
HAL Id: hal-03522771
https://hal.science/hal-03522771v1

Submitted on 12 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Advantages and insights from a hierarchical Bayesian
growth and dynamics model based on salmonid

electrofishing removal data
Christophe Laplanche, Pedro M. Leunda, Laurie Boithias, José Ardaíz,

Francis Juanes

To cite this version:
Christophe Laplanche, Pedro M. Leunda, Laurie Boithias, José Ardaíz, Francis Juanes. Advantages
and insights from a hierarchical Bayesian growth and dynamics model based on salmonid electrofishing
removal data. Ecological Modelling, 2019, 392, pp.8-21. �10.1016/j.ecolmodel.2018.10.018�. �hal-
03522771�

https://hal.science/hal-03522771v1
https://hal.archives-ouvertes.fr


Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in: http://oatao.univ-toulouse.fr/21291

To cite this version:

Laplanche, Christophe  and Leunda, Pedro M. and 
Boithias, Laurie and Ardaíz, José and Juanes, Francis 
Advantages and insights from a hierarchical Bayesian 
growth and dynamics model based on salmonid 
electrofishing removal data. (2019) Ecological Modelling, 
392. 8-21. ISSN 0304-3800

Official URL:

https://doi.org/10.1016/j.ecolmodel.2018.10.018 

Open  Archive  Toulouse  Archive  Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

mailto:tech-oatao@listes-diff.inp-toulouse.fr
http://oatao.univ-toulouse.fr/21291
https://doi.org/10.1016/j.ecolmodel.2018.10.018
http://www.idref.fr/103010688


Advantages and insights from a hierarchical Bayesian growth and

dynamics model based on salmonid electrofishing removal data

Christophe Laplanchea, Pedro M. Leundab, Laurie Boithiasc, José Ardáızd, Francis
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Abstract

Growth is a fundamental ecological process of stream-dwelling salmonids which is strongly

interrelated to critical life history events (emergence, mortality, sexual maturity, smolt-

ing, spawning). The ability to accurately model growth becomes critical when making

population predictions over large temporal (multi-decadal) and spatial (meso) scales, e.g.,

investigating the effect of global change. Body length collection by removal sampling is a

widely-used practice for monitoring fish populations over such large scales. Such data can

be efficiently integrated into a Hierarchical Bayesian Model (HBM) and lead to interesting

findings on fish dynamics. We illustrate this approach by presenting an integrated HBM

of brown trout (Salmo trutta) growth, population dynamics, and removal sampling data

collection processes using large temporal and spatial scales data (20 years; 48 sites placed

along a 100 km latitudinal gradient). Growth and population dynamics are modelled by

ordinary differential equations with parameters bound together in a hierarchical structure.

The observation process is modelled with a combination of a Poisson error, a binomial

error, and a mixture of Gaussian distributions. Absolute fit is measured using posterior

predictive checks, which results indicate that our model fits the data well. Results indicate

that growth rate is positively correlated to catchment area. This result corroborates those

of other studies (laboratory, exploratory) that identified factors besides water temperature

that are related to daily ration and have a significant effect on stream-dwelling salmonid

growth at a large scale. Our study also illustrates the value of integrated HBM and
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electrofishing removal sampling data to study in situ fish populations over large scales.

Keywords: Growth, Population dynamics, Salmo trutta , Depletion sampling,

Iberian peninsula, Mesoscale

1. Introduction1

Growth is a fundamental ecological process of most organisms. This is especially true2

for fishes for three reasons. First, fish continue to grow though their lifetime, i.e. they3

have indeterminate growth, and body size can increase by several orders of magnitude4

(from an average size of 1 mm at the egg stage to several meters in the largest species)5

(Summerfeldt & Hall, 1987; Jobling, 2002). Second, growth rate is dynamic through the6

life history, typically high in early life and slower later in life, is the most variable compo-7

nent of fish energy budgets (Jobling, 2002), and can respond quickly in a compensatory8

fashion to changed conditions (Ali et al., 2003). Third, fish growth is driven by a variety9

of factors including genetics and both abiotic and biotic factors, as demonstrated both10

in the lab (Brett et al., 1969; Elliott, 1975a,b; Coleman & Fausch, 2007b) and in situ11

(Coleman & Fausch, 2007a; Robinson et al., 2010; Xu et al., 2010; Letcher et al., 2015).12

Because most fish are ectothermic, their growth is especially sensitive to environmental13

variation, particularly temperature. But growth also responds in a context-specific way14

to interactions among multiple abiotic and biotic factors (Klemetsen et al., 2003) and15

as such is tightly related to population dynamics. In stream-dwelling salmonids, growth16

is sensitive to a wide variety of factors, including temperature, discharge, elevation, and17

conspecific density (Table 1, for a range of species) and is also strongly correlated with18

critical life history events (Hutchings, 2002; Pepin, 2016). For example, growth can deter-19

mine smolting age, size and age at migration, overwinter mortality, return timing, sexual20

maturity, success on the spawning grounds and emergence time of embryos, among others21

(Quinn, 2005; Levings, 2016). However, disentangling the relative importance of biotic22

and abiotic factors remains challenging as each is dynamic and either tightly related to23

climate and hydrology or to population dynamics, all of which have been shown to be24

sensitive to global climate change. The ability to accurately model fish growth and pop-25

ulation dynamics thus becomes critical when making predictions about the future, e.g.26

effects of changes in both land use and climate (Parra et al., 2009, 2012; Boithias et al.,27
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2014) on salmonid population dynamics (Milner et al., 2003; Jonsson & Jonsson, 2009;28

Baumann et al., 2012; Martins et al., 2012; Kovach et al., 2016; Clavero et al., 2017).29

Two main approaches are made available for researchers and managers to monitor30

growth and dynamics of salmonid populations in the field: Individual Tagging Methods31

(ITM, e.g., using Passive Integrated Transponder ‘PIT’ tags) and Removal Sampling by32

ElectroFishing (EFRS). ITM provides information about individuals but are expensive33

to operate at a large spatial scale (although this is possible; Marvin (2012)). EFRS is34

less precise about some aspects, by providing information on open groups of individuals,35

but requires less sampling time (see below). In view of their relative advantages, ITM36

and EFRS have both been used to monitor growth and dynamics of freshwater salmonid37

populations in the field, although EFRS is more common when studying growth (Table38

1).39

Two main reasons explain the popularity of EFRS: the relatively short sampling time40

it requires to collect data and the ease and wide variety of methods that can be used41

with it to compute maximum likelihood estimates of population size (reviewed by Cowx42

(1983)). Another option is to use a dedicated software for a wider choice of models (e.g.,43

MARK, although its main use is for ITM data, White & Burnham (1999)). The ease of44

monitoring fish populations with EFRS has led to uninterrupted series of long-term data45

over large spatial scales, usually collected for management perspectives and later used for46

research (see for instance Parra et al. (2009); Filipe et al. (2013); Bergerot et al. (2015)).47

Monitoring fish populations with EFRS (e.g., to estimate recruitment or mortality48

rates) includes measuring fish age. Calcified structures –otoliths or scales– can be sampled49

(lethally or non-lethally, respectively) on collected individuals and used to estimate fish50

age (Dortel et al., 2013). An alternative to otoliths and scales for fishes in temperate51

climates is to measure the length of collected individuals and infer population structure52

from the statistical distribution of length data. This is possible for stream-dwelling trout53

because the length distribution is multimodal, with one component per year of emergence54

(‘cohort’). The main reason for the multimodality is that reproduction occurs during55

a short period in autumn/winter (Isely & Grabowski, 2007). Many statistical methods56

are available to managers to easily separate overlapping length distributions across ages57

(Pitcher, 2002). Individual fish length is consequently collected during EFRS surveys58
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(later referred to as ‘EFRS length data’), thus providing long-term data over large spatial59

scales, ideal for investigating effects of global change on the growth and dynamics of60

salmonid populations (Naslund et al., 1998; Parra et al., 2009; Filipe et al., 2013; Bergerot61

et al., 2015; Kanno et al., 2015).62

More recently, Hierarchical Bayesian Modelling (HBM) has increased the interest in63

using EFRS data to study stream-dwelling salmonid ecology (also applies to ITM data,64

see Kéry & Schaub (2012)). One main reason for the renewed interest is that the HBM65

framework offers the ability to build observation models that are connected to ecological66

models, both possibly advanced (e.g., more than what dedicated tools such as MARK67

can offer), as integrated models (Letcher et al., 2015). More specifically, HBMs have68

proven to effectively model EFRS observations (Rivot et al., 2008), multimodal length69

distributions (Ruiz & Laplanche, 2010), growth (He & Bence, 2007; Bal et al., 2011;70

Lecomte & Laplanche, 2012; Sigourney et al., 2012; Dortel et al., 2013), and population71

dynamics (Kanno et al., 2015; Bret et al., 2017). Other reasons for the growing popularity72

of HBMs include their ability to propagate uncertainty from observations to parameter73

estimates and to compare competing models to test hypotheses (Lunn et al., 2013). The74

