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ABSTRACT

In optical tomography, the reconstructions have only been limited to the absorption µa and scattering µs coeffi-
cients of biological tissues due to theoretical and computational limitations. In this study, The authors propose
an efficient method to reconstruct, in 3D geometries, the anisotropy factor g of the Henyey-Greenstein phase
function as a new optical contrast for cancer diagnosis. The light propagation in biological tissues is accurately
modeled by the Radiative Transfer Equation (RTE) in the frequency domain. The adjoint method is used to
efficiently compute the gradient of the objective function. A parallel implementation is carried out to reduce the
computational times. The results show the robustness of the algorithm to reconstruct the g-factor for different
contrast levels and for different initial guesses. The crosstalk problem between µs and g has been achieved with
a reasonable quality which makes the new algorithm a candidate of choice to image this factor as new intrinsic
contrast for optical imaging.

Keywords: Optical tomography, scattering phase function, cancer diagnosis, radiative transfer, anisotropy
factor, adjoint method.

1. INTRODUCTION

Diffuse Optical Tomography (DOT) is a non-invasive imaging modality that aims to reconstruct the optical
properties of biological tissues namely, the absorption µa and the scattering µs coefficients. It is well known that
these tissues are highly forward scattering media where the angular distribution can be described by the Henyey-
Greenstein (H-G) phase function. The mean value of this function is represented by the anisotropy factor g which
characterize the anisotropic scattering. Previous studies1–3 have shown that this factor can be modified when the
tissue is affected by a tumor. Consequently, the g-factor can provide additional morphological and pathological
information for optical imaging. Nevertheless, and to the best of our knowledge, the reconstruction of this factor
has not been carried out up to now due to theoretical and computational requirements. Indeed, it requires an
accurate forward model of light propagation which takes into account the anisotropic scattering behavior. This
can be insured with the Radiative Transfer Equation (RTE) which has been addressed as a rigorous model for
light transport in biological tissues. It should be noted that the diffusion equation is useless in this case since
it’s devoted to describing an isotropic fluence field. In DOT, another challenge is the reconstruction technique
used to iteratively update the spatial distribution of optical properties. The gradient-based scheme4,5 is well
suitable for DOT but the computation of the objective function gradient remains a crucial step. In order to
efficiently evaluate the gradient, the adjoint method has been developed to compute it regardless the number of
unknowns throughout a Lagrangian formalism. It must be kept in mind that the RTE solution requires complex
computational methods which are expensive in terms of runtime and memory resources. Thus, reconstructing the
anisotropy factor g, in 3D geometries, is daunting and prohibitively expensive with the RTE, especially in this
case where the phase function becomes spatial and angular dependent and must be evaluated at each iteration
in the inversion procedure. To overcome this difficulty, different levels of parallelization were carried out within
our reconstruction algorithm. The remainder of this paper is organized as follows. In Sec.2, the RTE model is
presented and the predictions on semi-transparent boundaries are given. In Sec. 3, the parallel reconstruction
algorithm based on the Lagrangian formalism is described. Reconstructions results based on synthetic data are
presented and discussed in Sec. 4. Concluding remarks are finally offered in Sec. 5.
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2. FORWARD MODEL

The RTE in the frequency-domain is used to accurately described the light propagation within biological tissues.
The external Laser beam Γ(rsrsrs, ω) illuminating the surface at the position rsrsrs with the angular modulation
frequency ω is seperated into two components ψ = ψc+ψs, respectively the collimated ψc and scattered radiance
ψs. This allows taking into account the collimated radiation in our forward model. The ψc component is governed
by the RTE state equation denoted Rc in the collimated direction ΩcΩcΩc and is analytically solved in accordance
with the Bouguer-Beer-Lambert exponential law :

Rc =

[
ΩcΩcΩc · ∇+

(
i n ω

c
+ µt(rrr)

)]
ψc(rrr, ω) = 0 (1)

where c is light velocity in vacuum while n is the refractive index of tissue. The total extinction coefficient µt(rrr),
at position rrr, represents the sum of the absorption µa(rrr) and the scattering µs(rrr) coefficients. The tissue surfaces
are modeled as semi-transparent boundaries due to the refractive index mismatch between air and tissue. The
boundary condition for the collimated radiance is thus given by :

