appearance variation between two
face samples of the same subject in different spectral bands
can be larger than that of two samples belonging to two
different subjects, referred to as modality gap. Finally, lim-
ited availability of training samples of cross-modality face
image pairs can significantly impede learning-based schemes,
including those based on deep learning models.

Thermal sensors have been widely deployed in nighttime
and low-light environments for security and surveillance
applications. Some of them capture face images beyond the
visible spectrum. However, there is considerable performance
degradation when a direct matching is performed between
thermal (THM) face images and visible (VIS) face images
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(due to the modality gap). This is mainly due to the change in
identity determining features across the thermal and visible
domains.

Recent work on thermal-to-visible face recognition has
predominantly focused on synthesizing visible faces from
their thermal counterparts by generative adversarial net-
works, in order to minimize the spectral difference [18], [20],
[17], [1], [4]. Cross-spectral identity matches were implicitly
enforced by minimizing the reconstruction error [1], or by
using an identity extraction network [18], [1], [4]. However,
to the best of our knowledge, there is no prior thermal-to-
visible generative adversarial network (GAN) that explicitly
encodes identity.

Here, we propose a Latent-Guided Generative Adversarial
Network (LG-GAN), which disentangles the latent space into
an identity and a style space. In particular, latent space refers
to the feature space learned by a GAN. While the identity
space is shared by images of a subject acquired in different
spectra, the style space is not. To translate an image from
a source spectrum to a target spectrum, we combine the
identity code with a style code denoting the target domain.
Hence, the identity code is invariant across spectral domains,
whereas the style code encodes the spectral information.
To enable thermal-to-visible translation and vice versa, LG-
GAN incorporates three networks per spectrum, (i) identity
encoder, (ii) style encoder and (iii) decoder. Thermal-to-
visible translation is performed by switching the spectrum of
the encoder-decoder pairs with the opposite spectrum of the
input image. To generate realistic samples, we incorporate a
set of loss functions to further constrain the identity space.
The overall architecture of LG-GAN is illustrated in Figure 1.

The main contributions of this work are the following.
• We propose a novel supervised learning framework for

CFR that translates facial images from one spectrum to
another, while preserving the identity. The framework
is adapted from MUNIT [9].

• We introduce four loss functions that facilitate both
image as well as latent reconstructions.

• We analyze the latent space, which is decomposed into
a shared identity space and a spectrum-dependent style
space, by visualizing the encoding using heatmaps.

• We evaluate the proposed framework on two benchmark
multispectral face datasets and achieve promising results
with respect to visual quality, as well as face recognition
matching scores.

The rest of the paper is organized as follows. Section II
reviews recent work on thermal face recognition involv-978-1-6654-3176-7/21/$31.00 ©2021 IEEE



ing generative models. Section III describes the proposed
LG-GAN, placing emphasis on the latent space and the
loss functions. Section IV discusses the experiments and
results pertaining to image synthesis, identity latent code
understanding, as well as face recognition results on two
multispectral face datasets. Section V concludes the work.

II. RELATED WORK

Generative adversarial networks (GANs) have shown re-
markable results in image-to-image translation. In the context
of CFR, GANs can be used to translate between spectral do-
mains. For example, a thermal face image can be translated
to a visible1 face image. Existing work has predominantly
focused on supervised image-to-image translation for paired
samples. Supervision can be leveraged by minimizing the
difference in identity [18], [20], [1], semantic attributes [4]
or facial shape [17], [1] between the synthesized visible face
images and the target visible face images. Zhang et al. [18]
computed an identity loss function by features extracted from
a certain layer of a fine-tuned VGG model on visible face
images. However, computing the identity loss using a single
layer does not allow for the extraction of multi-scale features.
Therefore, the authors obtained a lower similarity match
score between synthesized visible faces and target visible
faces. To overcome this, Chen et al. [1] firstly trained a face
recognition network based on the VGG-19 network from a
large-scale face recognition dataset. Then, intermediate fea-
tures from multiple layers of VGG-19 were concatenated, in
order to facilitate the extraction of identity-specific features.
Though identity information can be largely preserved via the
use of the identity loss function, it has been observed that
facial attributes or shape information had noticeable artifacts
or distortions caused by the translation. Therefore, Di et
al. [4] extracted a set of attributes from a pre-trained attribute
prediction network, in order to synthesize attribute-preserved
visible images from thermal counterparts. Wang et al. [17]
introduced a facial landmark detector to capture the facial
structures that are essential to the preservation of identity
features.