HBM framework also allows the use of prior distribution with model parameters (e.g.,75

based on earlier studies) and definition of a hierarchical structure that facilitates spatial76

inter-/extrapolation and forecasting (Banerjee et al., 2004; Lunn et al., 2013).77

While raw EFRS length data have been used to infer somatic growth (Lecomte &78

Laplanche, 2012), and pre-processed length data (into mean-length-at-age and density-at-79

age estimates) have been used to model either growth or population dynamics separately80

(e.g., He et al. (2008); Laplanche et al. (2018)), to our knowledge, raw EFRS length81

data have never been used to infer growth and population dynamics at the same time82

as an integrated model. We thus present an integrated HBM that models observations,83

somatic growth, and basic population dynamics. We illustrate the capabilities of the84

modelling framework by applying it to long-term data collected over a large spatial scale85

(Salmo trutta; 20 years; 48 sites). There is an apparent wide diversity of factors that86

affect stream-dwelling salmonid growth in situ (Table 1), which results of our modelling87

approach help explain. We further highlight advantages of our integrated approach and88

suggestions for potentially rewarding model extensions.89
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2. Materials and methods90

2.1. Growth, population dynamics, and observation models91

As mentioned, reproduction of stream-dwelling salmonids follows a yearly pattern.92

In contrast, growth is continuous. We thus needed to define two time structures: an93

index over years-of-emergence i.e. cohorts (y ∈ {1, . . . , Y }; y = 1 for the first modelled94

cohort; Y consecutive cohorts) and an additional continuous time variable (t, in days;95

t = 0 on January 1st of year y = 1). To simplify presentation, equations are presented96

below as if there were only one sampled/modelled location. The spatial dimension and97

the hierarchical structure of the model are presented later (section 2.2).98

2.1.1. Modelling the time/size at emergence99

Times of emergence are strongly year-dependent, because spawning is mainly triggered100

by a decline in photoperiod and temperature (Jonsson & Jonsson, 2009), and because101

development of trout eggs from spawning to emergence is mainly driven by water tem-102

perature (Elliott & Hurley, 1998; Ojanguren & Braña, 2003; Jonsson & Jonsson, 2009).103

Additional inter-individual differences in spawning times (spawning lasts for several weeks104

around a peak of activity; e.g., Riedl & Peter (2013); Isely & Grabowski (2007)) are105

magnified by inter-individual differences in the development of eggs and parr, causing106

inter-individual differences in emergence times for a given year. We define demergy (day)107

as the (year-dependent) median time of emergence, i.e. the day of year y when half the108

fry have emerged.109

Many studies identified additional inter-individual variation in size at emergence. As it110

was not possible to disentangle variation in both time and size at emergence with EFRS111

length data alone, we model inter-individual variation in both the time of and size at112

emergence as a single source of variation, in the form of the distribution of theoretical fish113

length at time demergy . While we consider demergy an unknown parameter in the model, we114

assume that mean trout length at emergence is known and constant. We denote Lemerg115

(in mm) this quantity, i.e. mean length at time demergy of the cohort which emerged in116

year y.117
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2.1.2. Modelling cohort growth118

The growth model which follows is the consequence of a similar model working at the119

individual fish level with random variation of growth parameters among individuals. We120

present the individual growth model in Appendix A and keep to the cohort level in the121

following, which is of greater interest given the available data (e.g., EFRS length data).122

One central assumption of the cohort growth model is that fish of a given cohort grow123

under similar environmental conditions. This is the case for stream-dwelling salmonids,124

due to limited movement, which includes long-distance return migration for reproduction,125

meso-habitat movement as habitat needs change through their life-time, and daily micro-126

habitat movements (Schlosser, 1991; Gido & Jackson, 2010; White et al., 2014; Matthews127

& Hopkins, 2017; Laplanche et al., 2018).128

The mean length at time t of the cohort which emerged on year y is denoted µy(t),

where t highlights the fact that growth is time-dependent, and subscript y specifies that

mean length is also year-of-emergence dependent, since several cohorts exist at the same

time. Cohort growth is modelled as

dµy(t)

dt
= Hy(t) for t ≥ demergy , (1)

starting from µy(d
emerg
y ) = Lemerg, where Hy(t) is daily length increase, which is also129

year-of-emergence dependent and time dependent.130

Growth rate of stream-dwelling salmonids decreases with fish age, which can be appro-131

priately modelled using empirical, concave growth functions (von Bertalanffy, Gompertz,132

etc.). We follow Elliott et al. (1995), who modelled growth as linear for certains powers133

of weight, and retain some of their notations to further facilitate comparison of results.134

Hence, growth rate is expressed as135

d(Wy(t)
b)

dt
= b

Gy(t)

100
for t ≥ demergy , (2)

where Wy(t) is the mean weight at time t of the cohort which emerged in year y, b is the136

power when weight raised to this power grows linearly, and Gy(t) is a year-of-emergence137

dependent and time-dependent parameter. In the case of a one-to-one length-weight138

relationship (Wy(t) = awµy(t)
bw ; see data section), the model is equivalent to having139

daily length increase proportional to the power of length140
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dµy(t)

dt
=

1

bwa
1/bw
w

Gy(t)

100
µy(t)

1−bbw . (3)

Growth curves covered by this ‘power growth model’ are illustrated in Appendix S1.141

High correlation between growth parameters b and Gy(t), due to multiplying them in eq.142

(2), and as illustrated in Appendix S1, compels us to set one of the two parameters as a143

constant, in our case b, and be more flexible on the other, Gy(t).144

The effect of water temperature on growth rate is introduced into the model by defining

Gy(t) = X(Tw(t))G′y(t), (4)

where X(Tw(t)) models the effect of temperature on growth and G′y(t) is a random effect145

(defined later). The function X ∈ [0, 1] defines the suitability of water temperature for146

growth, equaling to 0 below a minimum (Tmin) and above a maximum water temperature147

(Tmax), and reaching 1 at an optimal temperature (T opt). We chose a rational function148

(e.g., Mallet et al. (1999)).149

In sum, daily growth rate is the product of 3 terms: µy(t)
1−bbw/100bwa

1/bw
w , which150

models a decrease in growth rate with increasing age; X(Tw(t)), which models the suit-151

ability of water temperature for growth; and G′y(t), which accounts for other sources of152

variation.153

2.1.3. Modelling growth dispersion154

Differences in growth trajectories among individual fish led us to model distribution of155

trout length at any time of a given cohort with a normal distribution (Appendix A). The156

individual growth model also led us to express the standard deviation of length within157

a cohort (denoted σy(t)) as proportional to its mean, thus modelling the spread of the158

length distribution of cohorts over time, as follows159

σy(t) = νµy(t), (5)

where the coefficient of variation (CV) ν is a direct measure of the variation in growth160

rates among individual fish (Appendix A).161
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2.1.4. Modelling the distribution of fish length162

Because of the normal distribution of trout length within a cohort, trout length from163

all the included cohorts is modelled as a mixture of Gaussian distributions, one component164

per age (Figure 1). The theoretical probability density function of trout length at time t165

is consequently166

f(t, x) =
K∑
k=1

λy(t)−k+1(t)

λ(t)

1√
2πσy(t)−k+1(t)

exp

(
−

(x− µy(t)−k+1(t))2

2σy(t)−k+1(t)2

)
, (6)

where x is trout length in mm, y(t) is the year which corresponds to time t, y(t)−k+ 1 is167

the year-of-emergence of the cohort that is age k in year y(t), k ∈ {1, . . . , K} is an index168

over age (k = 1 for trout of age 0, refered to as trout of age 0+; k = 2 for trout of age 1,169

refered to as trout of age 1+; etc.), K is the maximum age in the model, and λy(t) (m−2)170

is the density at time t of the cohort that emerged in year y; λ(t) =
∑K

k=1 λy(t)−k+1(t) is171

the overall trout density at time t.172

Fish length range is divided into L intervals of width ∆x (mm), from 0 to maximum173

length xmax = L∆x (mm) (class centers are denoted xl = (l − 1/2)∆x in mm; l ∈174

{1, . . . , L} is an index over length classes). The expected density of fish of size class l at175

time t is therefore λl(t) = λ(t)
∫ l∆x

(l−1)∆x
f(t, x)dx m−2.176

2.1.5. Modelling observations177

The number of fish actually present is modelled as a Poisson variate (Wyatt, 2002)

Nl(t) ∼ Poisson(Aλl(t)), (7)

where A (m2) is the area which is sampled by EFRS. The Poisson distribution models178

stochasticity of fish presence and assumes that the distributions of individuals for a given179

size class are independent of one another and are not spatially structured, e.g., via physical180

habitat characteristics (Peterson, 1999).181

The number of fish of size class l caught at time t by electrofishing the area during

removal r, observations of which were referred to as EFRS length data, is modelled as a

binomial variate (Wyatt, 2002; Kanno et al., 2015)

