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Approximate Message Passing Reconstruction of
Quantitative Acoustic Microscopy Images

Jonghoon Kim, Jonathan Mamou, Senior Member, IEEE, Paul R. Hill, Member, IEEE,
Nishan Canagarajah, Denis Kouamé, Member, IEEE, Adrian Basarab, Member, IEEE,

and Alin Achim, Senior Member, IEEE

Abstract— A novel framework for compressive sensing (CS)
data acquisition and reconstruction in quantitative acoustic
microscopy (QAM) is presented. Three different CS patterns,
adapted to the specifics of QAM systems, were investigated as an
alternative to the current raster-scanning approach. They consist
of diagonal sampling, a row random, and a spiral scanning pat-
tern and can all significantly reduce both the acquisition time and
the amount of sampled data. For subsequent image reconstruc-
tion, we design and implement an innovative technique, whereby
a recently proposed approximate message passing method is
adapted to account for the underlying data statistics. A Cauchy
maximum a posteriori image denoising algorithm is thus employed
to account for the non-Gaussianity of QAM wavelet coefficients.
The proposed methods were tested retrospectively on experimen-
tal data acquired with a 250- or 500-MHz QAM system. The
experimental data were obtained from a human lymph node
sample (250 MHz) and human cornea (500 MHz). Reconstruction
results showed that the best performance is obtained using a
spiral sensing pattern combined with the Cauchy denoiser in the
wavelet domain. The spiral sensing matrix reduced the number
of spatial samples by a factor of 2 and led to an excellent
peak signal-to-noise ratio of 43.21 dB when reconstructing QAM
speed-of-sound images of a human lymph node. These results
demonstrate that the CS approach could significantly improve
scanning time, while reducing costs of future QAM systems.

Index Terms— Approximate massage passing (AMP), Cauchy
distribution, compressive sensing (CS), quantitative acoustic
microscopy (QAM).

I. INTRODUCTION

ALTHOUGH introduced more than 30 years ago, quantita-
tive acoustic microscopy (QAM) is still a “new” imaging

technology employed to investigate soft biological tissue at
microscopic resolution by eliciting its mechanical property
when irradiated with very high frequency ultrasound [1].
Specifically, by processing RF echo data, QAM yields 2-D
quantitative maps of the acoustical and mechanical properties
of soft tissues (e.g., speed of sound, acoustic impedance,
and acoustic attenuation). Therefore, QAM provides a novel
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contrast mechanism compared to histology photomicrographs
and optical and electron microscopy images [4]. To date, our
group and others have successfully used QAM to investigate
a wide range of soft biological tissues such as liver samples,
lymph nodes, retina, and even living cells [1]–[5]. Several
of these recent studies were performed using QAM systems
equipped with spherically focused single-element transducers
having center frequencies of 250 or 500 MHz, which yielded
2-D maps of acoustic properties with spatial resolutions
of 7 and 4 μm, respectively [2], [3]. Currently, QAM requires
a complete 2-D raster scan of the sample to form images, thus
yielding a large amount of RF data when using a conventional
spatial sampling scheme (e.g., 2 and 1 μm steps at 250 and
500 MHz, respectively). Likewise, sonography techniques
exploiting ultrasound need to acquire a considerable amount
of data (thus significantly exceeding the Nyquist rate) in order
to perform high-resolution digital beamforming. Therefore,
compressive sensing (CS) has been intensively studied as
a breakthrough to overcome the limitation of contemporary
technology [13].

From this perspective, this paper presents a novel approach
to improve the efficiency of QAM RF data acquisition and
reconstruction by developing a dedicated CS scheme.

Traditionally, statistical signal processing has been centered
in its formulation on the hypotheses of Gaussianity and
stationarity. This is justified by the central limit theorem
and leads to classical least square approaches for solving
various estimation problems. The introduction of various
sparsifying transforms starting with the penultimate decade
of the last century, together with the adoption of various
statistical models that are able to model various degrees of
non−Gaussianity and heavy−tails, have led to a progressive
paradigm shift [7]. At the core of modern signal processing
methodology sits the concept of sparsity. The key idea is that
many naturally occurring signals and images can be faithfully
reconstructed from a lower number of transform coefficients
than the original number of samples (i.e., acquired according
to Nyquist theorem) [8]. In this sense, CS could prove to be
a powerful solution to decrease the amount of data in QAM
and to accelerate the acquisition process at potentially no cost
to image quality. In terms of reconstruction, most CS methods
rely on l1-norm minimization using a linear programming
algorithm [31]. All these approaches do not exploit the true
statistical distribution of the data and are motivated by the
inability of the classical least-squares approach to estimate the
reconstructed signal.