Apart from formulating new loss functions, some re-
searchers have designed novel network architectures for
the generator such as a densely connected encoder-decoder
structure [10], cascaded-in-cascaded blocks [12], and self-
attention blocks [3], that enable generating higher quality
images. Iranmanesh et al. [10] presented a coupled generative
adversarial network (CpGAN) architecture that incorporated
a densely connected encoder-decoder structure in the gen-
erator. Kezebou et al. [12] proposed to reuse features from
earlier convolutional layers via a UNET-like architecture with
cascaded-in-cascaded blocks. Di et al. [3] enhanced a GAN
with self-attention modules to enable attention-guided image
synthesis.

III. PROPOSED NETWORK

We propose LG-GAN, a latent-guided generative adver-
sarial network, designed for paired thermal-to-visible trans-

1We use the term visible to suggest visible spectrum

lation. Specifically, LG-GAN learns the content as well as
the style pertaining to a face that we refer to as identity
and style code, respectively, in the latent space. LG-GAN is
inspired from MUNIT [9]. In LG-GAN, identity and style are
essential in translating images from an input thermal domain
to an output visible domain, thereby bridging the domain
gap through (a) enforcing both image-level and latent-level
reconstructions, and (b) supervising thermal-to-visible image
translation with an identity preserving loss function. Note
that MUNIT [9] does not deal with the problem of CFR.

A. Baseline Model
The generator comprises of three networks for each do-

main, viz., Identity-Encoder, Style-Encoder and Decoder,
targeted to extract a domain-shared identity latent code and
a spectrum-specific style latent code. The translated image
is reconstructed by combining the identity code with the
style code of the target spectrum. Figure 2 illustrates the
auto-encoder architecture. In the discriminator, we adopt
the multi-scale discriminator which enables generation of
realistic images with refined details.

B. Formalization
Let V and T be the visible and thermal domains. Let

xvis ∈ V and xthm ∈ T be drawn from the marginal distri-
butions xvis ∼ pV and xthm ∼ pT , respectively. Thermal-
to-visible face recognition based on GAN-synthesis aims
to estimate the conditional distribution pV|T (xvis|xthm),
where,

pV|T (xvis|xthm) =
pV,T (xvis, xthm)

pT (xthm)
(1)

involves the joint distribution pV,T (xvis, xthm). As the joint
distribution is not known, we adopt the assumption of
“partially shared latent space” from MUNIT [9] as follows.

A pair (xvis, xthm) ∼ pV,T of images, corresponding to
the same face from the joint distribution, can be generated
through the support of

(a) the identity latent code id ∈ I, which is shared
by both domains (we also introduce the notation
idvis, idthm ∈ I for better domain-identity formaliza-
tion),

(b) the style latent code sm ∈ SM, where (m,M) ∈
{(vis,V), (thm, T )}, which is specific to the individ-
ual domain.

Hence, we proceed to approximate the joint distribution
via the latent space of the following two phases.

Within-domain reconstruction phase
Firstly, the identity latent code and style latent code are

extracted from the input images xvis and xthm:

EV(xvis) = (idvis, svis) and ET (xthm) = (idthm, sthm).
(2)

Then, given the embedding of Equation (2), the face is
reconstructed via the generator,

GV(idvis, svis) = xrecvis and GT (idthm, sthm) = xrecthm,
(3)
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Fig. 1. Flowchart depicting the training of the proposed LG-GAN framework. It consists of two auto-encoders (Ev , Gv) and (Et, Gt) dedicated to the
visible and thermal domains, respectively. The sub-network (a) aims to learn the image reconstruction, while (b) enforcing the latent space reconstruction.
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Fig. 2. The auto-encoder architecture incorporates three networks. An
identity encoder, which extracts a domain-shared face identity latent code
id from xinput and consists of convolutional layers followed by several
residual blocks. A style encoder, which extracts a domain-specific spectral
information latent code sm from xinput and consists of convolutional layers
followed by a global average pooling layer and a last fully connected layer.
A decoder, which reconstructs the image from prior identity and style code
(id, sm) generating xsynthetic

m .