Cl,r(t) ∼ Binomial(Rl,r(t), pl,r(t)), (8)
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where Rl,1(t) = Nl(t) and Rl,r(t) = Rl,r−1(t) − Cl,r−1(t) (r ≥ 2) is the stock left before182

removal r. The binomial distribution models stochasticity of fish capture by assuming183

that capture of fish of a given size class in the sampled area is independent with the184

same probability. Capture probability pl,r(t) increases with increasing fish size, which is185

modelled as logit(pl,r(t)) = αxl/1000 + β.186

2.1.6. Modelling population dynamics187

We interrelate densities of cohorts for subsequent years as follows

dλy(t)

dt
= (Sury(t)− 1)λy(t) for t ≥ demergy , (9)

starting from λy(d
emerg
y ) = λemergy , where λemergy is density at time demergy (recruitment)188

and Sury(t) is the apparent survival rate between t and t+ 1 of the cohort that emerged189

in year y. Apparent survival can be < 1 due to prevailing mortality or outgoing net190

displacements, or > 1 when mortality is balanced by incoming net displacements from191

area A.192

2.2. The Hierarchical Bayesian Model193

The growth, population dynamics, and observation models presented in the previous194

section were combined into an integrated HBM, as follows. Indices defined earlier are195

used in the HBM (year y, age k, removal r, and length class l). Specific details of our case196

study, namely the species (brown trout; see section 2.2.1) and the data sampling scheme197

(one EFRS survey a year; see section 2.2.2), are reflected in the temporal structure of the198

model. Moreover, EFRS surveys were conducted at multiple locations, which results in199

defining a new index over sites (s ∈ {1, . . . , S}; S sites) and a dedicated spatial structure200

(see section 2.2.3).201

Equations and values of the variables of the HBM are shown in Table 2. Relationships202

between HBM variables of the growth and population dynamics models are illustrated203

with a Directed Acyclic Graph (DAG, Figure 2). HBM variables, either measured or204

unknown, may be scalar, vectors, or multi-dimensional, as indicated by their subscript(s).205

As an illustration, (known) times of EFRS surveys are grouped together in the variable206

ds,y (days), which has 2 dimensions: site and year.207
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2.2.1. Details due to the study of Salmo trutta208

Based on other studies, we chose Lemerg = 30 mm for the size of emergence (Nika,209

2013). We used parameter values published by Elliott et al. (1995) for Tmin, Tmax, and210

T opt to calculate the temperature-dependent growth rate (Appendix S1). Brown trout is211

an autumn spawner, which makes the length distribution of trout of age 0+ observable212

in summer, when our sampling took place.213

2.2.2. Details due to the temporal structure of the sampling scheme214

The data sampling scheme (uninterrupted series of one EFRS survey in summer each215

year, see section 2.4) influenced details of the temporal structure of the HBM. The mean,216

standard deviation, and density of each component that defines the multimodal distri-217

bution of trout length at survey times (eq. (6)) are denoted µs,y,k (mm), σs,y,k (mm),218

and λs,y,k (m−2), respectively. These parameters play a special role in the HBM by being219

directly connected to the growth model (in the case of µs,y,k and σs,y,k), to the popula-220

tion dynamics model (λs,y,k), and to the observation model (µs,y,k, σs,y,k, and λs,y,k), as221

highlighted in the DAG (Figure 2). The resulting expected number of fish in each size222

class present in sampled area As,y at survey times is denoted E(Ns,y,l) = As,yλs,yfs,y,l,223

where fs,y,l is found by integrating eq. (6) over size class l, and λs,y =
∑

k λs,y,k denotes224

overall trout density. The probability of capturing fish during EFRS surveys is denoted225

ps,y,l,r. EFRS length data, for each site, year, size class, and removal, are gathered into a226

4-dimensional contingency table, denoted Cs,y,l,r.227

Our sampling scheme also implies that ‘only’ one observation of the multimodal distri-228

bution of trout length is available each year. As a result, we defined the random effect in229

eq. (4) in our HBM as site- and year-dependent (G′s,y). The population dynamics model230

reduces to a Markov process, with site-, year-, and age-dependent apparent survival rates231

(denoted Surs,y,k) between subsequent survey times. The abundance of trout of age 0+232

at survey times is, using the notation defined earlier, λs,y,1.233

Continuous variable t used in the growth, population dynamics, and observation mod-234

els becomes a daily time step in the HBM, indexed with d ∈ {1, . . . , D} spanning the235

Y years that are considered in the model. Daily mean water temperatures are denoted236

Tws,d in the HBM and growth parameter Gy(t) becomes Gs,y,k,d. The ordinary differential237
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equation (3) was thus integrated at a daily time step using Euler’s forward method. In238

this case, we approximated predicted mean lengths at survey times as239

µs,y,k =

(
(Lemerg)bbw +

b

abw

ΣGs,y,k

100

)1/bbw

, (10)

where ΣGs,y,k is the cumulative sum of Gs,y,k,d from emergence to observation.240

Trout of age 1 and older on the year of the first EFRS survey emerged K − 1 years241

before this year. As a result, we modelled growth and population dynamics K − 1 years242

before the year of the first EFRS survey. The lack of need of backcasting/forecasting in243

our case study led us to model cohorts from this point to the year of the last EFRS survey.244

Index y, defined earlier, thus still represents cohorts in the HBM, while the first EFRS245

survey corresponds to y = K and the last one to y = Y .246

2.2.3. Spatial structure of the HBM247

Some quantities defined during model presentation become spatially dependent, which248

we highlighted with variable subscript s (Table 2 and Figure 2). Prospective spatial sim-249

ilarities of growth rates (G′s,y), recruitment (λs,y,1), and apparent survival rates (Surs,y,k)250

are modelled as follows251


G′s,y ∼ Lognormal(log(G′s), σ

2
G′s

)

λs,y,1 ∼ Lognormal(log(λ1), σ2
λ1

)

Surs,y,k ∼ Lognormal(log(Surk), σ
2
Sur,k)

. (11)

We chose log-normal distributions to model multiplicative errors for G′s,y and Surs,y,k and252

to model variation in animal density (Limpert et al., 2001). Hyperparameters log(λ1),253

log(Surk), log(G′s) and σ2
λ1

, σ2
Sur,k, σ

2
G′s

are regional means and variances of log(λs,y,1),254

log(Surs,y,k), and log(G′s,y), respectively.255

2.2.4. Priors256

All model parameters were provided with vague uniform priors (Table 2), between257

0 and 1 for λ1, Surk, b, and νs, and between 0 and 10 for σλ1 , σSur,k, G
′
s, and σG′s . We258

provided time of emergence (denoted demergs,y ) with a uniform prior of a 6-month amplitude259

(±120 days) around a site-dependent, known value.260
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2.3. Computations and measure of model fit261

2.3.1. Simulating samples of the posterior distribution of the HBM262

Equations provided in the previous section can be combined to express the posterior263

distribution of model parameters. The HBM is, however, too complex for such a distribu-264

tion to be analytically tractable. Samples from the posterior distribution can be relatively265

easily simulated via Markov chain Monte Carlo (MCMC), and we used OpenBUGS for266

this purpose (Lunn et al., 2013). The code of our HBM and a tutorial are both available267

as Appendix S2. Data pre-processing and output post-processing were implemented in R268

(R Core Team, 2014). MCMC convergence was assessed by computing inter-chain vari-269

ances of simulated latent variable samples across 3 chains; initializations were computed270

using 5, 50, and 95% prior marginal quantiles. After convergence, 5,000 samples were271

simulated. Only effective sample sizes (ESS) are reported. Point estimates are posterior272

means.273

2.3.2. Absolute measure of model fit274

We assessed model fit by comparing the EFRS data collected in the field to their respec-275

tive values simulated by the model. Observed catch, all removals pooled together, is de-276

noted Cs,y,l =
∑

r Cs,y,l,r (Figure 1; sum of the stacked bins for each size class). The distri-277

butions of the observed (Cs,y,l) and the expected modelled (Cpred
s,y,l = E(Ns,y,l)

∑
r ps,y,l,r(1−278

ps,y,l,r)
r−1) distributions of the catches were compared using standard quantile-quantile279

(Q-Q) plots. A finer comparison of the distributions with a measure of the level of signif-280

icance of the potentially under- and over-estimated values (for each site, year, and length281

class) were obtained in a Bayesian framework by using posterior predictive p-values (Gel-282

man et al., 2004; Lunn et al., 2013; Chambert et al., 2014). For this purpose, replicated283

data (Crep
s,y,l) were simulated by the fitted model, which is relatively easy to perform with284