In this paper, an approximate-message-passing-(AMP)-
based algorithm was designed to reconstruct QAM images
from spatially undersampled measurements. AMP is a sim-
plified version of message passing derived from belief prop-
agation in graphical models [9] and is characterized not
only by dramatically reduced convergence times but also by
a reconstruction performance equivalent to l p-based meth-
ods. AMP uses an iterative process consisting of a sparse-
representation based image denoising algorithm performed at
each iteration [28]. Hence, selection of a robust denoiser and
of the most efficient sparsifying basis are essential issues to
address in order to achieve fast convergence and high recovery
quality [10]. Our proposed AMP-based QAM imaging frame-
work consists of the following two major modules.

1) In the data acquisition component of our system,
we propose novel techniques for QAM data sampling,
by choosing sensing matrices that simultaneously meet
CS requirements and take into account the peculiarities
of practical QAM acquisition devices, instead of.

2) In the image reconstruction component, we design and
test a wavelet domain AMP-based approach, which
exploits underlying data statistics through the use of a
Cauchy-based maximum a posteriori (MAP) algorithm.1

This paper is structured as follows. Section II covers the essen-
tial, necessary background on QAM, CS, and AMP. Section III
introduces the main theoretical contributions of this paper.
Specifically, in Section III-A, we present the derivation of the
wavelet-based Cauchy denoiser. In Section III-B, we describe
three different sensing patterns for QAM. Section IV compares
the performance of our proposed method with that of the
existing CS reconstruction techniques, including previously
proposed AMP algorithms. Finally, conclusions and future
work directions are detailed in Section V.

II. THEORETICAL BACKGROUND

A. Quantitative Acoustic Microscopy

In QAM, a high-frequency (e.g., >50 MHz), single-element,
spherically focused (e.g., F-number < 1.3) transducer trans-
mits a short ultrasound pulse and receives the RF echo signals
reflected from the sample that consists of a thin section of
soft tissue affixed to a microscopy slide (Fig. 1). The echo
RF data are composed of two main reflections (see S1 and
S2 in Fig. 1): S1 originates from the interface between the
coupling medium (degassed saline) and the specimen and
S2 from the interface between the specimen and the glass
substrate interface as illustrated in Fig. 1. At each scan
location, the RF data are digitized, saved, and processed offline
to yield values of speed of sound (c), acoustic impedance (z),
and attenuation (α) [14]. Signal processing also requires the
use of a reference signal obtained from a region devoid of
sample (S0 in Fig. 1). Briefly, the ratio of the Fourier transform
of a sample signal, S and S0, is computed and fit to a forward
model to estimate the time of flight differences between S1
and S0 and S2 and S0. These time differences are used to
estimate c in the sample as well as the tissue thickness (i.e.,

1An intial version of this algorithm was presented in [11], but the work
therein was focused on natural images.

Fig. 1. Illustrative working principle of QAM. RF data from the above sample
location is composed of two reflections, while RF data from the above glass
slide is composed of only one reflection. Many QAM systems operate in the
so-called upside-down configuration, because holding the transducer from the
top usually generates too much vibration at the tip of transducer creating
blurring artifact in the reconstructed QAM images.

d in Fig. 1) at that location. The forward model fit also
provides the amplitude of S1, which is used to estimate z of the
sample. Finally, the amplitude of S2, its frequency dependence,
and the previously estimated tissue thickness are used to
estimate α [14]. The transducer is raster scanned and the values
obtained at each scan location are then combined to form
quantitative 2-D parameter maps. Fig. 2 shows the working
principle of QAM as well as the 500-MHz QAM system used
in this paper (Fig. 1), namely the transducer and the thin
sample affixed to a microscopy slide. Samples are obtained
from fixed or frozen samples sectioned using a microtome or a
cryotome. In the case of fixed samples, the paraffin is removed
and the sample is rehydrated before imaging. In the case of
frozen samples, the sample is thawed and rehydrated before
imaging. These protocols are common and used in histopathol-
ogy. Following QAM data acquisition, the samples can be
stained and imaged using optical microscopy approaches, and
histology photomicrographs can easily be co-registered with
QAM images. Therefore, successfully applying a CS approach
to QAM acquisition could significantly reduce the amount of
RF data recorded compared to conventional raster scanning
without significantly degrading the quantitative 2-D maps of
acoustic properties. In this paper, a new CS scheme is proposed
for QAM, and to test it, it was applied retrospectively to
decimated 2-D quantitative maps directly.

