N
N

N

HAL

open science

Modeling Droplet Breakage in Continuous

Emulsification Using Static Mixers in the Framework of

the Entire Spectrum of Turbulent Energy
Noureddine Lebaz, Fouad Azizi, Nida Sheibat-Othman

» To cite this version:

Noureddine Lebaz, Fouad Azizi, Nida Sheibat-Othman. Modeling Droplet Breakage in Continuous
Emulsification Using Static Mixers in the Framework of the Entire Spectrum of Turbulent Energy.
Industrial and engineering chemistry research, 2022, 61 (1), pp.541-553.

hal-03522969

HAL Id: hal-03522969
https://hal.science/hal-03522969v1
Submitted on 30 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

10.1021/acs.iecr.1c03529 .


https://hal.science/hal-03522969v1
https://hal.archives-ouvertes.fr

Modelling droplet breakage in continuous emulsification using static mixers

in the framework of entire spectrum of turbulent energy
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Abstract

Droplets breakage during continuous emulsification in static mixers is investigated in this
work. It is clearly shown that for viscous continuous phases, droplet breakage occurs mostly
in the dissipation range of isotropic turbulence. To consider this, a modified breakage kernel
of Coulaloglou and Tavlarides based on the full turbulence spectrum of Pope is employed
within a population balance model to describe the time evolution of the droplet size
distribution during the emulsification process. This full-spectrum-based model is tested
against a wide range of experimental data and showed to be predictive and accurate. The full-
spectrum-based model requires the knowledge of the mean turbulent kinetic energy and the
mean energy dissipation rate that are obtained from computational fluid dynamic simulations
(CFD). To allow a rapid implementation of the model without time-consuming CFD
simulations, a model reduction is proposed based on mean energy dissipation rate estimation
through pressure drop measurements only. The new model gives comparable predictive

capabilities as that based on CFD simulations with improved computational efficiency.
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1. Introduction

Emulsification processes allow dispersing one fluid into another immiscible fluid in the form
of fine droplets. The breakage process is driven by energy dissipation, and stabilizing agents
are frequently used to enhance the breakage by reducing the surface tension, and to avoid
droplets recoalescence. The properties of the final liquid-liquid dispersion (e.g. mass transfer
area, viscosity, or texture in food products) and its stability with time depend on the droplets
size distribution (DSD). The production of these emulsions can be achieved in batch or in
continuous modes, using stirred tank reactors, rotor-stators, high pressure homogenizers,
membranes or static mixers. Static mixers are motionless in-line mixing elements that are
usually inserted in a rigid pipe and they generate turbulence thanks to their specific
geometrical structure, which disperses the fluid flow passing through the elements without
any moving part. Emulsification through static mixers presents several advantages compared
to the different processes introduced earlier. Indeed, in addition of operating in a continuous
mode, static mixers offer an efficient homogenization of the fluids with low power
requirements®. This is not the case of stirred tanks, rotor-stators and high-pressure
homogenizers which may lead to efficient but spatially heterogeneous breakage and with high
energy consumption. Regarding continuous emulsification processes, such as membranes and
hydrodynamic cavitation, they require relatively high pressure conditions 23. This paper
focuses on the use of SMX+ mixers in a continuous emulsification process.

When dealing with dispersed systems, the time evolution of the dispersed phase properties
(e.g. size of the dispersed entities, chemical composition, temperature, etc.) can be
represented by population balance models (PBMs) 6. This approach is preferred over mean
property correlations because it gives access to the dynamic evolution of the entire

distribution of the properties under investigation. PBMs were used to predict the DSD during
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continuous emulsification by static mixers in different conditions. For instance, Azizi and
Taweel (2011) modeled droplets breakage and coalescence of dilute oil-in-water emulsions in
multi-stage screen-type static mixers 7. More recently, Lebaz and Sheibat-Othman (2019)
investigated droplets breakage in SMX+ static mixers using a PBM and validated it against a
wide range of experimental data &, and compared the PBM prediction capability with a mean-
size steady-state correlation °. Since the energy dissipation rate inside the mixers plays a
critical role during emulsification, computational fluid dynamics (CFD) is sometimes coupled
with PBM in order to consider the local variation of the energy dissipation rate 1713,

The population balance modelling of the droplets size in turbulent liquid-liquid systems relies
on breakage and coalescence kernels, which describe the rate of these phenomena as a
function of the physicochemical properties of the dispersed and continuous phases and the
flow field properties. Most of the kernels available in literature employ the Kolmogorov
turbulence energy spectrum model which is valid exclusively for the inertial subrange of
isotropic turbulence, where the statistical properties of the turbulent flow are assumed to be
only dependent on the local energy dissipation rate. Moreover, the Kolmogorov inertial range
models are limited to fully developed turbulent flows in the infinite Reynolds number limit 4.
Hence, the inertial subrange, where the Kolmogorov models are valid, becomes narrower for
finite Reynolds number flows. This is the case when the continuous phase is highly viscous for
instance. Moreover, as the size of droplets is distributed, part of the droplets may fall out of
the limits of the inertial subrange. In such situations, one of the consequences of using classical
kernels is the overestimation of the breakage and coalescence rates. Indeed, the energy of
eddies is overestimated when the Kolmogorov model is extended over the energy-containing

and the dissipation ranges 4.