BUGS (Ntzoufras (2009); Lunn et al. (2013); Appendix S2). The scope of our model285

checking is to evaluate the fitness of the survey layer (i.e. Poisson-layer and removal sam-286

pling) given the estimated length distribution, and consequently given values for model287

hyperparameters such as growth and survival rates. For that reason, replicated data were288

simulated using the Poisson and Binomial models (eqs (7)-(8)). The desired p-value, as289

the probability that the replicated data (of size class l, site s, year y) could be more290
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extreme than the observed data, is291

pBs,y,l = Pr(Crep
s,y,l ≥ Cs,y,l). (12)

P-values lower than 0.05 highlight underestimated values and values greater than 0.95292

highlight overestimates. P-values of the posterior predictive checks are uniformly dis-293

tributed if the model fits correctly (Marshall & Spiegelhalter, 2003). We thus compared294

with another series of Q-Q plots the distributions of the p-values for each site to their theo-295

retical uniform (0,1) distribution. Computation of the posterior predictive p-values is also296

relatively easy to perform with BUGS (Ntzoufras (2009); Lunn et al. (2013); Appendix297

S2).298

2.4. Study area and data sets299

2.4.1. Study area300

The study area represents the natural range of brown trout (Salmo trutta) distribution301

in the region of Navarra (northern Spain, 0◦43’–2◦29’ W, 41◦54’–43◦19’ N). This area of302

nearly 6,420 km2 is geologically heterogeneous (http://geologia.navarra.es) and drains303

northwards into the Bay of Biscay and southwards to the Mediterranean sea via the Ebro304

river. The Mediterranean drainage of the study area can be further split into two sub-305

basins that show a clear east-west altitudinal gradient (Figure 3). Elevation in the study306

area ranges from 0 to 2,444 m.a.s.l.307

Brown trout is the dominant fish species throughout the study area, and its popula-308

tions consists exclusively of resident individuals (except for lower reaches of the Atlantic309

Bidasoa basin, where anadromous individuals exist at low densities). Rivers are open310

to recreational angling except from some reaches that have preserved sections. Stocking311

in upper and middle reaches of the study area stopped in 1992 but continues in lower312

reaches, where brown trout is not the dominant species. Human population density is low313

in the study area (<10 inhabitants/km2), and rivers are not degraded by anthropogenic314

land uses or pollution so their ecological status is good or very good (see internal re-315

ports commissioned by the Department of the Environment of the regional Government316

of Navarra (DEGN) considering physical-chemical water parameters and biological wa-317
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ter quality). Agricultural land use, hydroelectric power stations, and dams are the main318

human pressures in the study area (Parra et al., 2009).319

2.4.2. EFRS survey network320

Electrofishing data were collected by the Fish and Game section of the DEGN (http://cazaypesca.navarra.es).321

The survey network is composed of 61 sampling sites (Figure 3) which are located in every322

river in upper, middle, and lower reaches and some scattered tributaries. Streams were323

surveyed once a year every summer (July–September) in 1992-2014 with the exception of324

5 sites, where sampling started later (2 in 1997; 1999; 2000; 2005). Surveys suspected of325

being influenced by the presence of stocked individuals were excluded: (1) surveys before326

1995 and (2) sites in lower reaches where stocking continues (Figure 3). As a result, the327

survey network we used is composed of 48 sites sampled for 19.5±1.7 consecutive years for328

a total of 48× 20− 23 = 937 EFRS surveys. Catchment areas of upstream sampling sites329

ranged from 9.2 to 614.5 km2 (mean: 87.9 km2), and slopes at sampling sites ranged from330

0.27 to 7.68% (mean: 1.47%). Sampled area differed among sites and years depending on331

stream width (8.2±3.6 m) and reach length (105.1±35.3 m). The sampling time required332

to survey 1000 m2 ranged from 23 to 127 minutes (mean: 55); variability depending on333

habitat heterogeneity and fish density.334

2.4.3. Fish assessment335

One- to three-pass depletion electrofishing was performed, with the two-pass design336

being the most frequent (not sampled due to surveys started later than 1995: 2.4%; 1337

removal: 7.0%; 2: 89.2%; 3: 1.5%). Each captured individual was measured for fork338

length (±1 mm) before being released, for a total of 189,533 fish-length data samples.339

Modelling drove us to code fish length data by 10-mm length class. Trout are relatively340

small in the study area with a short life-span, and thus the maximum size class was set341

to 400 mm (99% quantile of trout size is 298 mm, length of 146 individuals > 400 mm342

were truncated to 400 mm) with a maximum age of 4 (K = 4). Raw length data collected343

during EFRS surveys were therefore turned into a 4-dimensional table with the number of344

trout caught at each site, year, length class, and removal (later refered to as EFRS length345

data), with missing values depending on when surveys started and how many fish were346

removed. A total of 14,296 brown trout collected in the study area were also measured347
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for weight. Predicted weights (g) were modelled as W = awL
bw , where L is length (mm),348

and aw = 1.09 10−5 and bw = 3.010 are the scaling coefficient and exponent respectively349

(R2 > 0.99; linear regression on log-transformed variables). This relationship was used to350

convert between length and weight in the growth model (e.g., eq. (10)).351

2.4.4. Water temperature352

As presented below and in additional detail in Appendix S3, we used air temperature353

as a proxy for water temperature to calculate values of water temperature at EFRS sites354

for the entire period (as the model requires). Air temperature, water temperature, and355

EFRS length data were collected using three independent survey networks, at distinct sites356

and for different time periods (Figure 3). In short, daily air temperature was spatially357

interpolated by universal kriging using elevation as a linear predictor with day-dependent358

regression coefficients. Monthly water temperature was linearly related to monthly air359

temperature using site-dependent regression coefficients. The seasonal trend in water360

temperature at EFRS sites was obtained by using the air-water temperature relationship361

of the nearest water temperature gauge with the seasonal trend in daily air temperatures362

at EFRS sites as inputs. Simulated water temperatures (range 0.7-23.2◦C) covered the363

range of temperature for brown trout growth (Appendix S1).364

3. Results365

3.1. Fish length distribution366

The multimodal fish length distribution was predicted for each of the 937 EFRS surveys367

(Figure 1). QQ-plots of observed vs. expected modelled fish length distributions indicate368

that the observed and expected modelled distributions of the catch are fairly similar369

(Figure 4). The results of the posterior predictive checks highlight size classes of under-370

and over-estimated catch (Figure 1). The combined results of the posterior predictive371

checks indicate that the model fits correctly, to the exception of site 1620, due to some372

over-estimated values, and to the exception of sites 1010 and 1830, due to scarce data373

(Figure 5). From these results, we conclude that the model provides a picture of the374

distribution of fish length data that is well supported by the data, both in terms of375

expected values (mixture of multimodal distribution) and dispersion around these values376
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(Poisson and binomial model), thus allowing us to produce and interpret estimates for377

model’s hyperparameters, e.g. related to growth and population dynamics.378

3.2. Growth and population dynamics379

The model simulates seasonal and interannual growth variation (Figure 6) as well as380

differences in growth profiles between sites (see below). The estimated value for parameter381

b = 0.525 indicates that growth curves are moderately concave in the study area. Esti-382

mated values for the growth dispersal parameter (νs) ranging from 0.09 to 0.17 (Appendix383

S4) indicate that growth dispersion is strongly site-dependent.384

The model also simulates decrease in the apparent survival rate with increasing age385

(Figure 6), as indicated by estimated values of apparent survival rates at the regional386

scale (trout of age 0+ → 1+: Sur2 = 0.69; 1+ → 2+: Sur3 = 0.46; 2+ → 3+: Sur4 =387

0.21). Although not formally tested, respective variances appear similar across age classes388

(σSur,2 = 0.76; σSur,3 = 0.65; σSur,4 = 0.72). Density of trout of age 0+ varies greatly389

among sites, cohorts, and years (λ1 = 0.077; σλ1 = 1.40).390

Marginal posterior distributions for model parameters (λ1, σλ1 , Surk, and σSur,k) are391

illustrated in Appendix S4.392

3.3. Hierarchical structure of growth rate393

Daily growth rate was modelled as the product of three terms: size-dependence,394

temperature-dependence, and other sources of variation. We investigated further the rel-395

ative contribution of the two latter terms to variation in the daily growth rate. For that396

purpose, we calculated the variance of the log of the product Xs,dG
′
s,y (0.36), which sums397

up into the variances of log(Xs,d) (0.24) and of log(G′s,y) (0.14) plus twice their covari-398

ance (-0.05). These results indicate that (1) the deterministic, temperature-dependent399

term Xs,d and the random term G′s,y are weakly correlated with each other (Pearson’s400

r = −0.13) and that (2) they contribute respectively and approximately 2/3 and 1/3 of401

the variance in daily growth rate, size-dependence excluded, on a log-scale.402

We investigated further the relative contribution of the two latter terms to the mod-403

elled spatio-temporal variation in daily growth rate. We thus calculated ANOVA sums of404

squares (SSQ) of both log(Xs,d) (using site, year, and month as factors) and log(G′s,y) (us-405

ing site and year). Percentages of SSQs for each term are shown in Table 3. Results show406
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that one major source of variation in the deterministic, temperature-dependent term is407

seasonal (month: 30.6%). Two other main contributions highlight the importance of the408

site-specificity of temporal variation driven by temperature (site*month: 24.7%; site*day:409