in order to learn the latent space for the specific face.
Here, M ∈ {V, T } represents the domain, EM denotes
the factorized identity code and style code auto-encoder,
GM is the underlying decoder, and xrecvis and xrecthm are the
corresponding reconstructed images.

The objective of LG-GAN is to learn the global image

reconstruction mapping for a fixed m ∈ {vis, thm}, i.e.,

xm → xrecm , (4)

while preserving facial identity features and allowing for a
non-identity shift through latent reconstruction between

idm → idrecm and sm → srecm (5)

and forcing
sm−noise → sm, (6)

where, (idrecm , srecm ) are part of the extraction
(EM̄(GM̄(idm, sm̄−noise)), EM(GM(idm̄, sm−noise))),
respectively, and sm−noise is randomly drawn from a prior
normal distribution in order to learn the associated style
distribution. M̄ and m̄ represent opposite domains.

Cross-domain translation phase

In the domain translation phase, image-to-image transla-
tion is performed by swapping the encoder-modality (i.e.,
spectrum) with the opposite modality of the input image and
imposing an explicit supervision on the style domain transfer
functions EV(xthm) = (idthm, svis−noise) and ET (xvis) =
(idvis, sthm−noise), and then using GV(idthm, svis−noise)
and GT (idvis, sthm−noise) to produce the final output im-
age xfakevis/thm in the target spectrum. This is formalized as
follows.

Θt→v : T → V
xthm 7→ xfakevis = GV(EV(xthm));

(7)



Θv→t : V → T
xvis 7→ xfakethm = GT (ET (xvis)).

(8)

Consequently, Θt→v and Θv→t are the functions that syn-
thesize the corresponding visible (t→ v) and thermal (v →
t) faces. Finally, LG-GAN learns the spectral conditional dis-
tribution pV|T (xfakevis |xthm) and pT |V(xfakethm |xvis) through
a guided latent generation, where both these conditional
distributions overcome the fact that we do not have access to
the joint distribution pV,T (xvis, xthm). Indeed, the method
is able to generate, as an alternative, the joint distributions
pV,T (xrecvis , x

fake
thm ) and pV,T (xfakevis , xrecthm), respectively. We

aim to learn the translation using neural networks, and this
paper will focus on Equation (7), where thermal face images
are translated into realistic synthetic visible face images.

C. Loss Functions

LG-GAN is trained with the help of objective functions
that include adversarial and bi-directional reconstruction loss
as well as conditional, perceptual, identity, and semantic loss.
We investigate the impact of each loss with respect to visual
results and then propose an efficient combination. Further, we
use the VGG-19 [14] architecture which, when trained on a
specific dataset, could be used to extract relevant features
prior to applying the loss functions.

1) Adversarial Loss: Images generated during the trans-
lated phase through Equations (7) and (8) must be realistic
and not distinguishable from real images in the target do-
main. Therefore, the objective of the generators, Θ, is to
maximize the probability of the discriminator Dis making
incorrect decisions. The objective of the discriminator Dis,
on the other hand, is to maximize the probability of making
a correct decision, i.e., to effectively distinguish between real
and fake (synthesized) images.

Lt→v
GAN = Exvis∼pV [log(DisV (xvis))]+

Exthm∼pT [log(1−DisV (Θt→v(xthm)))],

Lv→t
GAN = Exthm∼pT [log(DisT (xthm))]+

Exvis∼pV [log(1−DisT (Θv→t(xvis)))].

The adversarial loss is denoted as follows.

LGAN = Lt→v
GAN + Lv→t

GAN . (9)

2) Bi-directional Reconstruction Loss: Loss functions in
the Encoder-Decoder network encourage the domain recon-
struction with regards to both the image reconstruction and
latent space (identity+style) reconstruction.