For these reasons, recent studies focused on the extension of the kernels to the entire
spectrum of isotropic turbulence. Solsvik and Jakobsen (2016) provided a literature survey on
the modelling concepts of the turbulence energy spectrum and highlighted the limits of the
Kolmogorov’s model °. Han et al. (2014) pointed out the necessity of considering the
contribution of the full energy spectrum distribution in the breakage process °. They
compared the Kolmogorov model with the models based on the energy spectrum proposed
by Pope (2001) ¥’ and Hinze (1975) 8 and found that the breakage frequency based on the
entire energy spectrum of Pope agrees better with the experimental data of Andersson and
Andersson (2006) *° and Mass and Kraume (2012) 2°. Ghasempour et al. (2014) used the model
of Pope to predict the number density of turbulent vortices in a turbulent pipe flow and
validated it against a 3D vortex-tracking algorithm 1. Based on the model of Pope, Solsvik and
Jakobsen (2016) proposed an approximate algebraic model to compute the second-order
longitudinal structure function in order to reduce the computational cost for optimization and
integral terms evaluation 4. So, they considered the integral scale Reynolds number
dependency of the model parameters, unlike in Han et al. (2014) *® and Ghasempour et al.
(2014) 2! where constant parameters were employed. Later, Solsvik (2017) 2?2 proposed
approximate explicit formulas that allow the calculation of the Pope’s model parameters
without the need for optimization. Nifio et al. (2020) adopted a similar strategy to predict the
bubble size distribution in an aerated tank, using a modified breakup and coalescence model
that considers the entire cascade of turbulence 23. They pointed out considerable
improvements of bubble mean diameter predictions, which significantly influences mass
transfer in the bioreactor. Karimi and Andersson (2018) %* selected well-known breakup
kernels, initially derived for the inertial subrange of turbulence, in which they implemented

the entire spectrum following the numerical approach proposed by Solsvik and Jakobsen



(2016) *°. The predictions of the different breakage models were validated by two sets of
experimental data reported in the literature %2°, They concluded that including the entire
spectrum of turbulent energy improves the predictive capability of the breakage kernels
outside the inertial subrange. Later, Karimi and Andersson (2019) 2 considered all the
disruptive (turbulent inertia and turbulent viscous shear) and cohesive (interfacial and internal
viscous) stresses for the entire turbulent energy spectrum and their contributions to the
breakage were evaluated. They showed that the breakage kernels of emulsions require the
incorporation of all the stresses and the entire spectrum of turbulent energy, and ended up
by establishing a regime map for different breakage mechanisms considering the length scales
of vortices.

Castellano et al. (2019) proposed a model based on the second order structure function of
Davidson (2015) 2?7 along with the Pope’s energy spectrum to compute the breakage and
coalescence rates, using the Coulaloglou and Tavlarides (1977) 2 framework %°. Besides, they
implemented the volume-average kernels through the volumetric probability density function
of the turbulent dissipation rate estimated by CFD simulations. They carried out experiments
in a mechanically agitated liquid-liquid contactor at high continuous phase viscosity (up to 4.1
mPa.s) and found that the model was able to predict the experimental droplet Sauter mean
diameter at different viscosities, turbulence conditions and dispersed phase volume fractions.
The reliability of the above discussed extended models is tested against experimental data
only in few cases. This is partly due to the novelty of this approach, but also because of its
complexity. Indeed, this approach requires the knowledge of the turbulent kinetic energy and
the energy dissipation rate that can be obtained from CFD simulations, while classical kernels
only require the average energy dissipation rate that can be approximated by simple

correlations. Another reason is due to the lack of valuable experimental data, especially in the



dissipative range. The contribution of this work is therefore two folds: The first objective is to
validate the extended models over a wide range of experimental data, including experiments
partly in the dissipative subrange of turbulence. Second, a simplified form of the full spectrum
model is proposed to allow for its easier implementation without systematic heavy CFD
simulations. The emulsification is achieved using SMX+ static mixers under diluted conditions
to focus only on the breakage phenomenon. The breakage kernel of Coulaloglou and
Tavlarides (1977) 28 is employed in its modified form that accounts for the viscous forces in
addition to the surface forces 3°. This modified breakage kernel is extended to the entire
energy spectrum using the model of Pope with the integral scale Reynolds number
dependency of the model parameters and using the second order structure function of
Davidson (2015) as suggested by Castellano et al. (2019) %°. In the second part, a simplified
form of the model is proposed to enhance its implementation potential. To test the predictive
capabilities of the breakage kernel proposed in this study, experiments are performed
considering a wide range of energy dissipation and viscosities of the continuous and dispersed

phases.

