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Abstract

Motivation: Information on protein-protein interactions is collected in numerous primary databases
with their own curation process. Several meta-databases aggregate primary databases to provide more
exhaustive datasets. In addition to exhaustivity, aggregation contributes to reliability by providing an
overview of the various studies and detection methods supporting an interaction. However, interactions
listed in different primary databases are partly redundant because some publications reporting protein-
protein interactions have been curated by multiple primary databases. Mere aggregation can thus introduce
a bias if these redundancies are not identified and eliminated. To overcome this bias, meta-databases rely
on the Molecular Interaction ontology that describes interaction detection methods, but they do not fully
take advantage of the ontology’s rich semantics, which leads to systematically overestimating interaction
reproducibility.
Results: We propose a precise definition of explicit and implicit redundancy, and show that both can
be easily detected using Semantic Web technologies. We apply this process to a dataset from the
APID meta-database and show that while explicit redundancies were detected by the APID aggregation
process, about 15% of APID entries are implicitly redundant and should not be taken into account when
presenting confidence-related metrics. More than 90% of implicit redundancies result from the aggregation
of distinct primary databases, while the remaining occurs between entries of a single database. Finally,
we build a "reproducible interactome" with interactions that have been reproduced by multiple methods or
publications. The size of the reproducible interactome is drastically impacted by removing redundancies
for both yeast (-59%) and human (-56%), and we show that this is largely due to implicit redundancies.
Availability: Software, data and results are available at https://gitlab.com/nnet56/

reproducible-interactome, https://reproducible-interactome.genouest.org/,
Zenodo (doi:10.5281/zenodo.5595037) and NDEx (doi:10.18119/N94302, doi:10.18119/N97S4D
Contact: emmanuelle.becker@irisa.fr, gwenael.rabut@inserm.fr
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Protein-protein interactions (PPIs) play an ubiquitous and fundamental role
in all biological processes. Description of PPIs is essential to understand
how proteins operate at the molecular level and the construction of accurate
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and comprehensive protein interaction networks (or interactomes) is an
important aim of biological research (Bonetta, 2010; Cafarelli et al., 2017;
Luck et al., 2020; Huttlin et al., 2021).

PPIs can be probed using numerous interaction detection methods
(IDMs), following biophysical (e.g. x-ray crystallography), biochemical
(e.g. affinity purification) or genetic approaches (e.g. yeast two-hybrid).
Importantly, since different IDMs probe PPIs in a different manner,
they produce complementary results that often do not fully overlap. For
instance, some IDMs are designed to detect binary interactions of proteins
probed in pairs (e.g. yeast two-hybrid), while others probe interactions
of protein groups assembled in complexes (e.g. affinity purification).
Consequently, the biological interpretation of PPI networks depends on
the underlying IDMs that have been used to produce them. Moreover,
since IDMs can generate false positive and false negative interactions,
multiple observations of a given PPI with different experimental techniques
reinforce the confidence in this PPI. Accurate IDM annotation and
interpretation is thus an important issue in interactome studies.

Information on published PPIs is collected in primary databases
such as IntAct (Kerrien et al., 2012), MINT (Calderone et al.,
2020), BioGRID (Oughtred et al., 2019), DIP (Salwinski et al.,
2004) or HPRD (Keshava Prasad et al., 2009). The major
databases report IDMs using a controlled vocabulary defined by
the Proteomics Standards Initiative-Molecular Interactions (PSI-MI)
consortium (Sivade Dumousseau et al., 2018). This vocabulary is
structured in an ontology to represent the hierarchical relationships
between IDM families by a directed acyclic graph.

Each primary database follows its own curation process with
different literature mining, filtering, and reporting techniques. To address
the resulting need for integration, several meta-databases aggregate
information from multiple primary databases to provide more exhaustive
PPI datasets. Some of these meta-databases, such as the Agile Protein
Interactomes DataServer (APID) (Alonso-López et al., 2016; Alonso-
López et al., 2019), HINT (Das and Yu, 2012) or mentha (Calderone et al.,
2013), focus exclusively on experimentally determined PPIs, while others,
such as IID (Kotlyar et al., 2019) or STRING (Szklarczyk et al., 2019) also
integrate predicted interactions, text mining results or other information.

