Dr Luc Vignaud 
email: luc.vignaud@onera.fr
  
GAN4SAR: Generative Adversarial Networks for Synthetic Aperture Radar imaging of targets signature

Keywords: 

We describe the generation of Synthetic Aperture Radar (SAR/ISAR) images of man-made targets using modern Deep Learning Methods called Generative Adversarial Networks (GANs). These relatively new techniques have shown impressive results in the optical image field, enabling for instance the generation of very convincing fake images, i.e. images that look very much like the ones the generative algorithm has been trained on. Thus, we wish to investigate how these methods can be used or adapted for similar data generation in radar imaging. We follow the progressive development path of GANs and explore some applications for SAR data augmentation and image domains transformations, while monitoring their expected performances for Automatic/Assisted Target Recognition (ATR) purposes.

INTRODUCTION

Many radar applications require the fine knowledge of targets signatures. But, compared to the optical field, databanks of real radar measurements are rather scarce as data acquisition on real targets needs expensive field trials and observation on wide angular extents due to the anisotropic behaviour of targets scattering centres. Large progresses have been made in the simulation of targets radar signatures, but still, the complexity of EM interaction often make them not enough representatives of the actual real measurements. Therefore there is a real need for radar data augmentation, but with a strong constraint on the quality of their generation.

Meanwhile in the optical domain, the joint availability of large image databases and development of Deep Learning Networks has revolutionized large scale classification tasks, boosted synthetic data generation and facilitated the translation between several image domains. For instance, exciting breakthroughs have emerged in image super-resolution, art style transfer, or high resolution facial photos of fake celebrities' generation, to name a few.

Our objective is to investigate how modern Generative Networks, such as Deep learning Generative Adversarial Networks or GANs, may be used to generate useful and trustworthy radar images. This new area is only starting to get attention from the radar community ([1] to [START_REF] Lewis | Realistic SAR data augmentation using machine learning techniques[END_REF]). Among the large number of GANbased methods proposed in optics, we need to select those potentially applicable to radar images generation.

We apply the chosen methods on radar images coming from the publicly available X-Band MSTAR and SAMPLE databases. MSTAR [START_REF] Keydel | MSTAR Extended Operating Conditions. A Tutorial[END_REF] is a reference database for testing various Automatic Target Recognition (ATR) machine learning methods, from template-base algorithms to Convolutional Neural Networks [START_REF] He | SAR target recognition and unsupervised detection based on convolutional neural network[END_REF]. The SAMPLE database is a recently released collection of simulated SAR signatures of ground targets paired with MSTAR image chips [START_REF] Lewis | A SAR database for ATR development: Synthetic and Measured Paired Labeled Experiment (SAMPLE)[END_REF].

We describe the basic Generative Adversarial Networks architectures and derive some specific adaptations for radar signatures generation. Augmented images can be generated from scratch using a noise vector as input and real radar images as reference. We then present methods to condition a GAN in order to get control over the generated target class and orientation. Finally, we see how a GAN may learn the translation between two image domains such as simulated images to real ones.

GENERATIVE ADVERSARIAL NETWORKS (GANS)

Generative Adversarial Networks (GANs) were introduced by Ian Goodfellow in [START_REF] Goodfellow | Generative Adversarial Nets[END_REF], which lead to numerous publications exploiting the new ideas brought by this 2014 paper. GANs rely on a zero-sum game between two networks: a Generator and a Discriminator. The objective of the Generator is to minimize the ability of the Discriminator being correct on fake samples, while the Discriminator's goal is to minimize its classification error between real and fake samples. The two networks are trained jointly with opposite goals at the same time. This technique learns to generate new data with the same statistics as a given training set. GANs are thus able to model complex, high dimensional distributions as for instance images.

"Vanilla" GAN

Initial 'Vanilla' GAN architecture is presented Figure 1, along with an application example on MNIST handwritten digit database. The input of the Generator, often named 'latent space', is a simple noise vector z. Outputs of the Generator are the fake images G(z). These fake images are presented, among real images X, as inputs to the Discriminator. The Discriminator has a single binary output, giving either a real or fake image result. The Generator goal is to make D(G(z))=real, while the Discriminator aims at [D(X)=real & D(G(z))=fake]. The training reference set is divided into small batches that are used by GAN networks upon desired convergence. Once the GAN has been trained for several epochs, its Discriminator part is disregarded, and the Generator is simply fed with noise vectors to generate new images that looks like real from the Discriminator's final state perspective. gradually up-sample an input latent vector of length 256 to a 64 by 64 image, followed by a tanh layer to control the final image dynamics.