B. Compressive Sensing

CS is based on measuring a significantly reduced number of
samples than what is dictated by the Nyquist theorem. Given a
correlated image, the traditional transform-based compression
method performs the following steps: 1) acquires all N sam-
ples of the signal; 2) computes a complete set of transform
coefficients (e.g., discrete cosine transform or wavelet); and
3) selectively quantizes and encodes only the K�N most
significant coefficients. This procedure is highly inefficient,
because a significant proportion of the output of the analog-



Fig. 2. (a) Photograph of the 500-MHz QAM system. (b) Block diagram
of working principle. (c) Magnification of sample mounting and transducer.
An eye sample from eye bank is visible on the microscopy glass slide. Our
QAM system does not currently employ a temperature controller; rather,
we measure the coupling fluid temperature at the beginning and the end of the
scanning, linearly interpolate between the two values, and use these values to
estimate a speed of sound in water at each location. Typically, the variation
of temperature is less than 0.5 °C.

to-digital conversion process ends up being discarded. CS
is concerned with sampling signals more parsimoniously,
acquiring only the relevant signal information, rather than
sampling followed by compression. The main hallmark of
this methodology is that, given a compressible signal, a small
number of linear projections, directly acquired before sam-
pling, contain sufficient information to effectively perform the
processing of interest (such as signal reconstruction, detection,
and classification). In terms of signal approximation, Candès
et al. [8] and Donoho [16] have demonstrated that if a
signal is K -sparse in one basis (meaning that the signal is
exactly or approximately represented by K elements of this
basis), then it can be recovered from M = cst·K ·log(N/K ) �
N fixed (nonadaptive) linear projections onto a second basis,
called the measurement basis, which is incoherent with the
sparsity basis [33], and where cst > 1 is a small overmeasuring
constant. The CS measurement model is

y = �x + n (1)

where y ∈ R
M is the measurement vector, x ∈ R

N is the
signal to be reconstructed, � ∈ R

M×N is the measurement
matrix, and n ∈ R

M is an additive white Gaussian noise.
In terms of reconstruction, using the M measurements in the

first basis and given the K -sparsity property in the other basis,
the original signal can be recovered by taking a number of dif-
ferent approaches. The majority of these approaches solve con-
strained optimization problems. Commonly used approaches
are based on convex relaxation (basis pursuit [8]), nonconvex
optimization (reweighted l p minimization [17]), or greedy
strategies (orthogonal matching pursuit [18]). As another

alternative, iterative thresholding approaches to CS recovery
problem have attracted significant interest, owing to faster
reconstruction than what can be achieved by convex optimiza-
tion. Blumensath and Davies [19] and Donoho [20] proved that
correct solution could be obtained via soft or hard thresholding
of observations measured from sparse signals.

C. Approximate Message Passing Reconstruction

In the context of CS, AMP reconstructs an original image
from a reduced number of linear measurements by performing
elementwise denoising at each iteration. Indeed, the AMP
algorithm can be interpreted as recursively solving an image
denoising problem. Specifically, at each AMP iteration, one
observes a noise perturbed original image. Reconstructing the
image amounts to successive noise cancellations until the noise
variance decreases to a satisfactory level. The algorithm can be
succinctly summarized mathematically through the following
two steps:

xt+1 = ηt (�
T zt + xt) (2)

zt = y − �xt + 1

δ
zt−1〈η′

t−1

(
�T zt−1 + xt−1)〉 (3)

where x, y, z, and δ denote a sparse signal, observation, resid-
ual, and undersampling ratio (M/N), respectively. η(·) is a
function that represents the denoiser, η′(·) is its first derivative,
and 〈x〉 = (1/N)

∑N
i=1(xi ). The superscript t represents the

iteration number and (·)T is the classical conjugate transpose
notation. Given x = 0 and z = y as an initial condition,
the algorithm iterates sequentially (2) and (3) until satisfying
a stopping criterion or reaching a preset iteration number. The
last term of the right-hand side in (3) is referred to as the
Onsager reaction term and is also acknowledged to contribute
to balancing the sparsity-undersampling tradeoff [9], [21].