The accurate aggregation of PPIs from multiple and partly redundant
sources is not a trivial task (Turinsky et al., 2010; Klapa et al., 2013).
Although the primary databases refer to the PSI-MI ontology, they do not
necessarily select identical terms to annotate PPIs (Alonso-López et al.,
2019). Hence, a PPI observed in a single experiment reported in a given
publication can be annotated with distinct IDM terms in different primary
databases. Such annotation differences are usually not taken into account
or corrected during the aggregation process.

APID, which unifies data from five of the largest PPI databases
(Alonso-López et al., 2016; Alonso-López et al., 2019), implements
an integration method that takes redundancy into account and enables
to distinguish ’experimental evidences’ (i.e experimental observations
reported in publications) from ’curation events’ (i.e. entries in PPI
databases). For a given protein pair, multiple entries annotated with
identical IDM and identical PubMed publication identifier (PMID) are
considered as duplicates and counted as a single experimental evidence.
In addition, IDMs are classified into ’binary’ and ’indirect’ methods and
IDMs corresponding to related binary methods (e.g. ’two hybrid array’
and ’two hybrid pooling approach’) are assigned a common method type
(e.g. ’two hybrid’). This common method type is then used instead of the
original IDM to identify duplicate entries across multiple databases. This
custom integration process is not fully satisfying since it is restricted to
binary interactions and it does not take advantage of the PSI-MI ontology.

We propose a novel approach to integrate PPI information from primary
databases. We define the conventional explicit redundancy and extend it
with implicit redundancy based on parent-related terms in the PSI-MI

ontology. We present a method relying on Semantic Web technologies
that successfully detects and reconciles implicit redundancies in curation
events compiled from multiple primary databases, opening the way to an
improved automated curation process. Once curated for both explicit and
implicit redundancies, the integrated set of experimental evidences can
be used to determine the reproducible interactome supported by multiple
experiments.

2 Approach

2.1 Explicit and implicit redundancy

Let us consider a pair of proteins (A,B) and count the number of non-
redundant experiments reporting their interaction.

Primary databases such as BioGRID or IntAct can provide several
entries corresponding to this protein pair. Usually, these entries differ in
the IDM, the PMID, or both. An entry in these databases can thus be
defined by a quadruplet

(A,B,Mi, Px)

where A and B are the proteins, Mi is the IDM (such as ’affinity
chromatography technology’, ’anti-tag coimmunoprecipitation’ or ’two
hybrid’, for the most frequent ones), and Px is the PMID of the original
article describing their interaction. When two entries only differ in
the IDM, this should signify that the original article has observed the
interaction using several experimental techniques. When two entries only
differ in the PMID, this should signify that the interaction has been
reproduced in two distinct studies using the same detection method.

For meta-databases such as APID, populated by aggregating curation
events from other databases, an entry can be defined by a quintuplet

(A,B,Mi, Px, Da)

where Da indicates the primary database indexing the interaction. Meta-
databases can contain different types of redundancies:

• Explicit redundancy occurs when distinct entries referring to the
same protein pair (A,B) and the same PMID Px have an identical
IDM Mi. This happens when two primary databases registered the
same experimental evidence using the same IDM term. Explicit
redundancies are detected and unified by APID and other meta-
databases.

• Implicit redundancy occurs when distinct entries referring to the
same protein pair and the same PMID have been annotated with
different IDMs although they correspond to the same experimental
evidence. In practice, this occurs when curators select IDM terms
at different levels of the ontology, one being more general and
the other more specific. For example, the interaction of the human
proteins MDM2 and TP53 is listed in APID as (MDM2, TP53, ’anti
tag Co-immunoprecipitation’, PMID:17159902, INTACT:7156209)
and also as (MDM2, TP53, ’affinity chromatography technology’,
PMID:17159902, BIOGRID:680279). Although biologists would
naturally recognize one observation annotated twice at different
granularities, the redundancy is not explicit. Implicit redundancy
should not be confused with the common case where several
experimental techniques are used in a single publication to validate
a given PPI. Therefore, detecting implicit redundancies requires
knowledge on IDMs.

Hereafter, we take advantage of the PSI-MI ontology to identify these
two cases, as illustrated in Figure 1.
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Fig. 1. Illustration of the different types of redundancy across primary databases. (A) Curation events from two databases (DB_1 and DB_2). Depending on the IDM reported by DB_2, one
can identify no redundancy (purple), explicit redundancy (yellow), or implicit redundancy (blue). Ontology representations of the different cases are presented in panels (B), (C) and (D).