ψc(rsrsrs, ω) = [1− R(Θ′)] Γ(rsrsrs, ω) for ΩcΩcΩc ·noutnoutnout < 0, (2)

where noutnoutnout is the local outward unit vector normal to the tissue boundary. The reflectivity coefficient R depends
on the incidence angle Θ′, with cos Θ′ = Ω′Ω′Ω′ · noutnoutnout, and where the incident direction Ω′Ω′Ω′ satisfied Ω′Ω′Ω′ · noutnoutnout > 0.
Once the Rc equation is solved, the solution ψc is then used through a source term Sc such as :

Sc(rrr,ΩΩΩ, ω) = µs(rrr) p(rrr,ΩcΩcΩc · ΩΩΩ) ψc(rrr, ω) (3)

where p(rrr,Ω′Ω′Ω′ · ΩΩΩ) is the Henyey-Greenstein (H-G) phase function which represents the probability that pho-
ton traveling in incident direction Ω′Ω′Ω′ deviates into scattering direction ΩΩΩ. Its mathematical expression in 3D
participating media6 is given by :

p(rrr,Ω′Ω′Ω′ ·ΩΩΩ) =
1

4π

1− g2(rrr)(
1 + g2(rrr)− 2 g(rrr) Ω′Ω′Ω′ ·ΩΩΩ

)3/2 (4)

where g is the anisotropy factor characterizing the angular distribution of tissue scattering. In this study, g is
space-dependent. Hence, further the dependence of the phase function p on the incident and scattered directions
through an inner product, p is also a function of the spatial position rrr (see Eq. 4). The coupling term Sc (Eq.
3) is included within the RTE state equation Rs which governs the scattered radiance ψs in the direction ΩΩΩ :

Rs =

[
ΩΩΩ · ∇+

(
i n ω

c
+ µt(rrr)

)]
ψs(rrr,ΩΩΩ, ω) (5)

−µs(rrr)
∫

Ω′=4π

p(rrr,Ω
′

Ω
′

Ω
′
·ΩΩΩ) ψs(rrr,ΩΩΩ

′
, ω) dΩ

′
− Sc(rrr,ΩΩΩ, ω) = 0

The reflectance signals correspond to the outgoing flux predicted at the detector position rdrdrd on the illuminated
bounding surface such as :

P (rdrdrd, ω) =

∫
Ω′Ω′Ω′·noutnoutnout>0

[
1− R(Θ′)

]
ψs(rdrdrd,Ω

′Ω′Ω′, ω)
(
Ω′Ω′Ω′ ·noutnoutnout

)
dΩ′ (6)

In our previous publication,7 we developed a modified finite volume method (MFVM) to solve the 2D RTE.
The angular space was uniformly subdivided into several discrete directions. The ”modified” word is due to the
fact the photon transport is solved even inside each control volume within an exponential scheme. The MFVM
is thus qualified as a highly accurate method compared to other deterministic numerical methods available in
the literature. Excellent agreement was found with relative differences less than 1% when the MFVM solutions
were compared against to those of Monte-Carlo and analytical solutions from simple cases.7 The MFVM was
extended to 3D geometries. The methodology of the employed method is not repeated here, we refer the reader
to [7] for comprehensive details.



3. INVERSE PROBLEM

3.1 Lagrangian formalism and adjoint model

The inverse problem can be considered as a large-scale optimization problem which consists to minimize the
least-square discrepancy between the measurements M(rrrd, ω) and the forward model predictions P (rrrd, ω) at the
detector position rrrd and angular frequency ω. These discrepancies are represented by a real-valued non-negative
function, called the objective function defined by :

J (βββ, ω) =

Nd∑
d=1

∣∣∣∣P (rrrd, ω)−M(rrrd, ω)
∣∣∣∣2

2
(7)

where || · ||2 denotes Euclidean norm. The vector βββ contains the spatial distribution of optical properties to be
reconstruct and Nd is the total number of detectors on the tissue surface. The objective is to determine the
vector β̂ββ that minimizes this function and vanishes the gradient ∇J (β̂ββ, ω) = 0. In this work, instead of solving
the unconstrained problem (Eq. 7), we adopted an adjoint method that solves the constrained optimization
problem by following the Lagrangian formalism given as