An extended wavelet-based AMP system can be generated
by integrating a wavelet transform (denoted by W ) into (2)
and (3) using the following transformation:

y = � W−1θx︸ ︷︷ ︸
x

+n (4)

where W−1 denotes the inverse wavelet transform W and θx
becomes the sparse representation of x within wavelet domain.
Introducing � as the new notation for �W−1, we get the
following expressions:

θ t+1
x = ηt

(
�Tzt + θ t

x
)

(5)

zt = y − �θ t
x + 1

δ
zt−1〈η′

t−1

(
�Tzt−1 + θ t−1

x
)〉
. (6)

The subsequently defined denoising algorithms seek to denoise
the elements of θ t

q = �Tzt + θ t
x corresponding to the

contaminated wavelet coefficients. To simplify the following
notation, the i th element of θ t

q is defined as θ t
q,i = v and the

i th element of the denoised output θ t+1
x is defined as θ t+1

x,i = ŵ
(a denoised estimate of the true coefficient w).

The most important design consideration is arguably the
choice of the shrinkage (denoising) function η in (5).
In the following, we introduce two previsouly defined func-
tions [6], [21], which will be later used for comparison
purpose within our experimental results in Section IV-A.



Fig. 3. Comparison of behavior among four different denoisers.

1) Soft Threshold Denoiser:

ŵ = η(v) = sign(v)(|v| − τ ) · �(|v |>τ)

η′(v) = �(|v |>τ) (7)

where �(·) is the indicator function. The threshold τ is defined
as the Mth largest magnitude value of θ t

q [9].
2) Amplitude-Scale-Invariant Bayes Estimator Denoiser:

ŵ = η(v) = (v2 − 3σ 2)+
v

η′(v) = �(v2>3σ 2) ·
(

1 + 3
(σ

v

)2
)

(8)

where σ 2 is the noise variance at iteration t and (·)+ is the
right handed function where (u)+ = 0 if u ≤ 0 and (u)+ = u
if u > 0.

As far as the CS reconstruction of conventional ultra-
sound images is concerned, the denoiser in (8) was shown
to achieve a better performance than iteratively reweighed
least squares (IRLS) and l p programming [29]. Therefore,
we hypothesize that ABE should also be a successful cri-
terion for QAM images; consequently, we shall use it for
benchmarking our method. Fig. 3 illustrates the behavior of
the denoising function for four different denoisers, of which
ABE and the Cauchy-based denoisers that are introduced in the
subsequent section can be regarded as a compromise between
soft-thresholding and hard-thresholding [24]. The labels on the
horizontal and vertical axes correspond to corrupted wavelet
coefficient and their denoised version, respectively. Subscript i
represents the index of each element, which implies element-
wise denoising, as stated before.

III. CAUCHY-AMP FOR COMPRESSED QAM IMAGING

This section describes the key features of wavelet-based
Cauchy-AMP together with the practical sensing patterns as a
novel approach for QAM CS reconstruction.

A. Wavelet-Based Cauchy-AMP

Wavelet coefficients provide a sparse representation for nat-
ural images [27]. In addition, they can be accurately modeled

using heavy tailed distributions [25], [26] such as the α−stable
distribution [22], [23]. The Cauchy distribution is a special
case of the α−stable family that not only has a heavy tailed
form but also has a compact analytical probability density
function given in [11]

P(w) = γ

w2 + γ 2 (9)

where w and γ are the wavelet coefficient value and the dis-
persion parameter (controlling the spread of the distribution),
respectively. Given (9), a MAP estimator method (10) can lead
to the derivation of explicit formulae (14) estimating a clean
wavelet coefficient w from an observed coefficient observation
v contaminated with additive Gaussian noise (i.e., n = v − w
with noise variance σ 2) [12]

ŵ = arg max
w

Pw|v (w|v). (10)

The posterior probability Pw|v (w|v) can be expressed,
by Bayes’ theorem, as

Pw|v (w|v) = Pv |w(v|w)Pw(w)

Pv (v)
. (11)

Assuming that Pv |w(v|w) ∼ N(0, σ 2), the logarithmic form
of (10) is given in (12), which is mathematically more
intuitive. The evidence Pv (v) is constant for all inputs and,
therefore, can be ignored

ŵ(v) = arg max
w

[
− (v − w)2

2σ 2 + log

(
γ

w2 + γ 2

)]
. (12)

To find the solution to (12), take the first derivative of the
terms in the bracket relative to w and set to zero