2.2 Definitions

Following the notation introduced in 2.1, we consider two entries, Ei and
Ej , of a meta-database, defined by their respective quintuplets of the form
(A,B,Mi, Px, Dα). Note that here we do not consider the experimental
role of A and B, therefore all PPIs are symetric and the order of A and B

is irrelevant.
Ei and Ej present explicit redundancy if and only if:

{
Ei = (A,B,Mi, Px, Da)

Ej = (A,B,Mi, Px, Db)

Ei and Ej present implicit redundancy if and only if:


Ei = (A,B,Mi, Px, Da)

Ej = (A,B,Mj , Px, Db)

Mi is an ancestor of Mj ,

where an ancestor can be a direct or an indirect parent.
Ontologies such as PSI-MI (Sivade Dumousseau et al., 2018) can be

used to formalize the subsumption relations between IDMs. Note that with
the notions provided in section 2.1, explicit and implicit redundancies
might be observed among entries originating from different databases
(inter-database redundancy, Da 6= Db) but also from the same database
(intra-database redundancy,Da = Db). We will discuss later (Section 5.3)
the meaning of intra-database redundancies, which can correspond either
to multiple curation events, but also to variations of an IDM (for example,
switching the experimental role (’bait’ or ’prey’) of the A and B proteins).

3 Methods

3.1 Source PPI datasets

PPI curation events integrated by APID were downloaded from the APID
website on March 23, 2020, last update of APID in January, 2019) for two
species (Homo sapiens and Saccharomyces cerevisiae) in the MITAB25
format (Kerrien et al., 2007). These files aggregate the curated events from
five primary databases in a standard format.

In MITAB25 formated data, each line represents a curation event.
Interacting proteins are identified by their Uniprot accession numbers.
The organism is identified with its NCBI taxonomy identifier. Various
information on the experimental evidence is also provided, notably the
PMID of the source publication and the PSI-MI code of the IDM used

to detect the interaction. Some information such as the direction of the
interaction (which protein was used as a ’bait’ and which as a ’prey’) is
not available in this format, but it is usually recorded in primary databases
or in more recent MITAB formats (MITAB27). If necessary, missing
information might be retrieved using the primary database interaction
identifier which is provided and offers full tractability.

3.2 RDF schema and triplestore

The global RDF schema used to integrate all information is presented in
Figure 2. It relies on the following ontologies:

• Biological Pathway Exchange (BioPAX) is an ontology developed as
a standard for representing molecular interactions, including protein-
protein interactions (Demir et al., 2010). We followed the level 3 of
the BioPAX specification.

• Proteomics Standards Initiative-Molecular Interactions (PSI-MI) is
an ontology edited by the HUPO-PSI. It is dedicated to describe
experimental IDMs (Sivade Dumousseau et al., 2018). We used
version 1.2.

Raw PPI curation events from the MITAB file were first imported into
a MySQL database. A Perl script was used to connect to this database,
to exclude curation events that are not considered by APID (see below),
and to convert it into a RDF dataset following the BioPAX v3 standard.
The resulting interaction data were merged with the PSI-MI ontology,
available as an OWL file, into a triplestore powered by the Apache
Foundation’s JENA suite (v3.14.0). The complete workflow is described
in Supplementary Figure S1.

In its integration process, the APID meta-database does not consider
curation events annotated with IDMs that do not correspond to a specific
experimental method (Alonso-López et al., 2019). To be able to compare
our results with APID, we also excluded from our analysis the very same
curation events. These are the ones annotated with the IDMs ’molecular
interaction’, ’interaction detection method’, ’biophysical’, ’experimental
interaction detection’, ’inference’, ’inferred by author’, ’inferred by
curator’, ’in vitro’, ’in vivo’, ’unspecified method’, or ’phenotype-based
detection assay’.

3.3 SPARQL queries

Queries were run using SPARQL Protocol and RDF Query Language
(SPARQL). The JENA suite was used to run the SPARQL queries. All
queries used to detect redundancies are available in supplementary data
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Fig. 2. Scheme representing two curation events reporting the interaction between the ubiquitin ligase MDM2 (UniprotKB: P04637) and the tumor protein 53 (UniprotKB: Q00987) in the
BioPAX level 3 ontology (yellow nodes). These two curation events (highlighted in bold) were annotated by different databases (BioGRID and Intact). They refer to the same publication
(PMID: 22819825), but different IDMs were used to annotate the interaction (’anti tag coimmunoprecipitation’ and ’affinity chromatography technology’). The PSI-MI ontology (purple
nodes) reveals that ’affinity chromatography technology’ is an ancestor of ’anti tag coimmunoprecipitation’, indicating an implicit redundancy between the two curation events.