31.7%). Variation in the random term is mainly spatial (site : 73.0%). This analysis also410

indicates that there is a negligible global trend in the growth rate over the last 20 years411

(year: 1.5-2.5%), although there is a considerable site-dependent, yearly trend for G′s,y412

(site*year: 24.5%). We did not detect any systematic increase in water temperature over413

time from 1995-2014, either at each site or at the regional scale (linear regression using414

mean water temperature).415

We investigated further reasons for the spatial trend in the random term. We found416

that G′s (mean value of G′s,y at each site) increases in streams in the downstream direction417

(Figure 7). We found that G′s was weakly correlated with mean water temperature (Tws ;418

log-transformed; r = −0.13), indicating that the variation of G′s in the downstream419

direction is not due to water warming while flowing downstream. We instead found420

that G′s was positively correlated with catchment area (denoted wsas; log-transformed;421

Pearson’s r = 0.73) leading towards other possible explanations for spatial variation in422

growth rate, as discussed later. Parameter G′s was also negatively correlated with stream423

slope (slopes; log-transformed; r = −0.59). Further linear regression analysis showed that424

a combination of catchment area and stream slope predicts the random term well, leading425

to the relationship log10(G′s) = 0.175 log10(wsas/slopes), which explained up to 64% of its426

variability (R2 = 0.64).427

4. Discussion428

4.1. Strength of the approach429

Collecting fish length data by electrofishing has been used widely for several decades430

to monitor riverine fish populations. This practice has resulted in long-term monitoring431

over large spatial scales. Researchers have taken advantage of it to measure, e.g., effects432

of global change on fish populations (Naslund et al., 1998; Parra et al., 2009; Filipe et al.,433

2013; Bergerot et al., 2015). The HBM framework has increased the value of EFRS data434

by allowing the investigation of more challenging scientific questions and the refinement435
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of data use (e.g., large scale data analysis by Kanno et al. (2015)). Our study illus-436

trates the ability of the HBM framework to consider a relatively complex model for EFRS437

length observations (mixture of distributions, capture probability increasing with increas-438

ing fish size, and Poisson/binomial errors), a growth model with a relatively complex439

hierarchical structure, and a population dynamics model (relatively simple in our case, as440

a Markov process with a simple hierarchical structure). There are three major advantages441

in connecting these three models together, or more generally in connecting observation442

and ecological models together, as an integrated model. The first is to combine diverse443

datasets by connecting two observation models together (Myers, 2001; Kéry & Schaub,444

2012). The second is to share parameters both ways by connecting two ecological mod-445

els together, in our case to model density-dependent somatic growth or size-dependent446

mortality, which both turned out to be important processes to consider (Sogard, 1997;447

Imre et al., 2005; Myrvold & Kennedy, 2015). The third is to infer ecological processes448

from the data, as a result of model calibration, by connecting an ecological model to an449

observation model (e.g., Laplanche et al. (2018)). Another major advantage in connect-450

ing an ecological model to an observation model is to ‘enlighten’ data processing with451

the knowledge brought by the ecological model, in a theory-guided data science paradigm452

(Karpatne et al., 2017). In our case, consideration of the observation and ecological mod-453

els as an integrated model allowed us to separate age classes from length frequency data454

as a function of the ecological processes (growth, mortality). Although the length distri-455

bution of trout of age 0+ usually clearly stand out from the rest (Crozier et al., 2010;456

Xu et al., 2010; Logez & Pont, 2011), the distributions of older fish usually overlap due457

to growth dispersion and growth rate decreasing with fish age, making ‘blind’ separa-458

tion more challenging, possibly leading to misclassification (Pitcher, 2002; FAO Fisheries459

and Aquaculture Department, 2013). The subsequent loss of fit caused by constraining460

the observation model (e.g., via the ecological model) is an opportunity to measure the461

discrepancy between observations and the assumed model and how much better/worse462

the constrained model is than the null model, thus serving as a rational guide for model463

improvement (Burnham & Anderson, 2010; Lunn et al., 2013).464

We chose to conduct Bayesian posterior predictive checks for model evaluation and465

model checking, because they are effective at identifying poorly fitted models without466
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requiring further data, although conservative when parameters are not estimated accu-467

rately (Lunn et al., 2013). Other options (Conn et al. (2018) for a review) include cross-468

validation, still possible in the case of models and data with a hierarchical structure, e.g.469

using leave-one-out cross-validatory assessment or blocking, at a cost in terms of compu-470

tational requirements (Marshall & Spiegelhalter, 2003; Roberts et al., 2017). We directly471

compared catch (eq. (12)), although it would have been possible to compare the fit for472

each size class using some measure involving both the data and the model, e.g., Pearson473

χ2 statistic, thus measuring the dissimilarity between the observed and modelled distribu-474

tions in a manner close to a frequentist χ2 test. The approach we used has the advantage475

of telling about the direction of the poor fits (under- and over-estimates) while the χ2
476

statistic allows to measure the fit at different scales (by summing the χ2 statistics, e.g.,477

over size classes to get a measure at the survey level). A χ2 type statistic can also be used478

to measure model fit for a wider range of models (Gelman et al., 2004; Ntzoufras, 2009;479

Bal et al., 2014). We did not use the deviance statistic as a metric for model fit (Ntzoufras,480

2009) either, due to the externalized computations it requires in the case of a model with481

multiple error terms in the survey layer (in our case: Poisson and binomial). The scope482

of our model checking was to evaluate the fitness of the survey layer given the estimated483

length distribution. The model has five remaining random effects (see below), which were484

consequently not subject to examination in our case, although this would still be possible485

using replicated data and associated Bayesian p-values. The hierarchical framework offers486

other options than the measure of absolute fit that can serve as a rational guide for model487

improvement. We deem important mentionning the model comparison approach (Lunn488

et al., 2013), either related to information theory such as the AIC (Burnham & Anderson,489

2010), which seeks to identify which model would be the most efficient data compression490

algorithm for the observed data, or fully Bayesian approaches (e.g., product space search;491

see Tenan et al. (2014)), which seeks to identify which of the alternative models has the492

highest relative credibility of being the true model, considering given data. In any case,493

measuring the absolute fit as well as model selection benefits from an integrated approach,494

by requiring formulation of the likelihood of model parameters given the data, which is a495

direct result of expressing the observation process (‘external’ errors) in the model.496

The HBM framework also allows for ‘internal’ errors or random effects, which account497
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for additional sources of variability. We did not use internal, additive errors for the498

cohort mean sizes predicted by the growth model, as Lecomte & Laplanche (2012) did.499

Our model thus represents an appreciable advance compared to theirs. We still considered500

five random effects in the model, however: times of emergence (demergs,y ), density of trout of501

age 0+ (λs,y,1), apparent survival rate (Surs,y,k), growth rate (G′s), and growth dispersion502

rate (νs). All of these terms have an ecological meaning, the estimated values of which are503

of great value by themselves. The drawback of having these random effects is that they504

prevent using the model in its current state for inter- or extra-polation, either temporal505

(e.g., forecasting) or spatial (e.g., to the stream continuum). All of these random effects,506

however, open the possibility of adding a connection to covariates, since the framework507

offers the ability to input spatio-temporal series of forcing variables into the model (e.g.,508

water temperature).509

We set parameters Tmin, T opt, and Tmax as known and constant, using values from510

laboratory experiments. The HBM framework makes it relatively easy to update the511

model to adjust and estimate values of additional unknown parameters, since data are512

informative, simply by defining these parameters as stochastic in the model (Ntzoufras,513

2009; Lunn et al., 2013). The temperature range covered in our study area (0.7-23.2◦C)514

would make estimating these three parameters conceivable. We chose to use low informa-515

tive priors for all of our parameters to facilitate a posteriori comparison of our estimates516

to those of other studies. Another option is to tighten parameter priors by using results of517

other studies (e.g., from Forseth et al. (2009) for Tmin, T opt, and Tmax). In any case, the518

flexibility offered by the HBM framework allows researchers to adjust and update their519

model as a function of the knowledge available. It also allows modelling parameters as520

functions of environmental covariates and random effects as residuals, using hyperparam-521

eters that are considered to be prefectly known, partially known and defined with narrow522

priors, or unknown and defined with vague priors.523

4.2. Ecological results and discussion of main assumptions524

We modelled the distribution of fish length as a mixture of Gaussian components,525

which is the usual option (Pitcher, 2002). We have shown that the Gaussian mixture526

model directly resulted from our growth model, which assumed that there are inter-527
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individual differences in growth rates and that fish individuals keep their advantages and528

disadvantages over their life-time (Appendix A). Other studies have highlighted the im-529

portance of inter-individual differences in growth traits and possible relative superiority or530

inferiority among individual fish (Juanes et al., 2000; Peck et al., 2004; Biro et al., 2014).531