ŵ3 − vŵ2 + (γ 2 + 2σ 2)ŵ − γ 2v = 0. (13)

Using Cardano′s method, the estimate of w can be found
in (14) of which the first derivative is (15)

ŵ = η(v) = v

3
+ s + t (14)

ŵ′ = η′(v) = 1/3 + s′ + t ′ (15)

where s and t are values determined by v and σ 2 iteratively
updated at each iteration together with a constant value γ ; σ 2

is estimated as the variance of the z vector defined in (6). s
and t are defined as

s = 3

√
q

2
+ dd, t = 3

√
q

2
− dd

dd =
√

p3/27 + q2/4

p = γ 2 + 2σ 2 − v2/3

q = vγ 2 + 2v3/27 − (γ 2 + 2σ 2)v/3. (16)

s′ and t ′ are found as follows:
s′ = q ′/2 + dd ′

3(q/2 + dd)(2/3)
, t ′ = q ′/2 − dd ′

3(q/2 − dd)(2/3)

dd ′ = p′ p2/9 + q ′q/2

2dd
p′ = −2v/3

q ′ = −2σ 2/3 + 2γ 2/3 + 2v2/9. (17)
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Fig. 5. (a) Fully sampled impedance (M Ray/) map estimated from RF data acquired on the U SAF 1951 resolution test chart, reconstruction results from 
Gaussian random measurements for a measurement ratio of 0.25 with (b) proposed Cauchy-AMP, (c) ABE-AMP, (d) ST-AMP, (e) IRLS, and (f) LlLS 
algorithms. 

B. Practical Sensing Patterns for QAM

Theoretically, optimal sensing matrices based on random­

ness are impractical for QAM data acquisition because RF 
data are typically acquired continuously as the motor stages 

are moved. Therefore, this paper investigates three practical 

sensing schemes, which can be easily implemented using servo 

motors. The diagonal sensing schemes raster scan oblique lines 

using a constant predefined angle that is used to vary the 

measurement rate, that is, a smaller angle leads to denser sam­

pling. The row random sensing pattern is a naive but practical 

attempt to preserve randomness. Data are also collected using 

a practical raster scanning approach, but only on randomly 

selected rows using the random number generator (mg) of 

MATLAB. An input value for mg is used to dictate the 
measurement rate. Finally, the spiral sensing scheme is also a 

practical sensing scheme that originates in the center of area 

to be sampled and spreads out following a spiral pattern. The 

pace of the spreading is parameterized and used to prescribe 

the measurement rate. For comparison purposes, the spiral 

pattern was truncated to cover the same square area as the 

other two patterns. In actual experiments, the scanned area 

by the spiral pattern would consist approximately of a circle 

passing through the four corners of the square. 

Fig. 4 illustrates all sensing schemes used to sample data 

from a target composed of 256 x 256 pixel. A measurement 

rate of 20% is shown for all three schemes and the white pixels 

correspond to the area to be spatially sampled. 

IV. SIMULATION RESULTS

Two different sets of experiments have been conducted and 

results are reported in Sections IV-A and IV-B. The objective 

of the first set of experiments was to evaluate the performance 

of the proposed Cauchy-AMP algorithm. The second set of 
experiments shows the interest of the proposed sampling 

schemes in QAM and the ability of Cauchy-AMP algorithm to 

recover high-quality images from the resulting undersampled 

data. In addition to visual inspection, the peak signal-to-noise 

ratio (PSNR) and the structural similarity (SSIM) index [32] 
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were used to assess the quality of the reconstructed images by 
comparing them to the corresponding fully sampled quantita­
tive maps. 

A. Simulation A: Reconstruction Results With Random

Sensing Schemes

The objective of this section is to validate the efficiency of 
the proposed Cauchy-AMP algorithm in comparison to alter­
native methods, previously proposed for CS reconstruction. 
Two of these were described in Section 11-C and, while also 
the AMP-based algorithm, they use ST and ABE as shrink­
age fonctions in (7) and (8). In addition, we also compare 
to conventional CS reconstruction algorithms, including the 
LILS method and the IRLS algorithm for l1-norm and l

p 

rninimization, respectively. These are succinctly outlined in 
the following. 

l )  Lll.S (l1-Regularized Least Squares): This 1 1 -based
algorithm solves an optimization problem of the form

rninll<I>x - Yll
2 

+ À. Llxd (18) 

i=l 

where À., a positive number, is a regularisation parame­
ter; in this paper we adopted, by cross validation, 0.01 
as the value of À.. 