We may apply this algorithm to the MSTAR dataset using all available real SAR images (see examples in [START_REF] Vignaud | GAN4SAR: generative adversarial networks for synthetic aperture radar imaging of targets signature', Chapter 12 in 'New Methodologies for understanding Radar Data[END_REF]) but there is no fine control over the data being generated: we cannot choose the generated target class or its observed orientation.

Conditioned GAN

Many GAN variants [START_REF] Sun | A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications[END_REF] have been proposed to better guide the data generation process, for instance by conditioning the model on additional information:

• Deep Convolutional Generative Adversarial Networks (DCGAN) [START_REF] Radford | Unsupervised representation learning with deep Convolutional Generative Adversarial Networks[END_REF] • Auxiliary classifier GAN (AC-GAN) [START_REF] Odena | Conditional image synthesis with auxiliary classifier GANs[END_REF] • Conditional GAN (CGAN) [START_REF] Mirza | Conditional generative adversarial[END_REF] • Information Maximizing Generative Adversarial Nets (InfoGAN) [START_REF] Chen | InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets[END_REF] These various GANs mostly differ in the way conditions are used by both their Generator and Discriminator, and the impact of the conditioning loss added to the conventional GAN loss (Figure 2). Using the MSTAR dataset, we have trained a GAN conditioned on class labels and target orientation. Figure 3 shows the generation of a subset for 10 classes and 10 orientations (right) with the corresponding real images used for training (left). In [START_REF] Vignaud | GAN4SAR: generative adversarial networks for synthetic aperture radar imaging of targets signature', Chapter 12 in 'New Methodologies for understanding Radar Data[END_REF], we detail how we monitor the "realism" and "representativeness" of the generated signatures through the use of auxiliary CNN classifiers. We also measure some interesting conditioned GAN interpolation capabilities on the angular condition. However, the conditioned GAN architecture cannot be used to extrapolate the generation to unknown classes, i.e. different from reference ones used for training. This GAN architecture (see Figure 4) is able to learn the mapping from an input image to a paired output image. The novelty lies in the way the input image is first fed to an Encoder network that compresses the information into a pseudo latent space that is no longer randomly chosen.

We have adapted this Image-conditioned GAN to the translation of EM simulations to real SAR measurements on the SAMPLE dataset. Figure 8 to 10 show the result of such training on a subset of the 10 targets for 5 orientations. In [START_REF] Vignaud | GAN4SAR: generative adversarial networks for synthetic aperture radar imaging of targets signature', Chapter 12 in 'New Methodologies for understanding Radar Data[END_REF], we show through the use of auxiliary classifiers that the GAN Generator has successfully learned a mapping to translate simulated images to plausible SAR images for each class and orientation couple. We also show some very valuable interpolation properties. The GAN itself will not bring innovation but we observe a real data augmentation gain when the GAN is coupled with the information brought by the simulations. 

CONCLUSIONS

We have presented a progressive methodology to generate SAR images of ground vehicles using various Generative Adversarial Networks architectures adapted from the literature. These algorithms were trained and tested on SAR image chips from the MSTAR and SAMPLE datasets. We have shown that this class of machine learning algorithms bears potentially good performances in the generation of controlled and trustworthy simulated SAR signatures, as well as a capability to perform image translation, interpolation and extrapolation between image domains.
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 1 Figure 1: Vanilla GAN architecture and example of 100 fake and real images on MNIST dataset
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 2 Figure 2: GAN with condition architecture and example of 100 fake and real images on MNIST dataset with class label and skew angle conditions
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 3 Figure 3: (left) real images used for training (one class per column & one orientation per line) (right) output of GAN conditioned on class and orientation
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 4 Figure 4: Image-conditioned GAN architecture and illustration on image generation from sketch
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 5567 Figure 5: input simulated SAMPLE images (10 classes and 5 angles shown)