(Figures S2, S3, S4, S5, S6, S7). As an example, Figure 3 presents the
SPARQL query used to detect implicit redundancies in curation events,
if one term is an ancestor of the other in the PSI-MI ontology. For each
implicit redundancy detected, we conserved only the curation event with
the most precise IDM.

SELECT DISTINCT ?p1 ?p2 ?pmid ?dm_name1
WHERE {

?ppi1 rdf:type bp:MolecularInteraction ;
bp:participant ?p1, ?p2 ;
bp:xref ?pmid ;
bp:evidence ?dm_name1 .

?dm_name1 bp:evidenceCode ?m_vocab1 .
?m_vocab1 bp:xref ?dm_code1 .
FILTER ( STR(?p1) < STR(?p2) )
FILTER NOT EXISTS {

?ppi2 rdf:type bp:MolecularInteraction ;
bp:participant ?p1, ?p2 ;
bp:xref ?pmid ;
bp:evidence ?dm_name2 .

?dm_name2 bp:evidenceCode ?m_vocab2 .
?m_vocab2 bp:xref ?dm_code2 .
?dm_code2 rdfs:subClassOf+ ?dm_code1 .

}
}

Fig. 3. SPARQL query to select curation events without explicit nor implicit redundancies.
(Note: prefixes are not shown)

3.4 Availability and implementation

The code is available at https://gitlab.com/nnet56/

reproducible-interactome. The results are available at
https://reproducible-interactome.genouest.org/

and on the Zenodo open data repository (doi:10.5281/zenodo.5595037).
The non-redundant interactomes are also accessible on the NDEx platform
to facilitate their analysis and manipulation with classical algorithms
(doi:10.18119/N94302 (human), doi:10.18119/N97S4D (yeast)).

4 Results

4.1 Overview of analyzed curation events

We analysed the same curation events as the APID database to assess
the efficiency of redundancy detection methods. A summary of these
curation events is presented in Table 1. The downloaded MITAB files
contain 700, 484 curation events for Homo sapiens and 305, 102 for
Saccharomyces cerevisiae (hereinafter referred to as human and yeast,
respectively). Together, BioGRID and IntAct represent approximately
85% of all curation events in both species. The contribution of HPRD
and BioPlex, restricted to human data, accounts for 13.9% of human
curation events. For both species, most PPIs appear in only one or two
curation events. PPIs reported by a single curation event represent 49.3%
and 60.7% of interacting pairs in human and yeast, respectively.

4.2 Interaction detection methods (IDMs)

The most frequent IDMs in all curation events are listed in Table 1.
Among them, ’affinity chromatography technology’, ’tandem affinity
purification’, ’anti tag coimmunoprecipitation’ and ’two hybrid’ cover
more than 58% of human and 76% of yeast curation events. Interestingly,
these IDMs include terms with parent–child relationships in the PSI-MI
ontology. For example, ’affinity chromatography technology’ is a direct
ancestor of ’anti tag coimmunoprecipitation’. The presence of such chains
is suggestive of possible implicit redundancies between curation events,
as defined in sections 2.1 and 2.2.

4.3 Quantification of implicit redundancies

Thanks to the expressiveness of the SPARQL language, we identified both
explicit and implicit redundancies among curation events (example query
in Figure 3). For constituting a non-redundant dataset, we selected the
most precise curation events and discard the redundant and less precise
ones since they do not add information.

The occurrence of redundancy among curation events is significant
(Table 2). We detected and discarded 73, 991 (11.1%) and 40, 266

(13.7%) implicitly redundant curation events for human and yeast,
respectively. Taking into account both explicit and implicit redundancies
resulted in removing 30.9% of curation events for human and 35.4% for
yeast.

https://gitlab.com/nnet56/reproducible-interactome
https://gitlab.com/nnet56/reproducible-interactome
https://reproducible-interactome.genouest.org/
https://doi.org/10.5281/zenodo.5595037
https://doi.org/10.18119/N94302
https://doi.org/10.18119/N97S4D (yeast)).
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Table 1. Human and yeast curation events (CEs) analysed in this study. Excluded Interaction Detection Methods (IDMs) concern 5.00% (n = 35, 000) of all
curation events in human and 3.87% (n = 11, 809) in yeast. Only IDMs annotated with a frequency higher than 2% are shown.