Limage
rec = E

xrec
m ;xm∼pM

[‖xrecvis − xvis‖1 + ‖xrecthm − xthm‖1], (10)

Lidentity
rec = E

idrecm ;idm∼pM
[‖idrecvis − idvis‖1 + ‖idrecthm − idthm‖1],

(11)

Lstylerec = E
srecm ;sm∼N

[‖srecvis − svis‖1 + ‖srecthm − sthm‖1]. (12)

The bi-directional2 reconstruction loss function is com-
puted as follows:

Lrec = Limage
rec + Lidentity

rec + Lstyle
rec . (13)

3) Conditional Loss: Imposing a condition on the spectral
distribution is essential and is the major difference from the
baseline model [9]. Indeed, this allows for a translation that
is conditioned the distribution of the target style code and,
further, adds an explicit supervision on the final mapping
Θt→v and Θv→t. The conditional loss Lcond is defined as
follows.

Lcond = E
svis−noise;svis∼N

‖svis−noise − svis‖1

+ E
sthm−noise;sthm∼N

‖sthm−noise − sthm‖1.
(14)

To improve the quality of the synthesized images and
render them more realistic, we incorporate three additional
objective functions.

4) Perceptual Loss: The perceptual loss LP affects the
perceptive rendering of the image by measuring the high-
level semantic difference between synthesized and target face
images. It reduces artefacts and enables the reproduction of
realistic details [11]. LP is defined as follows:

LP = E
x
fake
vis ;xvis∼pV

‖φP (xfakevis )− φP (xvis)‖1

+ E
x
fake
thm

;xthm∼pT

‖φP (xfakethm )− φP (xthm)‖1,
(15)

where, φP represents features extracted by VGG-19, pre-
trained on ImageNet.

5) Identity Loss: The identity loss LI is responsible
for preserving identity-specific features during the image
reconstruction phase and, therefore, encourages the translated
image to preserve the identity content of the input image. LI
is defined as follows:

LI = E
xrec
vis ;xvis∼pV

‖φI(xrecvis)− φI(xvis)‖1

+ E
xrec
thm

;xthm∼pT
‖φI(xrecthm)− φI(xthm)‖1,

(16)

where, φI denotes the features extracted from the VGG-19
network pre-trained on the large-scale VGGFace2 dataset.

6) Semantic Loss: The semantic loss LS guides the
texture synthesis from thermal to visible domain and imparts
attention to specific facial details. A parsing network is
used to detect semantic labels and to classify them into 19
different classes which correspond to the segmentation mask
of facial attributes provided by CelebAMask-HQ [13]. We
apply semantic face parsing to images in our datasets. A few
examples are shown in Figure 3. LS is defined as follows.

LS = E
x
fake
vis ;xvis∼pV

‖φS(xfakevis )− φS(xvis)‖1

E
x
fake
thm

;xthm∼pT

‖φS(xfakethm )− φS(xthm)‖1,
(17)

where, φS is the parsing network, providing corresponding
parsing class label.

2Bi-directional refers to the reconstruction learning process between
image→ latent→ image and latent→ image→ latent by the sub-network
(a) and (b), respectively, depicted in Figure 1.



Fig. 3. Example of face parsing results guided by the 19-class semantic
label, when applied to images in the ARL-MMFD [8] and ARL-VTF [15]
datasets.

Total loss: The overall loss function for the proposed LG-
GAN is denoted as follows:

min
EV ,ET ,GV ,GT

max
Dis

L(EV , ET , GV , GT ,Dis) =

λGANLGAN+λrecLrec+λcondLcond+λPLP +λILI+λSLS .(18)

Implementation Details

We implement the proposed LG-GAN framework in Py-
torch by adapting MUNIT and designing the architecture for
the modality-translation task. We note that we omit their
proposed domain-invariant perceptual loss as well as the
style-augmented cycle consistency. We train LG-GAN until
convergence. The initial learning rate for Adam optimization
is 0.0001 with β1 = 0.5 and β2 = 0.999. For all experiments,
the batch size is set to 1 and, based on empirical analysis, the
loss weights are set to λGAN = 1, λrec = 10, λcond = 35,
λP = 15, λI = 20 and λS = 10.