2) /Rl.S:

x = min llxll p 
s.t. y= <I>x.

X 

(19) 

When it cornes to estimating a sparse vector character­
ized by an a-stable distribution, (19) leads to solving 
an l p minimization problem. Thus, in order to choose 
the optimum value of p, we employed the approach 
described in [30]. This approach was found to be 
superior to existing l 

P 
sol vers when applied to CS 

reconstruction of conventional B-mode images. 
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Fig. 7. Comparison of normalized mean squared error (NMSE) according to 
iteration number for three AMP recovery metbods. NMSE values are averaged 
over 30 simulated QAM images. 

The incoherence between the sensing matrix and the spar­
sifying transform is important in CS applications. Hence, 
in order to fairly evaluate the performance of the reconstruc­
tion algorithms, the results in this section are obtained with 
two random sensing matrices widely used in the CS literature: 
image projections on random Gaussian vectors and point-wise 
multiplication with Bernoulli vectors formed by uniformly 
random distributed zeros and ones. 

Two experimental data volumes were used, from which 
impedance maps were estimated point-wise using the method 
in [14]. The first was acquired from a spatial-resolution 
target consisting of small bars of known width and spac­
ing. Recause the chrome used to form those bars is 
deposited using photolithography, the metal thickness (i.e., 
�0.12 µm) is much smaller than the wavelength at 250 MHz 
(i.e., �6 µm); therefore, only an effective acoustic 
impedance (Zeff) can be estimated. The amplitudes of the 
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TABLE I 

NUMERICAL RESULTS OF RECO VERY QUALITY 
(GAUSSIAN RANDOM SENSINC) 

Method 
SSIM PSNR (dB) 

Lymph Node USAF Lymph Node USAF 

Cauchy 0.841 0.429 39.08 37.54 
ABE 0.811 0.418 39.01 37.45 

ST 0.724 0.380 38.41 35.95 
IRLS 0.698 0.333 34.97 32.85 
LlLS 0.457 0.290 32.14 31.30 

reflected signal (A) and the reference signal (B) were used to 
calculate Zeff using the following equation from the pressure 
reflection law [15]: 

(1 + Rrefi) 
Zeff = Zw

(l R A)- Ref7J 
(20) 

where Zw is the known acoustic impedance of water and Rref 
is the pressure reflection coefficient between water and glass 
slide 

R 
Zg - Zw 

ref = 

Zg +zw
(21) 

where Zg is the known acoustic impedance of the glass slide. 
The second data volume was acquired from a 12-µm-thick 
section obtained from a lymph node excised from a colorectal 
cancer patient using the 250-MHz QAM system. For both 
Gaussian and Bernoulli measurement matrices, the reconstruc­
tion results correspond to a measurement rate of 25%, that is, 
the ratio between the number of CS  measurements and the 
number of pixels in the fully sampled QAM image. 

TABLE II 

COMPARISON OF EXECUTION TIME: THE AVERACEO 
VALU ES ÜV ER 30 TRIALS 

Method 
Runtime (secs) 

Lymph Node USAF 

Cauchy 3.32 3.47 
ABE 2.86 3.00 
ST 2.82 2.93 

IRLS 62.88 333.61 
LlLS 4.10 6.88 

1) Gaussian Random Measurements: Figs. 5 and 6 illustrate
the impedance images obtained with the five reconstruction 
algorithms from Gaussian random measurements. It high­
lights that IRLS and LlLS methods severely distorted the 
fully sampled image compared to the AMP-based algorithms. 
By closely comparing the AMP-based methods, one may 
remark that Cauchy-AMP shows a tendency of noise removal 
with a slightly excessive smoothing effect, whereas ST-AMP 
and ABE-AMP suffer from several reconstruction artifacts. 
Table I regroups the P SNR and S SIM values corresponding 
to the results in Figs. 5 and 6. In addition, Table II provides 
the runtime of the five methods, averaged over 30 trials. 
Ali the algorithms were implemented in MATLAB R2014a 
environment and executed on a desktop computer equipped 
with a 2.6 GHz Intel(R) CoreTM i7 - 6500C processor with 
8 GB RAM. 