2. Theoretical aspects

2.1. Model description
The well-known Kolmogorov energy spectrum model is widely employed in the development
of breakage kernels, and i assumes that breakage occurs exclusively in the inertial subrange
of turbulence 3. This model states that the turbulent energy is a monotonously decreasing
function with the wavenumber k of the eddies. In order to propose a model for the full
turbulence spectrum, considering in addition of the inertial subrange the energy-containing

and the dissipation ranges, Pope (2001) extended the Kolmogorov model by adding two



specified nondimensional functions (equations 1-3, Table 1): f; (kL) which is related to the
shape of the energy-containing range, and f,, (kn) relative to the dissipation range ’. f (kL)
and f, (kn) tend to unity for large kL and small k7 respectively, where L is the integral length
scale of the largest eddies and 1 the Kolmogorov length scale, given by equations 4 and 5,
respectively (Table 1). This ensures recovering the Kolmogorov model in the inertial subrange.
The introduction of these two specific functions requires the determination of two adjustable
parameters ¢, and ¢, from the two constraints on turbulent kinetic energy and its dissipation
rate (equations 6 and 7, Table 1).

In isotropic turbulent flows, the breakage of fluid particles is related to the disruptive stresses
of the continuous phase which need to be modelled. As discussed by Karimi and Andersson
(2018), the second-order longitudinal structure function is generally used as an approximation
of the mean fluctuating eddy velocity (ﬂﬁ ~ ([6u]?)(2)) ?*. Based on the full turbulent energy
spectrum of Pope, Davidson (2015) proposed a model of the second-order longitudinal

structure function described in equation 8 (Table 1) 2’. This model is adopted in this study.

Table 1: Summary of the energy spectrum model and population balance equations

Full turbulence spectrum

E(i) = Cesn 3£, (el (em) &)

of Pope ¥/

5
Energy-containing range %7 B B EALe 2
gy g g fL(KL) - {[(KL)2+CL]1/2} ( )
Dissipation range '’ £,(en) = exp {_[g ([(Kn)4 + i - CTI)} (3)
Integral length scale / L= %/2 (4)
1/4

Kolmogorov length scale 3! n= (?) / (5)
First constraint 1/ k= [ E()dx (6)



Second constraint 7 e = [, 20K?E(1)dx (7)

Second-order longitudinal

([Sul(D) = 27 EG) [1+3{°‘(’§;')‘j) Szz;';?}] dx (8)

structure function %7

Population balance
M f b(w,v)gwHn', t)dv' — gw)n(v,t) (9)
equation 32
Breakage kernel  (full —
(d) _ oM@ exp| ——22 - Caita (10)
9 d p pa du?(d) 3/2 _md\/?(d)
spectrum) pd P
Breakage kernel (inertial
(d) C,et? Co _ C3la (11)
) qz3 exp pae2/3ds/3 ps/zp;1/2£1/3d4/3
subrange) 8
Breakage daughter size
v 2 v 2
b =2(0) (1-3) 12)

distribution 33

For spatially homogeneous systems where the breakage phenomenon dominates, the time
evolution of the DSD is given by the population balance equation 9 (Table 1). The first term on
the right hand side of equation 9 accounts for the birth of droplets of volume v from bigger
droplets of volume v, and the second term is the death term describing the loss of droplets of
volume v due to their breakage 32

A continuous liquid-liquid emulsification process using static mixers is considered hereafter.
Because of the low dispersed phase fraction and the use of a surfactant, droplets coalescence
was found to be negligible 3*. Moreover, Ostwald ripening is not considered because of the
negligible solubility of the employed oils in the aqueous phase. Hence, only droplets breakage
occurs in the system. The breakage frequency (equation 11) is based on the Coulaloglou and
Tavlarides formalism with specific extensions in order to consider the contribution of the
viscous forces to the cohesion of the droplets. This kernel is then adapted to handle the

8



occurrence of droplets disruption with respect to the entire energy spectrum of isotropic
turbulence (equation 10, Table 1) (see Supporting Information for the developments). A beta

daughter size distribution is considered (equation 12).

2.2, CFD simulations

Computational fluid dynamic (CFD) simulations of the process were achieved using the
software ANSYS Fluent®. Single phase simulations were realized using the apparent viscosity
of the emulsions, while varying the flow rate. A CAD drawing of a single SMX+ element of the
correct dimensions was provided by Sulzer®. Simulations were done for 10 SMX+ elements as
well as an upstream pipe section equivalent to 3 pipe diameters and a downstream pipe
section equivalent to 10 pipe diameters. Mean mass and momentum conservation equations
were solved for a steady state, incompressible and Newtonian fluid flow using a finite-volume
solver (ANSYS Fluent®). A fully developed laminar velocity profile was imposed at the inlet of
the pipe while the outlet was set to the outflow boundary condition. Regarding the solid walls
of the mixers and the rigid pipe, a non-slip boundary condition was imposed. The SIMPLE
(Semi-Implicit Method for Pressure Linked Equations) algorithm was used for pressure-
velocity coupling and the QUICK (Quadratic Upstream Interpolation for Convective
Kinematics) scheme was employed for spatial discretization. The convergence criteria were
set to 10°®.