IV. EXPERIMENTAL RESULTS

A. Dataset and Protocol

1) ARL-MMFD Dataset: The ARL-MultiModal Face
dataset [8] (ARL-MMFD) contains visible, LWIR, and po-
larimetric face images of over 60 subjects and includes
variations in both expression and standoff distances. We
only use visible and LWIR (i.e., thermal) images for our
experiment at one particular stand-off distance: 2.5m. The
first 30 subjects are used for testing and evaluation, and the
remaining 30 subjects are used for training. The images in
this dataset are already aligned and cropped.

2) ARL-VTF dataset: The ARL-Visible Thermal Face
dataset [15] (ARL-VTF) represents the largest collection of
paired visible and thermal face images acquired in a time-
synchronized manner. It contains data from 395 subjects with
over 500,000 images captured with variations in expression,
pose, and eyewear. We follow the established evaluation
protocol, which assigns 295 subjects for training and 100
subjects for testing and evaluation. We select the baseline
gallery and probe subjects without glasses, named G VB0-
and P TB0-, respectively. Furthermore, we align and process
the images based on the provided eyes, nose and mouth land-
marks. Figure 4 depicts an example of such an alignment.

Fig. 4. Face alignment and cropping based on eyes, nose and mouth
landmarks applied on images in the ARL-VTF dataset. [15]

B. Face recognition Performance

1) Face recognition Matcher: The ArcFace matcher [2]
was trained on normalized face images of size 112×112 from
the MS-Celeb-1M dataset [6] with additive angular margin
loss. ResNet-50 was used as the embedding network and the
final embedded feature size was set to 512. l2 normalization
was applied to the extracted feature vectors (embeddings),
prior to the computation of cosine distance (match) scores.

2) Evaluation on Datasets: LG-GAN aims to decompose
the latent space. However, MUNIT, that serves as the basis
for our method, performs image translation in an unsuper-
vised manner and cannot be employed in our thermal-to-
visible scenario, as facial identity would not be preserved.
Therefore, we incorporate Lcond (Equation (14)) as a con-
ditional constraint forcing latent reconstruction (Equation
(6)) with a normal noise distribution. Thus, the MUNIT-
like supervised-approach, denoted as Lbase, will serve as a
reference baseline model in our study.

We conduct face verification experiments on the ARL-
MMFD and ARL-VTF datasets. Area Under the Curve
(AUC) and Equal Error Rate (EER) metrics are computed
using the ArcFace matcher. Table I reports face verification
results on the ARL-MMFD and ARL-VTF datasets. A higher
AUC indicates better performance, whereas a lower EER is
better. We observe that translating thermal face images into
visible-like face images significantly boosts the verification
performance. For example, the direct comparison approach,
in which we compare a thermal probe directly to the visible
gallery, is related to the lowest AUC and highest EER scores,
viz., 73.71%AUC and 32.73%EER in ARL-MMFD, and
54.80%AUC and 46.36%EER in ARL-VTF. When we apply
the Lbase from the baseline approach, and incorporate the ad-
versarial LGAN (Equation (9)), bi-directional reconstruction
Lrec (Equation (13)) and conditional Lcond (Equation (14))
loss functions, the performance improves to 79.33%AUC
and 29.16%EER on ARL-MMFD, and 92.21%AUC and
15.88%EER on ARL-VTF. This confirms that image-to-
image translation significantly reduces the modality gap. Our
proposed LG-GAN that includes LP+I+S (Equation (18)),
built on the basis of Lbase that is improved by adding the
perceptual LP (Equation (15)), identity LI (Equation (16))
and semantic LS (Equation (17)) loss functions, exhibits
the best performance of 93.99%AUC and 13.02%EER on
ARL-MMFD, and 94.26%AUC and 12.99%EER on ARL-
VTF. In optimizing LG-GAN on the large-scale dataset
ARL-VTF, we tune the hyper-parameters (weights), thereby