AMP algorithms outperform the two conventional recovery 
approaches IRLS and LlLS. Particularly, Cauchy-AMP yields 
the most accurate results compared to its AMP counterparts, 
at the cost of an execution rime marginally higher than ABE­
and ST-AMP. The execution time increase per iteration is 



Fig. 10. PSNR results as a function of the measurement rate, the sensing pattern (diagonal, random rows, or spiral), and recovery algorithm (proposed
Cauchy-AMP, ABE-AMP, and ST-AMP). (a) Cauchy, (b) ABE, and (c) ST of human cornea at 500 MHz of SoS mode. (d) Cauchy, (e) ABE, and (f) ST of
human lymph node at 250 MHz of SoS mode. (g) Cauchy, (h) ABE, and (i) ST of human lymph node at 250 MHz of impedance mode.

explained by the number of parameters to be estimated dur-
ing the denoising process. Indeed, Cauchy-AMP requires the
estimation of an extra parameter compared with ST-AMP and
ABE-AMP, that is, the dispersion parameter that determines
the spread of the Cauchy distribution. However, the extra
computational cost per iteration is significantly mitigated by
the faster convergence of Cauchy-AMP as revealed in Fig. 7.

2) Bernoulli Random Measurements: The above over-
all evaluation confirms that AMP-based algorithms are the
most promising QAM recovery methods from undersam-
pled data. Nevertheless, measurements obtained by linear
projections on Gaussian vectors are not of practical use
in QAM. As explained previously, QAM data is acquired
point-wise by raster scanning the sample. Thus, Bernoulli
random measurements corresponding to random spatial posi-
tions are further adapted to QAM acquisition system. There-
fore, the three AMP-based methods are tested in this
section on the same image used previously but on Bernoulli
randomly sampled data. Similar to the previous results,

TABLE III

NUMERICAL RESULTS OF RECOVERY QUALITY

(BERNOULLI RANDOM SENSING)

the proposed Cauchy-AMP outperforms the ABE-AMP and
ST-AMP algorithms. The three reconstructed images are
shown in Figs. 8 and 9. The corresponding quantitative results
are regrouped in Table III.

B. Simulation B: Reconstruction Results With Sensing
Schemes Dedicated to QAM

The results shown in the previous section proved the superi-
ority in reconstructing QAM images of the proposed Cauchy-
AMP algorithm against four well-established methods.
However, Gaussian random measurements are impractical for
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Fig. 11. Reconstruction results of Sos (mis) rnap estirnated frorn hurnan comea data acquired at 500 MHz. (a) Original fully sarnple data at a pixel resolution 
of 1 11m per 1 µm. (b}-{d) Reconstructed images with the proposed Cauchy-AMP algorithrn for spiral, diagonal, and row randorn sarnpling patterns. 
(e}-{g) Reconstructed images with the ABE-AMP algorithrn for the spiral, diagonal, and row randorn sarnpling patterns. (h)-(j) Reconstructed images with 
ST-AMP algorithrn for the spiral, diagonal, and row randorn sarnpling patterns. Ail the results correspond to a rneasurernent ratio of 40%. 

QAM data acquisition. Similarly and although technically pos­

sible, it would be inefficient to move the transducer to transmit 

and receive ultrasound signais at spatial locations following a 

Bernoulli random measurements. Therefore, in this second set 

of simulations, the three AMP-based algorithms are employed 

to assess the relevance of the practical sensing patterns pro­

posed in this paper (see Section III-B) for QAM imaging. 

The simulations used experimental results obtained from 

three real QAM maps. The first map corresponds to the speed 

of sound (SoS) map obtained from a human cornea sample 

using the 500-MHz QAM system. The two other maps are 

SoS and impedance maps obtained using the 250-MHz QAM 

system on a human lymph node thin section obtained from a 

colorectal cancer patient. The fully sampled images correspond 

to standard raster scanning at conventional spatial scanning 

frequencies, resulting into a pixel size of 1 µm per 1 µm and 

respectively of 2 µm per 2 µm for the 500- and 250-MHz 

data. 
Ail the AMP-algorithm investigations were performed 

using measurement ratios ranging from 20% to 60% of 

the data obtained using the conventional raster scanning 

approach. Fig. 10 displays the resulting PSNR values and 

permits comparing the QAM image reconstruction quality 

between the three proposed sensing patterns and the three 

AMP-based reconstruction algorithms. Blue regions in these 

images were not included in quantitative analyses because they 

were devoid of tissues. lndependent of the image or algorithm 

under consideration, results indicate that the spiral pattern 
always provided the highest PSNR, followed by the diag­