We chose to model inter-individual differences in growth traits as random variation in532

growth parameters, which is a standard approach (e.g., see Sainsbury (1980) or Tang533

et al. (2014) with respect to the von Bertalanffy model). Our model led to a theoretical534

relationship between the mean and standard deviation of the length distribution of each535

cohort (i.e. proportional) that fitted our data well. Other authors have considered a con-536

nection between the mean and standard deviation of length distributions, with CVs with537

a range similar to ours (Lobón-Cerviá & Rincón, 1998; Lobón-Cerviá, 2010). The latter538

authors, however, considered year-dependence, while we modelled site-dependence. Our539

assumption of site-dependence could thus be relaxed into some spatio-temporal variation540

(νs,y), offering the ability to further study growth dispersion.541

We modelled catchability as a logistic function of fish size and site (as in Ruiz &542

Laplanche (2010)). The reasons for this choice included consideration of the increase in543

catchability with increasing fish volume (Dolan & Miranda, 2003) as well as a dependence544

on physical habitat. Some authors have considered other important covariates, such as545

time (e.g., due to discharge), stream width (Letcher et al., 2015; Kanno et al., 2015), or546

removal (Vøllestad et al., 2002; Laplanche, 2010). Although of little impact regarding547

inference on growth, the relevance of the catchability model becomes crucial when inter-548

preting estimates or when further modelling fish density (e.g., recruitment or mortality549

rates).550

We considered a Poisson model for fish dispersion, which seems acceptable in view551

of the results of the posterior predictive checks, not issuing warnings with high numbers552

of under- and over-estimates. The model assumes that the distribution of the fish of553

a given size class in proximity of a sampled site is not spatially structured (Peterson,554

1999). While riverine salmonid do not show gregarious behavior, due to strong intra-555

specific competition, salmonid distribution can be patchy as a consequence of a spatial556

structure of the physical habitat. In such cases, it would be necessary to consider another557

statistical model for dispersion, e.g. using the negative binomial distribution, or expressing558

21



dispersion as a function of physical habitat covariates.559

We chose to model growth rate with a power function instead of the more widely used560

von Bertalanffy growth function (He & Bence, 2007; Lecomte & Laplanche, 2012). Elliott561

(2009) have suggested that salmonid growth is not asymptotic and that non-asymptotic562

models should be used instead. Some studies have modelled Salmo trutta growth close563

to linear (power growth model with b = 0.31; Elliott et al. (1995); Jensen (2003); Elliott564

(2009); Forseth et al. (2009)), where we found a stronger curvature in this case study565

(b = 0.525). To our point of view, however, EFRS data may not be the most appro-566

priate tool for comparing growth models and to investigate whether salmonid growth567

is asymptotic or not. The reason for this is that trout of age 2+ and older have rela-568

tively low density and their length distributions overlap (Pitcher, 2002), thus providing569

a low amount of information on trout growth. Information on individuals, either from570

laboratory experiments or in situ via capture-recapture (Tang et al., 2014), seems more571

appropriate. The choice of the empirical growth function becomes critical if estimating572

the time of recruitment from length data becomes a priority, however. Age-dependence573

of the growth rate due to gonad maturation and periodical changes in growth trajectories574

could be approached with a biphasic growth model, still applicable in a HBM framework575

(Quince et al., 2008; Dortel et al., 2013; Armstrong & Brooks, 2013; Higgins et al., 2015).576

Finally, an alternative to empirical growth functions is to use a mechanistic, bioener-577

getic model, such as Net Rate of Energy Intake (NREI) models, which simulate growth578

of drift-feeding salmonids (Piccolo et al., 2014; Weber et al., 2014). NREI models are,579

however, not applicable at large spatial scales due to their considerable data and com-580

putationnal requirements (e.g., Hayes et al. (2007); Urabe et al. (2010)). Computational581

requirements would also make such models impractical in a Bayesian framework, which582

requires simulation of the ecological model at each iteration of the MCMC sampler.583

We found that the density of trout of age 0+ varied greatly among sites and among584

years, as usual with salmonids (Milner et al., 2003; Lobón-Cerviá, 2005; Vøllestad & Olsen,585

2008). The number of trout of age 0+ present at survey times results from the combi-586

nation of three ecological processes: spawning success the year before, survival between587

spawning and emergence, and survival/movement (apparent survival) between emergence588

and survey times. Survival between spawning and emergence may be related to environ-589
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mental conditions, due to high discharge damaging gravel redds before emergence (Kanno590

et al., 2015). The same applies to apparent survival between emergence and survey times,591

due to high discharge flushing parr following emergence, thus causing mortality and down-592

stream movement (Jensen & Johnsen, 1999; Lobón-Cerviá, 2007; Nislow & Armstrong,593

2012). Spatio-temporal variations in stream water temperature (via snowmelt) and in594

precipitation (and resulting stream discharge) can thus cause large variations in the den-595

sity of trout of age 0+ at survey times. Another reason is that adult spawning success596

and competition of trout of age 0+ following emergence may be density-dependent (Mil-597

ner et al., 2003; Liermann et al., 2010). Further variation in apparent survival strongly598

depends on age and on season (Lobón-Cerviá & Rincón, 2004). Survival can decrease599

significantly with increasing age in some rivers as a result of angling pressure, thus de-600

creasing the apparent survival rate with increasing age, as we observed. Our population601

dynamics model is basic in its current version and does not consider spawning success602

nor stage-dependent survival rates. However, the HBM framework offers the possibility603

to model population dynamics (Bret et al., 2017).604

We found that a non-negligible portion of the growth rate was unrelated to water605

temperature. Several studies have illustrated the ineffectiveness of water temperature606

alone to predict salmonid growth rate in the wild (Table 1). A more recent meta-analysis607

(Kovach et al., 2016) showed that temperature ‘was rarely related to growth’. On the608

other hand, laboratory studies have reported a strong relationship between observed tem-609

perature and growth (e.g., pseudo-R2 > 0.99 in Elliott et al. (1995)). The latter study,610

however, considered fish fed to satiation and consequently did not consider growth limi-611

tation due to lack of food. The effect of temperature on growth is strongly mediated by612

food consumption; the optimum temperature for growth varies considerably depending613

on ration size (Brett et al., 1969; Elliott, 1975a,b; Piccolo et al., 2014). Since salmonids614

are highly territorial and juvenile and subadult fish feed on benthic and drifting macro-615

invertebrates (Oscoz et al., 2005; Johnson & McKenna, 2015; Johnson et al., 2017), in616

situ food ration is likely related to intrinsic (conspecific density) and extrinsic factors617

(discharge, macroinvertebrate density, etc.), which are the factors that were found to be618

connected to salmonid growth (Table 1). Moreover, we found a strong connection between619

growth rate and catchment area, which is considered as an integrated metric of habitat620
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capacity and incorporates habitat requirements at multiple scales (Rosenfeld, 2003; Lier-621

mann et al., 2010; Ayllón et al., 2012). Our results thus corroborate those of other studies622

indicating that growth rate is related to both water temperature and food ration, and623

that this relationship remains predominant at a large spatial scale. We also conclude624

that further modelling of the growth rate should include a relationship to environmental625

variables related to daily food ration (e.g., discharge and macro-invertebrate density).626

4.3. Incorporating other kind of data/information627

Water temperature data are generally not available at EFRS sites, especially in the628

case of long-term historical EFRS surveys initiated for management purposes. One pos-629

sible consequence of using a model to predict water temperature is integrating finer scale630

variation in water temperature and not detecting the resulting effect on growth, such as631

thermally heterogeneous stream waters that fish exploit (Ruff et al., 2011; Armstrong632

et al., 2013; Kanno et al., 2014). We predicted water temperature from air temperature633

using a mixed-effects linear model, which is effective using monthly data (Caissie, 2006).634

Making predictions at a finer temporal scale requires either a non-linear empirical model635