TABLE I
FACE VERIFICATION PERFORMANCE, IMAGE QUALITY, AND IMPACT OF DIFFERENT LOSS FUNCTIONS ON ARL-MMFD [8] AND ARL-VTF [15]
DATASETS. Lbase REPRESENTS THE METHOD INCLUDING THE ADVERSARIAL (9) BI-DIRECTION RECONSTRUCTION (13) AND CONDITIONAL (14)

LOSSES, WHILE LP , LI , LP+I AND LP+I+S ARE THE PERCEPTUAL (15), IDENTITY (16) AND SEMANTIC (17) LOSSES ADDED TO THE ORIGINAL

Lbase TRAINING.

ARL-MMFD Dataset [8] ARL-VTF Dataset [15]
AUC (%) EER (%) SSIM AUC (%) EER (%) SSIM

Direct comparison 73.71 32.73 0.2899 54.80 46.31 0.3739
Lbase 79.33 29.16 0.4409 92.21 15.88 0.6049
LP 86.99 21.09 0.4596 92.79 14.24 0.6129
LI 84.20 22.90 0.4549 92.98 13.01 0.6101
LP+I 87.63 19.40 0.4626 92.15 15.36 0.6136

LP+I+S = LG-GAN 93.99 13.02 0.4652 94.26 12.99 0.6145
LG-GAN optimized 96.96 5.94 0.6787

enabling objective functions to be combined in an effective
manner. We set λrec = 20 placing emphasis on both image
reconstruction Limage

rec (Equation (10)) and identity code
reconstruction Lidentity

rec (Equation (11)). On the other hand,
we decrease λI = 10 towards improving the face verification
accuracy to 96.96%AUC and 5.94%EER.

3) Comparison with State-of-the-Art Methods: We pro-
ceed to compare the proposed LG-GAN with state-of-the-
art GAN-based CFR. Table II and Table III summarize
AUC and EER scores as reported by other authors on the
ARL-MMFD and ARL-VTF datasets, respectively. LG-GAN
outperforms all other methods on the ARL-MMFD dataset
and is competitive with SAGAN.

TABLE II
COMPARISON OF LG-GAN WITH OTHER SYNTHESIS-BASED

APPROACHES ON THE ARL-MMFD DATASET.

Method AUC (%) EER (%)

GAN-VFS [18] 79.30 27.34
AP-GAN [5] 84.16 23.90

AP-GAN (GT) [5] 86.08 23.13
Multi-stream GAN [19] 85.74 23.18

SAGAN [3] 91.49 15.45
SG-GAN [1] 93.08 14.24

Multi-AP-GAN [4] 90.74 18.20
Multi-AP-GAN (GT) [4] 92.72 16.05

LG-GAN (ours) 93.99 13.02

TABLE III
COMPARISON OF LG-GAN WITH GAN-BASED CFR METHODS ON

ARL-VTF DATASET.

Method AUC (%) EER (%)

Pix2Pix 71.12 33.80
GAN-VFS [18] 97.94 8.14

SAGAN [3] 99.28 3.97
LG-GAN (ours) 94.26 12.99

LG-GAN optimized (ours) 96.96 5.94

C. Ablation study

To illustrate the impact of loss functions included in LG-
GAN on visual quality, we conduct an ablation study using
both ARL-MMFD and ARL-VTF datasets. We evaluate
the quality of generated images by the structural similarity

index measure (SSIM) [16], where an SSIM score of 1
is the extreme case of comparing identical images. Table
I reports average SSIM scores computed on both datasets
under different experimental configurations.