Contributing Databases Most frequent Interaction Detection Methods Currations events for (Pa, Pb)

Databases CEs (%) Interaction Detection Methods Counts (%) Occurrences Counts (%)
Human

BioGRID 378,910 (54.1%) Affinity chromatography technology 291,621 (41.63%) One 161,031 (49.30%)
IntAct 215,577 (30.8%) Two hybrid 71,969 (10.27%) Two 91,742 (28.08%)
BIOPLEX! 55,151 (7.9%) Anti tag coimmunoprecipitation 49,428 (7.06%) [3-10[ 69,015 (21.13%)
HPRD 42,327 (6.0%) Pull down 42,423 (6.06%) [10-50[ 4,763 (1.46%)
DIP 8,519 (1.2%) Biochemical 40,544 (5.79%) ≥ 50 113 (0.03%)

Anti bait coimmunoprecipitation 27,745 (3.96%)
In vivo 21,118 (3.01%)
Two hybrid array 20,813 (2.97%)
Validated two hybrid 14,525 (2.07%)

Yeast
BioGRID 133,998 (43.9%) Affinity chromatography technology 88,681 (29.07%) One 83,799 (60.73%)
IntAct 130,025 (42.6%) Tandem affinity purification 84,842 (27.81%) Two 28,496 (20.65%)
DIP 41,079 (13.5%) Anti tag coimmunoprecipitation 35,363 (11.59%) [3-10[ 21,792 (15.79%)

Two hybrid 24,752 (8.11%) [10-50[ 3,799 (2.75%)
Pull down 13,960 (4.58%) ≥ 50 99 (0.07%)
Inferred by author 10,894 (3.57%)
Protein complementation assay 6,825 (2.24%)
Enzymatic study 6,817 (2.23%)

Table 2. Impact of the removal of both explicit and implicit redundancies on the number of curation events and on the apparent size of the reproducible interactome,
for human and yeast. (EEs: Experimental Evidences)

Human (%) Yeast (%)
Curation events

Initial curation events 665,484 (100%) 293,293 (100%)
Curation events without explicit redundancies 534,140 (80.3%) 229,630 (78.3%)
Curation events without explicit and implicit redundancies 460,149 (69.1%) 189,364 (64.6%)

Apparent size of the reproducible interactome (PPIs supported by ≥ 2 EEs)
Initial 159,192 (100%) 52,313 (100%)
Without explicit redundancies 111,009 (69,7%) 40,235 (76.9%)
Without explicit and implicit redundancies 70,554 (44,3%) 21,311 (40.7%)

Importantly, detection of redundancy between curation events has a
strong impact on the apparent size of the reproducible interactome (i.e PPIs
supported by at least two experimental evidences) (Table 2, Supplementary
Figures S8 and S9). For human, the reproducible interactome drops from
159, 192 to 70, 554 PPIs (−55.7%:−30.3% due to explicit redundancies
and−25.4% due to implicit ones). For yeast, the impact of redundancies
is even worse, with a drop of the reproducible interactome from 52,313
PPIs to 21,311 after removal of both explicit and implicit redundancies
(−59.3%: −23.1% due to explicit redundancies and −36.2% due
to implicit ones). In other words, for human, discarding 11.1% of
implicitly redundant curation events accounts for reducing by 25.4%

the reproducible interactome. Similarly, for yeast, discarding 13.7% of
implicitly redundant curation events accounts for reducing by 36.2% the
reproducible interactome.

4.4 Implicit redundancies mostly result from the integration
of the different primary databases

We then investigated whether implicit redundancy was already present in
source databases (intra-database redundancy), or if it was a consequence of
the integration of different source databases (inter-database redundancy).
The vast majority originates from inter-database redundancies for both
human (91.1%) and yeast (95.0%) (see Supplementary Tables S1 and
S2). The couple of databases that generates the largest part of the implicit

redundancies is BioGRID and IntAct. This is consistent with the fact that
BioGRID and IntAct are the two most contributing source databases.
Intra-database redundancies will be further discussed in section 5.3.