(e.g., 4-parameter logistic, see Mohseni et al. (1998) or Bærum et al. (2013)) or a mecha-636

nistic model, which requires more data (Caissie, 2006). We therefore kept a linear model,637

in view of the large spatial (∼10-km between sites) and temporal (∼1 year) sampling638

frequency of our EFRS survey, which prevented us from evaluating the importance of639

the effect of temperature on growth at a smaller spatiotemporal scale and removed the640

need for water temperature values at a finer resolution. Moreover, our growth model641

numerically integrates water temperature values (eq. (10)), which simulates the ecologi-642

cal growth process in which fish integrate environmental conditions, thus decreasing the643

effect of daily temperature variation on growth. Other studies have shown that modelling644

water temperature as linear is a poor choice to capture a gradual shift in water temper-645

ature (e.g., Bal et al. (2014)). We detected a spatial structure of the growth rate in the646

downstream direction that we attributed to food availability rather than to temperature647

increase, which was consistent with results of other studies (as discussed). Our thermal648

model included the gradual shift in air temperature with elevation as well as a stream-649

dependent thermal regime. For this reason, while we do not exclude the possibility that650
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our model missed a portion of the gradual shift in water temperature in the downstream651

direction, it seems highly unlikely that the spatio-temporal variation of the growth rate652

that we observed was due exclusively to water temperature. In any case, studying the ef-653

fect of fine-scale thermal heterogeneity requires considering temperature data at a similar654

scale (Ruff et al., 2011; Kanno et al., 2014).655

We focused on juvenile and subadult stream-dwelling salmonids in upper streams, with656

movements limited to switches between micro- and macro-habitat (Schlosser, 1991; Gido657

& Jackson, 2010; White et al., 2014; Matthews & Hopkins, 2017; Laplanche et al., 2018).658

This considerably reduces the impact of water temperature heterogeneity on growth.659

While brown trout has high rates of site fidelity (Budy et al., 2008), other stream-dwelling660

salmonids can move over larger distances (e.g., cutthroat trout, see Hilderbrand & Kersh-661

ner (2000)). In such cases, a movement model should be considered, which would require662

specific data such a fish’s successive locations using ITM (Hilderbrand & Kershner, 2000;663

Marvin, 2012).664

As indicated, salmonid growth may be predicted more accurately by modelling the665

daily ration. Ration size depends mainly on fish size, macro-invertebrate drift density,666

conspecific density, and discharge (Serchuk et al., 1980; Hughes & Grand, 2000; Weber667

et al., 2014). Fish size and conspecific density are intrinsic model variables, which are668

directly available in an integrated model. Discharge can be either directly measured in669

situ, or predicted using hydrological models (e.g., the catchment-scale SWAT; Arnold et al.670

(1998)). In the latter case, land use, soil type, topography and climate data including671

precipitation are required as inputs, and measurement of discharge at the catchment outlet672

is needed for discharge calibration. On the other hand, macro-invertebrate drift density673

can be effectively sampled in rivers (Allan, 1987; Boyero et al., 2002; Hay et al., 2008).674

Salmonid spawning is triggered mainly by photoperiod and temperature (Jonsson &675

Jonsson, 2009) and is directly observable (timing and intensity) by monitoring spawning676

grounds (Gallagher et al., 2007). The time required for development of trout eggs from677

spawning to emergence is driven mainly by water temperature (Ojanguren & Braña, 2003;678

Jonsson & Jonsson, 2009), which can be used to make accurate predictions of the time of679

emergence (e.g., Elliott & Hurley (1998)). However, time of emergence is more difficult680

to observe in situ, due to the small size of the emerged fry. Predictions and observations681
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of the times of spawning and emergence could be still incorporated into the model, in a682

HBM framework (e.g., Lecomte & Laplanche (2012)).683

We considered the parameters of the length-weight relationship as constant (R2 >684

0.99). Modelling seasonal growth variation, reproduction, or temporal variation in the685

food ration might additionally require considering time-dependent length-weight param-686

eters (Kimmerer et al., 2005; Froese, 2006). Moreover, studies in larger or more hetero-687

geneous areas are expected to show larger spatial variation in length-weight parameters688

(Froese, 2006). Spatial variation in length-weight parameters could be considered in this689

case, even in a Bayesian framework (He et al., 2008), which would require additional690

measurement of fish weight.691

As stated, growth is strongly correlated with critical life history events. Development692

of a growth model would serve the development of a population dynamics model by693

providing access to growth-related variables (e.g., size, spawning time, emergence time).694

As an illustration, mortality from angling could be modelled with an exponential decay695

(see Serchuk et al. (1980); Lobón-Cerviá et al. (2012) for natural mortality), which would696

be activated only during the angling season and to length classes which are above the697

minimum legal capturable size.698

4.4. Conclusion699

Presentation of our model and results in their current form, and even more our sugges-700

tions of model updates, both from growth and population dynamics perspectives, illustrate701

that using a HBM allows for (1) modelling of ecological processes, (2) quantification of702

measurement errors, and (3) links to covariates, resulting in (1) an increased range of eco-703

logical applications, (2) improved hypothesis testing, and (3) increased predictive power,704

which would allow researchers and managers to better understand a variety of salmonid705

ecology issues at large spatio-temporal scales. Coupling our modelling approach to a706

basin-scale hydrological model will expand the range of application of this HBM frame-707

work, including the assessment of potential global change impacts on fish population708

dynamics.709
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Appendix A: Derivation of the growth model at the population level717

The growth of a fish individual is modelled as a consecutive length increase since its718

emergence719

dLi(t)

dt
= Hs,y(t)(1 + εi) for t ≥ demergi , Li(d

emerg
i ) = Lemergi

where i is an index on fish individuals, Li(t) is the length of individual i at time t,720

Hs,y(t)(1 + εi) is its growth rate, Lemergi is its length at emergence that took place at time721

demergi . We assume that all the fish follow the same growth scheme, that is to say Hs,y(t)722

depends on the site s, on the year-of-emergence y, and on time t but not directly on i. On723

the other hand, we allow individuals to have superior/inferior growth rate with respect to724

each other and we assume that individuals keep their advantage (εi > 0) or disadvantage725

(εi < 0) over their life-time (similar to Sainsbury (1980) that used the von Bertalanffy726

model). We model variation in growth rate and size at emergence as independent and727

normally distributed variates, εi ∼ Normal(0, ν2
s ) and Lemergi ∼ Normal(Lemerg, σ2). In728

this case, the length of individuals in a cohort at any time t is also normally distributed729

Li(t) ∼ Normal(µs,y(t), σ
2 + (νsΣHs,y(t))

2),

by defining ΣHs,y(t) =
∫ t
demergs,y

Hs,y(u)du and µs,y(t) = Lemerg + ΣHs,y(t). By assuming730

that variation due to variation in growth rate among individual fish overwhelms variation731

due to variation in emergence size and time (σ2 � (νsΣHs,y(t))
2), and in the case of732

juvenile and adult trout ((Lemerg)2 � (ΣHs,y(t))
2), the length of individuals in a cohort733

is normally distributed as follows734
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Li(t) ∼ Normal(µs,y(t), (νsµs,y(t))
2).

As a consequence, under such assumptions, fish length can be modelled as a mixture735

of Gaussian distributions (eq. (6)), the mean size of each cohort (µs,y(t)) is dictated by as736

similar growth model (eq. (1)), and the standard deviation of the length of each cohort is737

proportional to its mean (eq. (5)). The coefficient of variation (CV) is in the latter case738

the standard deviation of the variate εi.739
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• Appendix S1. Growth curves and temperature-dependence.742
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Lobón-Cerviá, J., Budy, P., Mortensen, E., 2012. Patterns of natural mortality in stream-965

living brown trout (Salmo trutta). Freshwater Biology 57, 575–588.966
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Reference Species Age span Data collection Age determination Data processing Factor(s) affecting growth

Arnekleiv et al. (2006) S. salar 0+, 1+, 2+ removal sampling length regression discharge, temperature, density

Bal et al. (2011) S. salar, S. trutta 0+ removal sampling length empirical model, HBM density, temperature

Crozier et al. (2010) O. tshawytscha 0+ removal sampling length regression temperature, density

Grant & Imre (2005) 6 species 0+ removal sampling length regression density

Jenkins et al. (1999) S. trutta 0+ removal sampling length regression/ANOVA density, location, year

Jensen et al. (2000) S. trutta 0+, 1+, 2+, 3+ removal sampling scale, otolith empirical model temperature

Kaspersson & Höjesjö (2009) S. trutta 0+ tag length, tag regression/ANOVA density, location

Letcher et al. (2015) S. fontinalis - tag length, tag regression, HBM temperature, discharge

Lobón-Cerviá (2005) S. trutta 0+, 1+, 2+, 3+ removal sampling length, scale regression/ANOVA density, temperature

Parra et al. (2011) S. trutta 0+, 1+, 2+ removal sampling scale regression habitat availability

Parra et al. (2012) S. trutta 0+, 1+, 2+ removal sampling scale quantile regression density, temperature

Vøllestad & Olsen (2008) S. trutta 0+ tag length, scale, tag regression/ANOVA temperature, discharge, density

Xu et al. (2010) S. fontinalis 0+, 1+, 2+, 3+, 4+ removal sampling, tag length, tag regression/ANOVA temperature, discharge, density