To solve for the turbulent flow inside the mixers the realizable k-€ model was employed
because it is suitable to complex shear flows involving strong streamline curvature conditions.
This required imposing a turbulence intensity and a length scale at the inlet. The former was
fixed to a low turbulence intensity value of 1 % while the latter was set equal to the pipe

diameter. A grid sensitivity analysis was performed using the Grid Convergence Index (GCl)



method 3> and it was found that approximately 5.4 million cells for each SMX+ element were
required to reach a GCl < 2% for either the pressure drop or turbulent energy dissipation
parameters.

From these simulations, it appeared that the volume-average energy dissipation in each mixer
reaches hydrodynamic equilibrium in the second SMX+ element where its value becomes
constant for all subsequent downstream elements. Therefore, volume-average values of
energy dissipation were calculated for the first mixing element (&;), second to tenth elements
(£,) and in the downstream section (&3), which was defined as having a length equivalent to 2
pipe diameters downstream of the last mixer. These average values are shown in Table 2. With
the different flow rates, the residence time varies between 0.025 to 0.4 s in the whole system

(including the 10 mixing elements and the empty pipe sections).

2.3. Numerical details

For the determination of the two adjustable parameters ¢, and ¢;, the non-linear constraints
(equations 6 and 7 in Table 1) are solved numerically using the Matlab® function fsolve with
the function integral to compute the integral terms. The function fsolve is based on the Trust-
Region Dogleg method while the function integral computes numerical integration using
adaptive quadrature and default error tolerances. To compute the integral within the second-
order longitudinal structure function (equation 8), the function ode45 is employed for a better
numerical stability, which is a non-stiff differential equations solver based on explicit Runge-
Kutta (4,5) formula.

Regarding the PBM, the finite volume method of Kumar et al. (2009) is adopted to solve the
partial differential equation 3. Technical details on this solution method may be found in their

original article.
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3. Materials and experimental methods

3.1. Emulsion ingredients
Ultrapure water obtained using a Synergy unit system (Millipore, France) is mixed with
different proportions of Glycerol (VWR Chemicals, France) to get a continuous phase with
different viscosities (Table 2). Polysorbate 20 (Tween20®, supplied by Sigma-Aldrich,
Germany) is used as surfactant and is dissolved in the continuous phase (about 5 g/L). Silicon
oils (Bluestar Silicone, France) of different viscosities are dispersed in the glycerol-water

mixture to form the oil-in-water pre-emulsions.

3.2. Experimental setup and emulsification procedure
The experimental set-up used in this study is similar to that described in Lebaz and Sheibat-
Othman (2019) ° (Figure 1). First, pre-emulsions are prepared in a stirred tank by mixing silicon
oil with water/glycerol blends during 2 hours at 500 rpm, using a Rushton turbine. The pre-
emulsions are then pumped through the static mixers using an MCP-Z Ismatec® gear pump.
The pressure drop induced mainly by the presence of the static mixers is measured using a
pressure gauge (Keller LEO1: 0-3 bar, +3 mbar, Germany). At the inlet and the outlet of the
mixers, samples are taken and the DSD is measured off-line by a laser diffraction particle size
analyzer (Mastersizer 3000, Malvern Instruments, France) after dilution of the emulsions in
pure water. Each measurement is repeated three times and the average DSDs are shown the

results section.
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Figure 1: Schematic representation of the experimental setup employed for the preparation of emulsions using

SMX+ static mixers

Table 2 gives the list of experiments carried out and their specifications. The hydraulic
Reynolds number is given by Rey, = pusDy,/(pu), with ug the superficial velocity, ¢ the
porosity of the mixers, D}, the mixer hydraulic diameter and p and u the apparent density and
viscosity of the continuous phase *’. For turbulent emulsification, Ren should be higher than
260 38, The experiments with u. > 1 mPa.s are all performed at the same hydraulic Reynolds
number, whereas those at yu. =1 mPa.s are realized at higher Ren to ensure relatively

significant droplet breakage in the mixers.
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Table 2 : List of experiments carried out by varying the viscosity of the continuous/dispersed phases and the

Reynolds number. In all the experiments, 10 SMX+ elements were used with pre-emulsions prepared in the same

conditions (mixing for 2 hours at 500 rpm).