4.5 Frequently redundant identification methods

We computed the frequency of the pairs of detection methods involved in
implicit redundancies. For human, the most frequent implicitly redundant
couples of IDMs and their parent-child relationships in the PSI-MI
ontology are displayed in Figure 4.

The most frequent couple is ’affinity chromatography technology’
and ’anti tag coimmunoprecipition’, which is responsible for 25, 333

redundancies. The term ’affinity chromatography technology’ is also
frequently observed with other descendants such as "pull down" (n =

9, 896), ’anti bait coimmunoprecipitation’ (n = 6, 617), or "tandem
affinity purification" (n = 5, 968). Two-hydrid techniques are also
introducing redundancies, for example with ’two hybrid’, and its
descendants ’two hybrid array’ (n = 16, 113), ’two hybrid prey polling
approach’ (n = 11, 238), ’validated two hybrid’ (n = 11, 123), or ’two
hybrid pooling approach’ (n = 10, 713). A similar situation is observed in
yeast (the complete list of implicit redundancies for both human and yeast
is available as Supplementary Tables S3 and S4). Implicit redundancies
are thus widespread all along the PSI-MI ontology, and not limited to
binary IDMs. This highlights the need for a general approach to reconcile
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Fig. 4. Couples of related interaction detection methods (IDMs) from the PSI-MI ontology frequently identified in implicit redundancies of human PPIs. The arrows connect the most
specific to the most general term according to the PSI-MI ontology. Only implicit redundancies with at least 50 occurrences are shown. Nodes connected to a common IDM are represented
with the same color.

curation events during the integration of multiple primary databases.
The fact that implicit redundancies are observed between very different
terms of the PSI-MI ontology suggests that different primary databases
have different policies for annotating IDMs, as previously noted for IntAct
and BioGRID (Alonso-López et al., 2019). We therefore further analysed
the IDMs used by each primary database.
We observed that IntAct and DIP use a wide range of IDMs for both human
and yeast PPIs (165 for IntAct and 89 for DIP) while BioGRID, HPRD and
BioPlex use much fewer (12, 3 and1 IDMs, respectively) and more general
IDMs. Hence, the strong discrepancies in database annotation policies are
the source of inter-database implicit redundancies.

Overall, we observed that implicit redundancy (i) occurs between
a wide range of the PSI-MI ontology terms, regardless of the species,
(ii) mostly results from the integration of different primary databases
with different annotation policies, and (iii) happens for all database
combinations.

5 Discussion
The construction of a reliable interactome demands to combine interaction
data produced by several independent experimental evidences and IDMs
in order to reduce false positives. Since experimental evidences are curated
and stored in several primary databases, a unification of these databases
is required. The Human Proteome Organization Proteomics Standards
Initiative (HUPO-PSI) developed the PSICQUIC specification and web
services that facilitate data retrieval from multiple databases and assist
their integration but do not elaborate on redundancy detection (del Toro
et al., 2013). In several (meta-) databases, PPIs are annotated with a
confidence score, which is calculated using the number of independent
experimental evidences and the nature of IDMs (Villaveces et al.,
2015). To be relevant, these algorithmic require reliable, non-redundant,
datasets of experimental evidences. Therefore, several primary databases
have decided to coordinate their curation efforts in the frame of the
IMEx consortium in order to provide a single non-redundant set of
homogeneously annotated protein interaction data (Orchard et al., 2012;
Porras et al., 2020).

Here, we propose a formalisation of both explicit and implicit
redundancy between experimental evidence entries in order to integrate
PPIs from any database that uses the PSI-MI ontology. Knowledge about

IDMs is extracted from the PSI-MI ontology, while the method to identify
redundancies is based on Semantic Web technologies.

5.1 The Semantic Web is adapted for identifying implicit
redundancies

Alonso-López et al. (2019) pointed two problems related to redundancy
identification: (i) there may be a parent-child relationship between IDM
terms, and (ii) the path from a child term to its ancestors may not be unique
due to multiple inheritance. We propose the notion of implicit redundancy
to address the logical implications of two database entries describing the
interaction of the same protein pair with IDMs that have a descendant-
ancestor relationship. The Semantic Web is designed to perform integrated
reasoning on data annotations and ontologies. In particular, it makes
handling simple and multiple hierarchies straightforward. In the raw data of
APID that aggregates BioGRID, IntAct, HPRD, BioPlex and DIP, we were
able to identify both explicit and implicit redundancies. Our work reveals
that implicit redundancies are a widespread phenomenon resulting from the
different curation choices of the various databases and that it is of similar
importance than explicit redundancies. Therefore, we demonstrated the
relevance of both the notion of implicit redundancy and of the choice of
the Semantic Web as a technical framework for addressing the redundancy
identification problem. Moreover, new explicit and implicit redundancies
will continue to occur over the natural updates of the various databases.