L(βββ, ψs, ψc, λs, λc) = J (βββ, ω) +
〈
λs

∣∣∣Rs(βββ, ψs, ψc)〉s +
〈
λc

∣∣∣Rc(βββ, ψc)〉c (8)

where λs and λc are respectively the Lagrange multipliers to ψs and ψc. 〈·|·〉s and 〈·|·〉c denote the inner products
associated to the solution space of ψs and ψc, respectively.8 The objective function (Eq. 7) is minimized under
some equality constraints based on the RTE state equations. The optimization problem corresponds to find
the stationary point (vector solution β̂ββ) of the Lagrangian function (Eq. 8) that vanishes its gradient ∇L with
respect to all its variables ∇λs,c

L = ∇ψs,c
L = ∇βL = 0. Using the adjoint operator and the inner product

properties, the differenciation of L with respect to the state variables ψs and ψc (∇ψs,c
L) leads to the RTE

adjoint equations for the scattered and collimated components, respectively :[
−ΩΩΩ · ∇+

(
−iω
c/n

+ µt(rrr)

)]
λs(rrr,ΩΩΩ, ω) = µs(rrr)

∫
4π

p(rrr,Ω
′

Ω
′

Ω
′
·ΩΩΩ) λs(rrr,ΩΩΩ

′
, ω) dΩ

′
Ω

′
Ω

′
− ∂J (βββ, ω)

∂ψs
(9)

[
−ΩΩΩc · ∇+

(
−i ω
c/n

+ µt(rrr)

)]
λc(rrr, ω) = µs(rrr)

∫
4π

p(rrr,ΩcΩcΩc ·ΩΩΩ) λs(rrr,ΩΩΩ, ω) dΩΩΩ (10)

Note that ∇ψcJ (βββ, ω) = 0 and ∇βJ (βββ, ω) = 0, because the objective function is independent on the collimated
light and it does not vary explicitly with respect to βββ. The Lagrange multipliers λs and λc are solutions to
(Eq. 9) and (Eq. 10), respectively. The above system was derived in details in our previous study8 based on
2D geometries. Note that, in 3D geometries, the integral term over 2π is replaced by the integral term over 4π.
One major advantage of this approach is its simple implementation by applying the same numerical solver as
used for the forward model. Furthermore, the adjoint method provides the gradient of the objective function in
a fast and efficient way (independently of the number of unknown parameters). Once the adjoint equations are
solved and the Lagrange multipliers are obtained, these last are then used to compute the gradient (∇βJ ) with
a computational time equivalent to a one forward simulation.

3.2 Gradient expressions

Differentiating now the functional L with respect to µa, µs and g, we obtain the gradient expressions with respect
to the optical properties such as :

∇µaJ (rrr, ω) = Re

∫
ΩΩΩ=4π

λs(rrr,ΩΩΩ, ω)ψs(rrr,ΩΩΩ, ω)dΩΩΩ + λc(rrr, ω)ψc(rrr, ω) (11)

∇µs
J (rrr, ω) = ∇µa

J (rrr, ω)−Re

∫
ΩΩΩ=4π

λs(rrr,ΩΩΩ, ω)

(∫
ΩΩΩ′=4π

ψs(rrr,Ω
′Ω′Ω′, ω)p(rrr,ΩΩΩ′ ·ΩΩΩ)dΩ′ +

ψc(rrr, ω)p(rrr,ΩΩΩc ·ΩΩΩ)

)
dΩΩΩ (12)



∇gJ (rrr, ω) = −Re

∫
ΩΩΩ=4π

λs(rrr,ΩΩΩ, ω)µs(rrr)

(
ψc(rrr, ω)

∂p(rrr,ΩΩΩc ·ΩΩΩ)

∂g
+∫

Ω′Ω′Ω′=4π

ψs(rrr,Ω
′Ω′Ω′, ω)

∂p(rrr,ΩΩΩ′ ·ΩΩΩ)

∂g
dΩ′
)
dΩΩΩ (13)

The derivative of the H-G phase function with respect to the g-factor is evaluated analytically. At each inversion
iteration, the forward and adjoint models are solved and the gradient is accurately obtained accordingly to
the above expressions. This last is then used within a reconstruction scheme based on the Limited-memory
BFGS method to iteratively update the spatial distribution of the optical properties. The reconstruction of the
anisotropy factor g in 3D media is expected to be extremely expensive in terms of time and memory since the
H-G phase function p depends on rrr = (x, y, z), Ω′Ω′Ω′ and ΩΩΩ. In order to make the g reconstruction possible, parallel
implementation in the present algorithm was unavoidable.