£ [m? s3] (from

Exp. | Water | Glycerol | . Uq € [m?s7]
Ren CFD)
n° (wt%) | (wt%) | [mPa.s] | [mPa.s] (from AP)
& | & | &
1 100 0 1 20 1092 164 | 248 32 264
2 100 0 1 100 1092 164 | 248 32 296
3 100 0 1 200 1093 164 | 248 32 264
4 100 0 1 50 1239 250 | 407 53 407
5 100 0 1 50 1387 296 | 483 64 595
6 100 0 1 50 1680 561 | 922 | 124 1013
7 54.3 45.7 5 5 272 331 | 413 45 651
8 54.3 45.7 5 10 272 331 | 413 45 700
9 54.3 45.7 5 50 271 331 | 413 45 656
10 54.3 45.7 5 100 271 331 | 413 45 633
11 46.7 53.3 7.5 5 282 1167 | 1463 | 162 2258
12 46.7 53.3 7.5 10 282 1167 | 1463 | 162 2074
13 46.7 53.3 7.5 50 281 1167 | 1463 | 162 2054
14 46.7 53.3 7.5 100 280 1167 | 1463 | 162 2004
15 42.2 57.8 10 5 282 2659 | 3332 | 370 3979
16 42.2 57.8 10 10 281 2659 | 3332 | 370 4107
17 42.2 57.8 10 50 280 2659 | 3332 | 370 3994
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18 42.2 57.8 10 100 280 2659 | 3332 | 370 4066

4. Results and discussion

4.1. Necessity of extended breakage kernels
To point out the necessity of extending the classical breakage kernels over the entire energy
spectrum of isotropic turbulence in the case of emulsification using static mixers, the
computed energy spectrum is plotted against the wavenumber k for different experiments
with a superposition of the particle volume-based mean size D,5; and the DSD percentiles D;
and Dog at the inlet of the mixers. Figure 2 represents a comparison between two experiments
carried out at different viscosities of the continuous phase (left: Experiment n® 2 at yu. =1
mPa.s, right: Experiment n° 17 at u. = 10 mPa.s). The inertial subrange is delimited by the
integral length scale of the largest eddies with a factor 0.5 on one side, and by the Kolmogorov

length scale with a factor 15 on the other side 24,

B = 1 mPa.s B = 10 mPa.s

Figure 2 : Energy spectrum with inertial subrange limits (0.5 L - 15 1) and the location of the droplet size
distribution for different continuous phase dynamic viscosities .. Left: Continuous phase with a low viscosity

(experiment 2). Right: Continuous phase with a high viscosity (experiment 17).
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First, it can be seen that the increase of the continuous phase viscosity reduces the interval of
validity of the inertial subrange. Second, smaller droplets are produced when using a higher
continuous phase viscosity, under the considered operating conditions. The location of the
DSD at the inlet of the static mixers is reported in the two cases by the means of the volumetric
mean diameter and the two percentiles D;, and Dg,. In the first case (left), where the
continuous phase viscosity is low, the mean diameter of the DSD (D,3) is close to the lower
limit of the inertial subrange of isotropic turbulence, so part of the droplets falls in this
subrange of eddies, while the other part is within the dissipation range. In the second case
(right), where the continuous phase viscosity is higher, the mean diameter of the DSD is far
from the inertial subrange, and the entire DSD falls within the dissipation range. This short
analysis demonstrates the necessity of extending the breakage kernels to the entire spectrum
of isotropic turbulence instead of using the classical formulations which assume droplet

breakage occurring exclusively within the inertial subrange of turbulence.

4.2, Energy spectrum model simplification
As shown in Figure 2, in the case of emulsification process in SMX+ static mixers, the DSD is
mostly in the dissipation range whatever the continuous phase viscosity, with the operating
conditions considered in this work. As explained earlier, the Pope’s model of turbulent energy
spectrum is based on the modification of the turbulent energy model of Kolmogorov by adding
two specific nondimensional functions f, (kL) and f, (kn), related to energy-containing and

dissipation ranges respectively. The behavior of these two functions is shown in Figure 3.
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Figure 3 : Energy spectrum of Pope with the two nondimensional functions f, and f, shown for the experiment 2.

As expected, the function f; (kL) tends towards unity in the region of the spectrum where the

DSD is located. Hence, the Pope’s model in the case of emulsification in SMX+ mixers may be

simplified as follows:
2 5
E(x) = Ce3x 3fy (kn) (13)

This simplification reduces the computational cost since only one adjustable parameter c,
should be determined using the non-linear constraint given by equation (7). More
interestingly, only the mean energy dissipation rate £ is needed in this case, and it is no more
required to compute the mean turbulent kinetic energy, k. This means that the model may be
implemented without CFD simulations of the system. Indeed, in many systems, there are some
correlations allowing to approximate reasonably the mean energy dissipation rate that can be

used in the kernel. This is not the case when considering the entire model since it is based on

both the turbulent kinetic energy and its dissipation rate.
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4.3. Parameter identification strategies
The identification of the breakage kernel parameters was achieved using the following

criterion:

min | = XiL1lqe(v, k) — qm (v, k)| (14)

€1,C2,C3
Where q = vnAv is the volume fraction distribution of droplets at the outlet of the mixers and
M the number of experiments used for identification. The index ‘e’ refers to the experimental
measurements while the index ‘m’ refers to the model predictions. The Multistart and
Isqnonlin Matlab® functions (Optimization Toolbox) were employed. The Multistart function
is preferred to avoid convergence towards a local minimum. The function Isgnonlin is a
nonlinear least-square solver based on the trust-region-reflective algorithm.