The first intuitive observation has to do with the low
performance of direct matching between thermal and visible
face images that can be explained in terms of the lower
SSIM of 0.2899 and 0.3739, respectively, on the ARL-
MMFD and ARL-VTF datasets. This illustrates once more
the modality gap. In an attempt to overcome this modality
gap, the first baseline experiment Lbase, without visual
quality optimization, boosts the SSIM score to 0.4409 and
0.6049, respectively. However, we note that generated results
are rather blurry. By adding additional loss functions to
Lbase, LP (Equation (15)) and LI (Equation (16)), namely
the perceptual and identity losses, the SSIM score only
marginally increases. Jointly, LP+I improves the SSIM score
further. Finally, the proposed LG-GAN is able to generate
more realistic images with less artefacts, and with higher
similarity to the visible ground-truth images. The resulting
SSIM scores are 0.4652 and 0.6145, respectively. When
we optimize LG-GAN on the large scale VTF dataset, we
observe an SSIM score of 0.6787. We show the synthesized
visible images in Figure 5. In Figure 8, we illustrate with
the help of SSIM similarity and difference scaling, the face
regions that are most sensitive to particular loss functions.
Besides the impact of individual and combined loss functions
on the visual quality of images, we also demonstrate their
related impact on the face verification performance. Figure 6
and Figure 7 depict ROC curves pertaining to different loss
functions for the ARL-MMFD and ARL-VTF datasets, re-
spectively. We observe the correlation between SSIM scores
and CFR matching performance.

D. Latent code visualization

Understanding the latent code is critical for LG-GAN, as
it aims to elicit identity-specific information while ignoring
spectrum induced information. A disentangled latent space
is produced using an identity encoder and a style encoder
that decomposes the input image into an identity code
and a style code; see Figure 2. As discussed earlier, the
style code represents the spectral information and drives the
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Fig. 5. Synthesizing visible face images from thermal images on the ARL-VTF [15] (top) and ARL-MMFD [8] (bottom) datasets using LG-GAN. This
illustration also shows the impact of different loss functions and combinations thereof on the visual result. Synthesis using Lbase includes the adversarial
LGAN (Eq.(9)), bi-directional reconstruction Lrec (Eq.(13)) and conditional Lcond (Eq.(14)) loss functions. LP , LI , LP+I and LP+I+S pertain to
the addition of perceptual eq.(15), identity eq.(16) and semantic eq.(17) loss functions to the original Lbase during the training stage.

Fig. 6. ROC curves. An ablation study of different loss functions on the
MMFD dataset. Our proposed LG-GAN achieves better performance than
the baseline model, “Base”.

domain translation, without adversely affecting the identity
information. However, here we seek to explore whether
identity is explicitly encoded in the latent space. Towards this
goal, we visualize the identity code, idm, directly after the
encoding step EM(xm); then, by up-scaling the code to the
target image size, we determine the pertinent pixels that are
responsible for the identity information in the latent space.
This is visualized in Figure 9. We observe that facial features
around eyes, nose, mouth and hair have been encoded.
Moreover, identity codes – idvis and idthm – extracted from
both spectra also highlight the same visual information. This

Fig. 7. ROC curves. An ablation study of different loss functions on the
VTF dataset. Our proposed LG-GAN achieves better performance than the
baseline model, “Base”.

is consistent with the partially shared latent space assumption
made by Huang et al. [9].

V. CONCLUSIONS

In this paper, we propose a latent-guided generative adver-
sarial network (LG-GAN) that explicitly decomposes an in-
put image into an identity code and a style code. The identity
code is learned to encode spectral-invariant identity features
between thermal and visible image domains in a supervised
setting. In addition, the identity code offers useful insights
in explaining salient facial structures that are essential to
the synthesis of high-fidelity visible spectrum face images.
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Fig. 8. A visualization strategy to understand the impact of different loss functions on the visual quality as well as the matching scores. The top row
shows samples generated by individual and combined loss functions, while the bottom row illustrates the SSIM scores as well as the SSIM similarity and
difference of two images in different scenarios: GT-Visible against Input-Thermal/Lbase/LP /LI /LP+I /LG-GAN/LG-GAN optimized.

xvis xthmidvis idthm

Fig. 9. Visualization of identity codes, idvis and idthm, extracted from
EV (xvis) and ET (xthm), respectively.

Experiments on two datasets suggest that our proposed LG-
GAN achieves competitive thermal-to-visible cross-spectral
face recognition accuracy, while enabling explanations on
salient features used for thermal-to-visible image translation.
Future work will involve enhancing the identity code repre-
sentation with attention modules and visualizing the style
code, in order to deepen understanding of thermal-to-visible
image translation.
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