The PSI-MI ontology that describes the IDMs is evolving. For example,
during the time of our project, we noticed that the term ’three hybrid’,
which was initially a child of the term ’two hybrid’, is now a child
of ’transcriptional complementation assay’. This modification is highly
relevant since ’two hybrid’ is a binary identification method, whereas
’three hybrid’ is not, and having a non-binary identification method as
a direct child of a binary one was not consistent. Therefore, just like
the databases are regularly updated, the ontologies are also corrected and
enriched, which also has an incidence on redundancies. By allowing to
automate redundancy detection as the integration of databases scales up,
the Semantic Web facilitates the reliable interpretation of the results in the
perspective of the construction of a reproducible interactome.

5.2 Widespread inter-databases implicit redundancies

Implicit redundancies primarily arise from the integration of different
databases (91.1% and 95.0% of inter-database redundancies for human
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and yeast, respectively). In our study, we clearly highlight that this is due
to the granularity of IDMs used in the primary databases. Indeed, while
some databases like IntAct refer to numerous detailed terms from the PSI-
MI ontology (165 and 89 terms used to annotate human and yeast PPIs,
respectively), other databases like BioGRID merely use general and high
level terms (only 12 terms used for both human and yeast).

Therefore, if the integration of different PPI databases is necessary to
better cover the interactome, a particular attention has to be paid to detect
the widespread inter-database implicit redundancies. A simple method
could be to define priorities between databases depending on whether they
use precise or general terms to annotate PPIs. In case of multiple curations
events referring to the same proteins and the same PMID, the ones from
the database with the highest priority would be selected. However, this
would be an approximate approach whereas we propose an exact solution,
robust to possible changes of annotation policy by primary databases.

Primary databases of the IMEx consortium coordinate and share their
curation efforts to produce a non-redundant dataset of PPI experimental
evidences (Orchard et al., 2012). IMEx members use common curation
rules to harmonize their annotation process. The unicity of the curation
events is ensured by allowing PPIs from a given PMID to be annotated
only once, and all data are centralized in IntAct. Both this work from the
IMEx consortium and ours emphasize the need for a general approach to
assemble non-redundant PPI datasets.

5.3 Intra-database redundancies

Our analysis also identified a significant number of apparently redundant
curation events within primary databases (Supplementary Figures S8
and S9). Such intra-database redundancy may originate from multiple
independent annotations of identical experimental evidences within
primary databases, as noted by Alonso-López et al. (2019). Yet, further
inspection of such curation events indicates that intra-database redundancy
primarily occurs when independent experiments from the same publication
have been annotated in a given database with identical or related IDMs,
leading to apparent explicit or implicit intra-database redundancies. For
instance, we observed that the vast majority of the explicit intra-database
redundancies originating from BioGRID are due to PPIs probed with
both partners as baits and preys (6229 out of 8696 explicit redundancies
involving exactly two curation events for yeast and 12283 out of 15385
for human). Intra-database redundancy can also occur when a PPI has
been identified with a high-throughput experiment and then validated
using the same or a related method performed at low-throughput. Hence,
this currently leads to the unification of curation events that actually
report distinct experimental evidences. To correct this, our method could
be extended by taking into account additional information, such as the
experimental role of each protein.

5.4 Towards a reproducible interactome

The size of the reproducible interactome is drastically impacted by
removing redundancies for both human (−55.7%) and yeast (−59.3%),
and we show that this is largely due to implicit redundancies. Indeed, we
observe that filtering the curation events involved in implicit redundancy
(11 to 14 %) leads to a drastic (25 to 36 %) reduction of the apparently
reproducible interactome. This implies that a large number of PPIs
currently considered as reproducible actually relies on integration artefacts.
Thus, more experimental data are still needed to further improve the size
and confidence level of the reproducible interactome. Information on PPIs
that have not yet been reproduced can help to prioritize such experiments.
Knowledge-based methods as presented in this article will be necessary
to support the integration of the continuously increasing experimental
evidences and publications.
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