In order to ensure global parameter estimation, two identification strategies were compared.
In the first strategy, all available experiments were used for parameter identification (i.e. M =
18). So, the criterion to be minimized includes the differences between the outlet measured
DSD in volume and the model predictions for all experiments. The advantage of this strategy
is that it allows to have the best compromise of parameters that fit best all the experiments.
The disadvantage is that experiments with errors may impact the identification equally as
truthful experiments. By this strategy, it quickly appeared that Cs=0, which is coherent with
previous results of emulsification in static mixers °. This can be explained by the fact that at
high and relatively uniform energy dissipation rate observed in the mixers, the disruptive
turbulent energy needs to overcome the interfacial energy, while the viscous forces of the
droplet become negligible. Therefore, the procedure was repeated by eliminating Cs from the
model. The identified parameters by this strategy are shown in Table 3 for the full spectrum

and the inertial-based models.
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The second strategy consists of iteratively selecting three experiments for parameters
identification until covering all the possible combinations among the available experiments
and then examining the histogram of the identified parameters. The advantage of this strategy
is that it allows eliminating experimental errors (e.g. measurement error of the DSD) as their
occurrence is not regular, and one may easily detect them and analyze their coherence. By
this strategy, it appeared that one should be careful about the choice of the experiments used
for identification as a wide range of parameter values could be obtained. However, most triads
of trustful experiments converged to parameters close to those found in the first strategy.
Hence, the parameters resulting from the first strategy will be used for model validation and
comparison between the full spectrum and the inertial subrange-based models in the

following sections.

Table 3: Identified breakup kernel parameters for both models using all available experiments (and & evaluated

by CFD).
C1 C
Inertial subrange-based model 1.37x10°3 3.19x 102
Full spectrum-based model 5.12x10* 4.56
4.4, Predictive capabilities of the two models

The predictions of the inertial subrange-based model (equation 11) and the full spectrum-
based-model (equation 13) for the different experiments are detailed in this section, under
different operating conditions. The figures are assembled regarding the viscosity of the
continuous phase.

Let us first have a look on the mechanism of droplet breakage in the mixed vessel during the

pre-emulsion preparation step, which appears on the inlet DSDs. Two mechanisms can be
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distinguished and seem to occur depending on the ratio ugq/u.: When uq/u. > 1, the pre-
emulsions show a monomodal DSD with an increasing mean droplet size for higher p4. As the
ratio uq/uU. decreases, a transition from a monomodal to a bimodal distribution is observed
(see Figures 4, 5 and 6). A similar observation was reported by Carrillo de Hert and Rodgers
3940 but for emulsification using highly viscous oils. This seems to be mainly due to the non-
uniformity of energy dissipation in the stirred vessel, with a high local shear near the impeller
and a much lower energy dissipation in the rest of the vessel, thus leading to two populations
of different sizes. A second reason could be due to the daughter size distribution that changes
with the ratio g/ from normal or bell-shape to U-shape, where small droplets are formed
following an erosion-like mechanism. This however seems to represent a minor effect as it can
hardly justify the big difference in size between the two populations. Note that in the static
mixers, the energy dissipation rate is more uniform thanks to the regular flux crisscrossing
within the reduced free volume of the mixers. Therefore, whatever the inlet DSD form
(monomodal or bimodal), the same outlet form is obtained, but with smaller droplets.

Figures 4-7 also allow to compare the predictions by the two breakage models (inertial
subrange and full spectrum), using the parameters identified in Table 3. As a general remark,
the two models are capable of predicting the outlet DSD with a very good accuracy for the
different explored conditions: Changes of the inlet DSD, viscosities of the
dispersed/continuous phases and mean energy dissipation rate. The predictions accuracy is
similar for both models except for the highest viscosity of the continuous phase (Figure 7)
where the full spectrum-based model is slightly more accurate. Indeed, as explained in Figure
2, the importance of using the full spectrum model is increased when the DSD falls out of the
inertial subrange, which is the case when droplets are much smaller or when increasing the

viscosity of the continuous phase. To be fully within the inertial subrange, the energy
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dissipation rate should be lower which may be achieved by reducing the flow rate through the

mixers. However, for the experiments done at 4, = 1 mPa.s for instance (Figure 4), when the

hydraulic Reynolds number (Ren) was set equal to that of experiments at higher viscosity