3.3 Parallel computing

It is clear that exploiting the RTE model, within an iterative procedure, to reconstruct the optical properties for
3D geometries can take long computational times. Then, we implemented a multi-threading parallel algorithm.
At this level, multiple threads compute the RTE along different directions. It should be pointed out that the
H-G phase function is calculated only once when the medium is assumed to be homogeneous in g-factor. On
the other hand, when this factor has to be reconstructed (g-factor varies spatially inside the medium), the H-
G phase function and also its derivative (required for the gradient ∇gJ ) must be evaluated at every spatial
node and overall incident and scattered directions of light propagation. Further the extensive computational
times, the resulting values necessitate huge memory space which may exceed the capability of a single machine.
Consequently, reconstructing the spatial distribution of this factor in 3D media is strongly restricted when using
a single machine. In that regard, our algorithm was extended to support multiple machines, via explicit Messages
Passing Interface (MPI). In this context, some of the data were distributed over the machines of the computing
system and data exchanges were performed between them for the computations that require all the data. It is
worth noticing that the use of parallelism was limited to some parts of our algorithm that consist to solve the
integral term over the ΩΩΩ directions in the RTE model. Indeed, those parts are the most time consuming and
their parallelization provides most of the theoretical speed gain that can be expected according to the sequential
version. The parallel application, using OpenMP and MPI libraries, is designed to efficiently use classical clusters
of multi-core machines. Additional studies are currently conducted to see how GPU accelerators may be efficiently
exploited in our reconstruction algorithm.

4. RESULTS AND DISCUSSION

4.1 Model description

It is known that the light propagation becomes isotropic (g = 0) when the photons have traveled several transport
mean-free path in the medium (≈ 8×ltr).10 In order to take into consideration the anisotropic scattering behavior,
the reconstructed geometry of g should not exceed approximately 8× ltr. In that regard, the three-dimensional
numerical phantom used for reconstruction is a cube of length 4 mm. It contains a spherical heterogeneity in the
g-factor with 1 mm of a diameter centered at X = 1 mm in depth, Y = Z = 1 mm. This last is embedded in a
homogeneous background medium with µa = 0.01 mm−1, µs = 2 mm−1 and g = 0.8. The source is modulated
at f = 600 MHz and positioned at (0, 0.5, 0.5) on the western surface of the phantom. Only The backscattered
light (reflectance) on the illuminated boundary is used for reconstruction.

The computational domain was discretized with 68,921 nodes and 384,000 tetrahedral elements for recon-
struction. 320 detectors readings were generated on the western surface using a finer mesh of 746,691 nodes in
order to avoid the inverse crime. The angular space (4πSr) was uniformly discretized into 64 control solid angles
and each angle was also subdivided into 8 azimuthal and polar directions for the phase function normalization.7

The generated data are contaminated with 1% of Gaussian random noise and given as an input in the recon-
struction algorithm. The inversion procedure is started with an initial guess corresponding to the homogeneous
background. It terminated after the normalized difference of the objective function between two subsequent



iterations was smaller than a prescribed value, here equal to 10−5. The quality reconstruction was determined
thanks to the relative error ε between exact (β∗) and estimated (β̂) values such as :

ε = 100%.
||β̂ − β∗||2
||β∗||2

(14)

4.2 Different contrast levels

The robustness of the algorithm is examined with two different contrast levels through two test cases. The first
one considers a relatively high contrast inclusion with + 18% (g∗ = 0.95) while the second case corresponds to
a low contrast level with - 6% (g∗ = 0.75) of discard with respect to the homogeneous background value (g =
0.8). For the first test case, the minimization has been stopped after 10 iterations. The obtained 3D slices at the
x = 1 mm, y = 1 mm and z = 1 mm planes are plotted in the Figs. 1a-1c, respectively. The 1D reconstructed
profiles passing through the center of the inclusion are depicted in Fig. 1d.