Table 1: Factor(s) affecting growth of stream-dwelling salmonids in the wild. Studies using different salmonid species, age span, sampling

method, proxy for age, and data processing method show the apparent wide variety of factors affecting salmonid growth in the wild.
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Name Description Equation/value Unit

Growth model

b power when weight grows linear ∼ Unif(0, 1) 1

νs CV of cohort length ∼ Unif(0, 1) 1

Gs,y,k,d growth rate = Xs,y,dG
′
s,y % gb.day−1

ΣGs,y,k cumulated growth rate =
∑
dGs,y,k,d day

Xs,y,d growth rate (deterministic effect) =section 2.1.2 1

G′s,y growth rate (random effect) ∼ eq. (11) % gb.day−1

G′s growth rate (random effect; mean) ∼ Unif(0, 10) % gb.day−1

σG′
s

growth rate (random effect; s.d.) ∼ Unif(0, 10) % gb.day−1

Tmin minimum temperature for growth = 3.56 ◦C

T opt optimal temperature for growth = 13.11 ◦C

Tmax maximum temperature for growth = 19.48 ◦C

Lemerg length at emergence = 30 mm

demergs,y median emergence time ∼ Unif(see text) day

aw weight/length scaling coefficient = 1.09 10−5 g/mmbw

bw weight/length scaling exponent = 3.010 1

Name Description Equation/value Unit

Population dynamics model

λs,y,1 density of trout of age 0+ ∼ eq. (11) trout.m−2

λ1 density of trout of age 0+ (mean) ∼ Unif(0, 1) trout.m−2

σλ1
density of trout of age 0+ (s.d.) ∼ Unif(0, 10) trout.m−2

Surs,y,k apparent survival rate ∼ eq. (11) 1

Surk apparent survival rate (mean) ∼ Unif(0, 1) 1

σSur,k apparent survival rate (s.d.) ∼ Unif(0, 10) 1

Observation model

ds,y survey date = known day

xmax max. trout length 400 mm

∆x length class width 10 mm

µs,y,k mean of cohort length = eq. (10) mm

σs,y,k s.d. of cohort length = νsµs,y,k mm

λs,y,k density of 1+ and older (k ≥ 2) = Surs,y,kλy−1,s,k−1 trout.m−2

Ns,y,l population size ∼ eq. (7) 1

Cs,y,l,r catch (‘EFRS length data’) ∼ eq. (8), data 1

ps,y,l,r catchability = αsxl + βs 1

αs catchability parameter ∼ Unif(−10, 10) m−1

βs catchability parameter ∼ Unif(−10, 10) 1

Table 2: Variables of the HBM. Most variables are multi-dimensional, as indicated by their subscript (s, y, k, d, l, r; Figure 2). Deterministic variables

(=) are either measured without errors, known constant, or deterministic expressions from upper nodes. Stochastic variables (∼) are either stochastic

expressions from upper nodes or top-level random variables, in the latter case priors are indicated.
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Deterministic (Xs,d) Random (G′s,y)

site 10.3 73.0

year 1.5 2.5

month 30.6 –

site*year 1.2 24.5

site*month 24.7 –

site*day 31.7 –

Table 3: Sources of variability of the daily growth rate. Daily growth rate was modelled as the

product of 3 terms: size-dependence, temperature-dependence (Xs,d), and other sources of variation

(G′
s,y). The ANOVA sums of squares (SSQ; here in %) of log(Xs,d) (using site, year, and month as

factors; site*day refers to residuals) and log(G′
s,y) (site and year; site*year refers to residuals) highlights

the major sources of variability of these terms. Spatial variation of G′
s,y is represented in Figure 7.
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Figure 1: Observations and model fit. The histogram shows the number of fish caught (y-axis) in

each length class (x-axis) for each removal (lower, dark grey stack: 1st removal; upper, light grey stack:

2nd removal). The distribution of fish length is modelled as a mixture of Gaussian components, one

per age-class, which is here illustrated using point estimates of model parameters (red: trout of age

0+; yellow: 1+; green 2+; blue: 3+; black: sum). Fit is measured using posterior predictive checks,

for each combination of site, year, and length class. A Bayesian p-value lower than 0.05 indicates an

underestimated catch (minus signs in blue with vertical dotted lines) and a p-value greater than 0.95

indicates an overestimated catch (plus signs in red with vertical dotted lines). The survey conduted at

site 110 in 1997 was here chosen as an example.
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Surs,y,k λs,y,k σs,y,k µs,y,k ΣGs,y

λs,y,1

awbw Lemerg
for d ∈ {1, . . . , D}

for k ∈ {1, . . . ,K}

for y ∈ {1, . . . , Y }

for s ∈ {1, . . . , S}

σλ1

νs
λ1

b

Surk

σSur
k

G′
s,y,k

Xs,d Tws,d

Tmin

T opt

Tmax

demergs,y

σG′
sG′

s

Figure 2: Directed acyclic graph (DAG) of the growth and population dynamics components

of the HBM. Forcing variables and known parameters (in magenta) are connected to top-level parame-

ters (yellow) via intermediate nodes (white). Variables are either deterministic (rectangles) or stochastic

(ellipses) expressions. Variable equations/values are gathered together in Table 2. Most variables are

multi-dimensional, as indicated by their subscripts and overlapping colour frames, one frame per index:

site s (red); year-of-emergence y (orange); age k (blue); day d (green); variables outside frames are scalar.

Brown trout length is modelled as a mixture of Gaussian distributions, which parameters (means µs,y,k,

standard deviations σs,y,k, and contributions λs,y,k of each Gaussian component; rectangles with thick

borders) are connected together with the growth and the population dynamics model (as represented) as

well as to observations (not shown in this DAG, see text).
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Figure 3: Sampling design and study area. The study area (6,420 km2) is the northern section

of Navarra (thick black line: regional border) at the most western part of the Pyrenees mountain range

(dotted area) in northern Spain (thick grey line: national border). The study area separates into 3 regions

(grey areas): Atlantic to the Ega River; West Mediterranean to the Arga river; East Mediterranean to

the Aragón river. A total of 61 sites (0110, ...) have been sampled by electrofishing once a year from 1992

to 2014. Only data from rivers unaffected by the presence of stocked individuals (48 sites; 1995–2014)

were considered in the present analysis (black dots). Water (green dots) and air (orange) temperatures

were also sampled in the area.
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Figure 4: QQ-plot of the predicted and observed distributions of fish length. The quantiles

of the predicted (x-axis) and observed (y-axis) multimodal distributions of fish length data (Figure 1)

are plotted against each other for a graphical comparison of the two probability distributions. Quantiles

were computed for probability values between 0.05 and 0.95 every 0.05 (one dot per probability interval),

for each year (colour; see right legend), and for each site. Dot size (see left legend) is proportional to the

total number of fish that were caught during surveys, thus highlighting scarce data. Site 110 was here

chosen as an example.
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Figure 5: QQ-plots of the Bayesian p-values of the posterior predictive checks. The quantiles of

the theoretical (x-axis) and observed (y-axis) distribution of the p-values of the posterior predictive checks

are plotted against each other for a graphical comparison of the two probability distributions. P-values

of the posterior predictive checks are uniformly distributed if the model fits correctly; the theoretical

quantiles are thus those of the uniform (0,1) distribution. Quantiles were computed for probability values

between 0.05 and 0.95 every 0.05 (one dot per probability interval), for each site (black lines; site 110

chosen as an example in Figures 1, 4, and 6 highlighted in orange). The number of p-values used to

compute the QQ-plots ranges from 183 to 523 (375 ± 72.6), depending on the site. The model fits well,

to the exception of site 1620 (green) with a larger number of significant overestimates (Bayesian p-values

> 0.95), and sites 1010 (red) and 1830 (blue) due to extremely low fish density. The 95 % confidence

interval on the estimates of the quantiles of a theoretically uniform (0,1) distribution using n = 375

samples is plotted (magenta) as an indication of the variation in the QQ-plots due to random sampling.
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Figure 6: Growth curves. Growth of cohorts born in 1991–2014 was simulated at a daily time step

at each site. Estimated values for growth parameters are used to compute the expected mean size of

the cohorts at all times (so-called growth curves; black lines) starting from emergence. Temperature

modulates growth which results in seasonal variation in fish size. Estimated densities at survey times

are illustrated on the plot (circles, whose radius is proportional to density, see top-right legend; colour

highlights trout age, see top-left legend; survey times are represented as vertical dashed grey lines). Mean

sizes and densities are used to plot the modelled distribution of fish length at survey times (e.g., Figure

1 for 1997). Site 110 was chosen here as an example.
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Figure 7: Spatial variation in the growth rate. Daily growth rate was modelled as the product

of 3 terms: size-dependence, temperature-dependence, and other sources of variation (G′
s,y). The mean

(denoted G′
s) at each site of G′

s,y is represented on the map of the study area; G′
s increases in streams in

the downstream direction. Results showed that G′
s is strongly correlated with catchment area (r = 0.73).
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