(Table 2), no droplet breakage occurred and the DSD at the outlet of the mixers was the same

as at the inlet (results not shown). Therefore, Ren was set at least five times higher for these

experiments, compared to the experiments at y. > 1 mPa.s. Even at such high Rep, droplets

breakage is low as shown in Figure 4 (especially in the subfigures at the minimal &).
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Figure 4: DSD predictions at the outlet of the mixers for the inertial subrange-based model (dotted blue lines) and

the full spectrum-based model (dashed magenta lines) at u. = 1 mPa.s and different viscosities of the dispersed

phase and mean energy dissipation rate (€,). Comparison with experimental data (inlet: black line; outlet: dashed

black line)
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The similar predictive capability of the two models is mainly explained by the fact that both
models were identified for all the experiments. However, in view of the indication that the
DSD location at the inlet of the mixers is in big part within the dissipative range of turbulence
for all the cases (as schematically explained in Figure 2), the full spectrum model is more
appropriate to use. The lack in correct physics of the inertial subrange-based model seems
therefore to be compensated by the numerical identification over the set of experiments. But,
the full spectrum-based model and its parameters can be believed to be fundamentally more
coherent. This situation also explains why over the last decades, PBM developments were
focused on the interaction mechanisms instead of questioning the validity of the energy

spectrum model assumption.
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Figure 5: DSD predictions at the outlet of the mixers for the inertial subrange-based model (dotted blue lines) and
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phase.

In order to demonstrate the need of the full spectrum model and its better capability to
predict data out of the identification set, another identification strategy was followed: The
two models were identified only using experiments done at 4. = 1 mPa.s, then used to predict
the evolution at higher u.. Therefore, the six first experiments in Table 2 were used to identify
the full spectrum model. For the inertial subrange-based model, besides these 6 experiments,
other experiments reported in our previous work ° were employed (a total of 15 experiments).
Then, the two models, with their identified parameters (C1 and C;), were used to predict the

evolution of the outlet DSD in the case of higher u. (4. = 10 mPa.s).
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C1=3.51x1073 and C,=5.76x10) and full spectrum-based model (dashed magenta lines, C;=7.81x10* and C,=8.07)
at u. =10 mPa.s at py =100 mPa.s. Here, for both models, parameter identification is only based on experiments

with u. =1 mPa.s.

As shown in Figure 8, the predictions of the full spectrum-based model are more accurate than
the inertial subrange-based model. Both models slightly overestimate the breakage of large
droplets, but the inertial subrange-based model also underestimated the breakage of small
droplets. The predictive capability of the full spectrum model is therefore higher than the
inertial subrange-based model. This example illustrates the issues facing the classical breakage
kernels when their domain of validity is not respected, and the importance of the set of

experiments used for parameter identification.

4.5. Predictions by the simplified model
In the previous sections, the full spectrum model (equation 1) was evaluated and was

compared to the inertial subrange-based model. In both models, the energy dissipation rate
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was estimated through CFD simulations. In this section, the simplified model (equation 13) is
investigated. One of the main advantages of this model is that it does not necessitate CFD
simulations, as it only requires the mean energy dissipation rate which can be obtained easily
in different devices using simple correlations. In the case of emulsification using static mixers
forinstance, the mean energy dissipation rate may be estimated experimentally from pressure

drop measurements (AP) as follows 4*:

AP uj
pLs

£= (15)

The interstitial velocity, u;, can be calculated from the superficial velocity, ug, and porosity of

the mixers, ¢, as follows:

_us_ 401
w="= (16)

The calculation of & through the measurement of pressure drop makes the modelling
approach accessible compared to the full spectrum models proposed in literature where CFD
simulations are mandatory to get access to the turbulent kinetic energy and its dissipation
rate. This experimental value of & is then implemented in both models (the simplified full
spectrum model and the inertial subrange-based model), and their predictions are
investigated. The same global parameter identification procedure is employed as previously
discussed and the identified parameters are given in Table 4. The slight difference between
the parameters identified in this table compared to Table 3 are due to differences in the
evaluation of € (by CFD or experimentally). For instance, when employing the CFD, slightly
different values of £ were obtained in the first mixer compared to the 9 following ones, while
in the pressure drop method we only get one mean value of £. However, it can be seen that

the parameters remain comparable. Only the value of C; of the full spectrum-based model
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changed noticeably, from 5.12x10* to 1.09x10°3. The prediction capability of the two models

is illustrated in Figure 9 for different p..

Table 4: Identified breakup kernel parameters for both models using all experiments based on the mean energy

dissipation rate estimated through pressure drop.

G C
Inertial subrange-based model 1.33x10°3 4.20x 107
Simplified full spectrum-based model 1.09x 103 4.69

It can be seen that the predictions of the two models are similar and in good agreement with
the experimental DSDs in the different experiments. They are comparable to the predictions
obtained using both models (full spectrum or inertial subrange) based on CFD simulations to
estimate €. This demonstrates that when an estimation of the mean turbulent dissipation rate
through experimental measurements is possible, the full spectrum-based model may be
implemented easily without realizing time-consuming CFD simulations. Note that this is
coherent in systems showing mostly uniform energy dissipation rate within the entire volume
of the process, which is rather valid in static mixers. A criterion can be defined to determine

when the simplified model is applicable, based on the energy dissipation and the droplet size.
From Figure 2, if k > %, then the size of droplets falls within the inertial and/or dissipation

subranges of turbulence. Based on the definitions, L = k3/2 /¢ and k = 2m/D, the following

criterion is required to ensure the validity of the simplified model:

4TTE

D<m

(17)
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Figure 9: DSD predictions by the inertial subrange-based model (dotted blue lines) and the simplified full
spectrum-based model (equation 13) (dashed magenta lines) at different dispersed/continuous viscosities using

the energy dissipation rate evaluated through pressure drop measurements.