(a) (b)

(c) (d)

Figure 1: Reconstructed g-factor image obtained after convergence. (a), (b) and (c) display the 3D slices selected
at x = 1 mm, y = 1 mm and z = 1 mm, respectively. (d) represents the 1D reconstructed profiles passing by
the inclusion center along the x - y - and z - axis.



It is readily seen that the inclusion has been located at approximately the right position (xinc = 0.9 mm, yinc
= 0.9 mm, zinc = 0.9 mm) and the circular shape was clearly reconstructed. However, the maximum retrieved
value inside the inclusion is somehow under-estimated compared to its original value with an error ε = 14.4%
(Fig. 1d). As expected, the computation cost is expensive as each iteration in the inversion procedure has
required 100 min to calculate the gradient. In order to assess the convergence quality of the algorithm, the 2D
images in the z = 1 mm plane selected at iteration equal to 2, 4 and 6 are displayed in the Figs. 2a-c, respectively.
Figure 2d depicts the 1D reconstructed profiles along y = 1 mm.

(a) (b)

(c) (d)

Figure 2: Reconstructed g-factor images obtained at different iteration k of the inversion process. (a), (b) and
(c) display the 2D xy slices selected at z = 1 mm plane for k = 2, k = 4 and k = 6, respectively. (d) represents
the 1D reconstructed profiles passing by y = 1 mm and through the inclusion center for the three iterations.

The results show that the algorithm provides a good qualitative indication at early iterations where the
heterogeneity has been already reconstructed and accurately localized from only the second iteration. The
suspect area can then be defined very quickly (in a few minutes) and might be exploited as a prior structural
knowledge. For the test case 2, the stopped criterion has been satisfied at the 17th iteration and the corresponding



results are posted in Figs. 3a-d. Figure 3d shows that the algorithm has spatially well fitted the retrieved values
with the original solution along the x- y- and z- axis.

(a) (b)

(c) (d)

Figure 3: Reconstructed g-factor image obtained after convergence. (a), (b) and (c) display the 3D slices selected
at x = 1 mm, y = 1 mm and z = 1 mm, respectively. (d) represents the 1D reconstructed profiles passing by
the inclusion center along the x - y - and z - axis.

Moreover, the center of the inclusion has been located (xinc = 1 mm, yinc = 0.9 mm, zinc = 0.9 mm) with a
good agreement with respect to the target position. Although the poor contrast level, the algorithm was able to
reveal the small spatial heterogeneity in the medium. This is mainly due to the high sensitivity of the g-factor
on the boundary data where a small variation of it can largely change the H-G phase function. Compared to the
previous test case, the quantitative accuracy has been improved and the relative estimation error of the inclusion
has been decreased to 2.66 %. This is because the discrepancy between the initial value and the exact solution
of the inverse problem is reduced when the contrast level is low which makes, therefore, the estimation more
accurate.



4.3 Different initial guesses

One of the gradient-based optimization schemes drawbacks is the choice of the initial estimate which should
not be far away from the exact solution of the iterative procedure. Usually, this estimate is described by the
homogeneous optical properties of the original background. To assess the robustness of the algorithm on different
homogeneous initial guesses g0, the previous test case (g∗inclusion = 0.75) is reconstructed with two examples of
initial guesses g0 = 0.82 and g0 = 0.85 which are different to the original background medium (g∗background =
0.8). The retrieved profils along x, y and z axis are shown in figure 4 and compared the those of the previous
test. The relative estimation errors of inclusion and background are listed in Table 1.

Figure 4: The reconstructed profiles passing through the center position of the inclusion along the x, y and z
axis for the three different initial estimates. The red, green and blue profiles correspond to g0 = 0.85, g0 = 0.82
and g0 = 0.80, respectively. The dashed yellow lines indicate the center position of the inclusion.