5. Conclusion

Modelling of the continuous emulsification process in static mixers is investigated in this work
in the case of viscous continuous phase fluids. A population balance model accounting for
droplets breakage mechanism that covers both the inertial and the dissipation subranges of
turbulence is derived. Two forms of this model were proposed: its complete form and a
simplified form. This model was also compared to a classical model which assumes that
breakage occurs exclusively within the inertial subrange of turbulence.

First of all, the model of Pope is employed as a basic framework for the modelling of the full

energy spectrum of isotropic turbulence. Indeed, based on experimental results, it is shown
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that in the case of emulsification using SMX+ static mixers, droplet breakage occurs in the
dissipation and inertial subranges of turbulence, which necessitates the use of a full spectrum
model. The first full spectrum form of the model relies on two parameters that need to be
estimated, which require the mean energy dissipation rate and the kinetic turbulent energy,
obtained by CFD simulation. The simplified form of the full spectrum model relies only on one
parameter. Indeed, a careful analysis of the parameters of the energy model shows that the
function f; (kL) tends towards unity in the region of the spectrum where the DSD is located.
Hence, the model of Pope is simplified to consider only the inertial and dissipation subranges
(and not the energy containing subrange) which requires the determination of only one model
parameter through the knowledge of the mean energy dissipation rate. For this, an
experimental evaluation of the energy could be done based on the pressure drop
measurement, without using CFD simulations, which represents a valuable advantage of the
proposed model.

First, the prediction capability of the full spectrum model is compared to that of a classical
model. The parameters of both models were identified identically. The two models give very
good predictions for the different explored conditions with comparable accuracy. However,
the full spectrum model is shown to be more robust for the prediction of the DSD out of the
optimization domain.

Second, the simplified full spectrum model was investigated. To avoid the use of complex and
time consuming CFD simulations to estimate the mean energy dissipation rate, an alternative
is proposed through its experimental estimation based on pressure drop measurement. It is
demonstrated that using this procedure does not alter the predictive capabilities of the
developed model. The applicability of the simplified full spectrum model is therefore as

straightforward as classical kernels.
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Nomenclature

b(v,v") | Breakage daughter size distribution m"
C Kolmogorov constant (equation 1, C = 1.5) -
¢;, G Constants -
c Large-scale constant of the Pope’s model -
Cy Dissipative-scale constant of the Pope’s model -
d Droplet diameter m
Dy Hydraulic diameter of the mixer m
Dy Diameter of the pipe m
Dys Volume-based mean droplet size m
Ecric Critical energy kg m?s?
E (k) Energy spectrum m3s2
E, Surface energy kg m?s
E Eddies turbulent energy kg m?s?
E, Viscous energy kg m?s?
fL Large-scale function of the Pope’s model -
fa Dissipative-scale function of the Pope’s model -
g) Volume-based breakage frequency st
Ji Objective function -
k Turbulent kinetic energy m?s2
L Integral length scale of the largest eddies m
Ly Length of the pipe m
M Number of experiments -
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N Number of fluid particles -
n(v,t) | Number-based density function m*
Po Constant (equation 2, p, = 2) -
AP Pressure drop Pa
q Volume fraction distribution of the droplets -
Q Volume flow rate m3st
t Time s
ty Breakage time S
u Mean velocity in a turbulent eddy ms?
U; Interstitial velocity m s
Ug Superficial velocity ms?
([6u]?) | One-dimensional second-order longitudinal structure function m?s2
Rey, Hydraulic Reynolds number -
v,V Droplet volume m3
Greek symbols
B Constant (equation 3, f = 5.2) -
€ Energy dissipation rate m?s3
g Mean energy dissipation rate m?2s3
n Kolmogorov length scale m
K Wavenumber m-1
A Eddy size m
u Apparent dynamic viscosity of the continuous phase Pas
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Ue Dynamic viscosity of the continuous phase Pas
Uq Dynamic viscosity of the dispersed phase Pas

Kinematic viscosity of the continuous phase m2s?t

Apparent density of the continuous phase kg m3
Pe Continuous phase density kg m3
Pd Dispersed phase density kg m3
o Interfacial tension N mt
7 Global porosity of the static mixers -

Supporting information

Supporting Information shows the development to adapt the kernel of Coulalouglou and

Tavlarides to handle the entire energy spectrum of isotropic turbulence.
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