Inclusion Background
Initial Guess εg (%) εposition (%) ĝminimum εg (%) ĝaverage
g0 = 0.8 2.66% 8.1 % 0.75 0.88% 0.7981
g0 = 0.82 3.63% 14.4 % 0.73 1.82% 0.8131
g0 = 0.85 4.46% 21.21 % 0.68 5.41% 0.8420

Table 1: The relative errors of background and inclusion for the three different initial guesses. ĝminimum repre-
sents the minimum estimated value of g-factor and ĝaverage denotes its estimated mean value.

Qualitatively, the algorithm has correctly found the spatial localization of the inclusion when the initial value
was different from the original background value (see Fig. 4). The relative estimation errors of the g-factor
increase from 2.66 % to 4.46 % for the inclusion and from 0.88 % to 5.41 % for the background when the
homogeneous initial value g0 has been chosen from 0.8 to 0.85, respectively (see Tab. 1). Furthermore, the
relative position errors of the inclusion increase and its retrieved values becomes more under-estimated (from
ĝminimim = 0.75 to ĝminimim = 0.68) when the g0 moves away from the original background value. Additionally,
the retrieved mean values of the reconstructed background don’t change sufficiently and remain near to the initial
homogeneous value (see Tab. 1).

4.4 Simultaneous reconstruction of µs and g

To date, the simultaneous reconstruction of µs and g-factor has not been considered in the literature for the
optical imaging. In order to study and mime the crosstalk between the scattering parameters, two different test



cases are considered. In this case, all the boundaries nodes are taken as detection locations for the inversion.
For the first test, the inclusion varies only in anisotropy factor (g∗ = 0.85) while it represents a heterogeneity
only in scattering coefficient (µ∗s = 4 mm−1) for the second test. The reconstructed results are depicted in
Fig. 5. As shown, the reconstructed profile was spatially well fitted with the original distribution for the first
test. The maximum local value retrieved in the g inclusion has reached 0.84 against 0.85. For the second
test, the algorithm has localized the µs inclusion in its exact position but the quantitative accuracy was very
underestimated. Indeed, the maximum value has reached only 2.5 mm−1 against 4 mm−1. The superiority in
the quality reconstruction of the g-factor can be explained by the high sensitivity of this factor on the boundary
data. It can be seen that the crosstalk effect induced in each parameter has been insignificant.

(a) (b)

Figure 5: The reconstructed profiles passing through the center position of the inclusion along the x, y and z
axis for the first test where the inclusion represents a heterogeneity only in g-factor and for the second one where
the inclusion represents a heterogeneity only in µs coefficient : (a) anisotropy factor (b) scattering coefficient.
The black solid profils represent the original position of the inclusion.

It should be noted that the reconstruction of g would not have been possible with the Diffusion Equation
since the anisotropy information is lost by considering the reduced scattering coefficient µ′s = µs(1− g)11 where
the g value is given. Despite studies of 3D optical imaging were conducted with the RTE, none of these studies
have presented the reconstruction of the g-factor, for the authors best knowledge. Although the example was
carried out with synthetic data, it nevertheless constitutes an important first step (numerical validation) in the
imaging of g-factor for optical imaging. This factor can be considered as a potential endogenous contrast which
provides additional intrinsic information beside µa and µs for tumor diagnosis.

5. CONCLUSION

A 3D optical reconstruction algorithm based on the RTE-based forward model was presented to detect tumor-like
inclusions. The main novelty of this work is the reconstruction of the spatial distribution of the anisotropy factor
of the Henyey-Greenstein phase function. This was made possible thanks to the combination of the RTE-based
forward model, the adjoint model, and the parallel computing. The algorithm is robust to recover and localize a
heterogeneity in g-factor presenting low or high contrast level in the medium and with different initial guesses.
The simultaneous reconstruction of µs and g was reported for the time in DOT and was achieved with a reasonable
quality. The crosstalk between the two parameters was weak. The parallel computing has led to considerably
reduce the reconstruction times with a reasonable-order. This work was a necessary preliminary study before
using the present algorithm with experimental boundary data and perform real small-tissues imaging. The
simultaneous reconstruction of the three optical properties µa, µs and g-factor is currently under investigation.



That can be an important issue for optical tomography which it is not easy due to the ill-posed inverse problem
and to the difference in nature, units, and sensitivities of the parameters on the boundary data.
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