onal pattern. Figs. 11-13 show the fully sampled images 

and the ones recovered by the three algorithms from data 

generated with the three considered patterns for a measure­

ment rate of 40%. Also for the sake of the quantitative 
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Fig. 12. Reconstruction results of SoS (mis) rnap estimated from hurnan 
lyrnph node data acquired at 250 MHz. (a) Original fully sarnple data at 
a pixel resolution of 2 11m per 2 11m. (b}-{d) Reconstructed images with 
the proposed Cauchy-AMP algorithrn for spiral, diagonal, and row random 
sarnpling patterns. (e}-{g) Reconstructed images with ABE-AMP algorithrn 
for spiral, diagonal and row randorn sarnpling patterns. (h)-(j) Reconstructed 
images with ST-AMP algorithrn for spiral, diagonal, and row random sarnpling 
patterns. Ail the results correspond to a measurernent ratio of 40%. 

evaluation corresponding to the figures, the numerical results 

are in Table IV offered. Overall, visual inspections of these 

images are consistent with the results shown in Fig. 10, 

the spiral pattern provides the best result, and the quality 

of the reconstructions improves with measurement ratio. The 



TABLEN 

NUMERICAL RESULTS OF RECOVERY QUALITY FOR THE RECONSTRUCTED IMAGES SHOWN IN FICS. 11-13 

Image Method SSIM 
SPIRAL DIAGONAL 

Conear 500MHz Cauchy 0.530 0.458 

(SoS) ABE 0.509 0.435 
ST 0.502 0.373 

Lymph Node 250MHz Cauchy 0.445 0.388 
ABE 0.'IS!I 0.374 (SoS) ST 0.4l!S O.s:>l 

Lymph Node 250MHz Cauchy 0.911 0.884 
ABE 0.907 0.878 (lmpedance) ST 0.896 0.868 

images obtained with a measurement ratio of 40%, that is, 
Figs. 11-13 illustrate nicely the relative performance of each 

tested sensing pattern. Fig. 10 reveals that Cauchy denoising 

provides better PSNR values. The corresponding 2-D maps 

are shown in Figs. 1 l-13[(b)-(d)]. The row random pattern 

results show many artifacts appearing as "transverse" lines. 

In contrast, the spiral and diagonal sensing patterns do not 

contain any visually apparent artifacts. In order to determine 

which of these two sensing patterns performs better for QAM, 

one can arguably see in Figs. 11-13 that the dense yellow 

area are better reconstructed using the spiral than the diagonal 

sensing pattern. This visual assessment is consistent with the 
quantitative results shown in Fig. 10 and Table IV. Another 

potential benefit of spiral pattern resides in significantly 

reduced scanning time. QAM estimation time is typically Jess 

important than QAM data acquisition time because tissue 

properties may change during scanning. Nevertheless, while 

the proposed AMP approach significantly decreases scanning 

time, it turns out that it also significantly decreases image 

formation time, because QAM parameter estimation is done 

independently on each RF line and is much more time 

consuming than AMP (see Table Il). For example, in the 
case of the 40% spiral, scanning time is reduced by more 

than 80% because in conventional raster scanning most of 

the time is spent accelerating and decelerating in each scan 

line, whereas the spiral is a smooth continuous curve that 

can be scanned at almost constant speed with servo motors. 

In addition, initial parameter estimation time is also reduced 

by 60% prior to the application of the AMP algorithm. The 

raster scanning and parameter estimation times for the lymph 

node example (Figs. 12 and 13) were approximately 20 and 

1 5  min. The 40% spiral AMP approach would reduce these 

times to approximately 4 and 8 min. In conclusion, these 

sets of simulations reveal that combining a spiral sensing 

pattern with a measurement ratio of 40%, and a Cauchy-AMP 

recovery is the best compromise between a practical spatial 
sampling patten easily implementable with servo motors and 

image reconstruction quality for QAM imaging. 

However, in three graphs (right column) corresponding to 

ST-AMP of Fig. 10, intractable problems are found. To date 

researches associated with CS recovery normally have been 

reporting that the relationship between recovery quality and 

measurement ratio is a monotonically increase or decrease 

within usually simulated range. By contrast, ST-AMP shows 

unfamiliar results. Indeed CS has been constructed on the 
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Fig. 13. Reconstruction results of impedanœ (M Ray/) map estimated from 
human lymph node data acquired at 250 MHz. (a) Original fully sample data 
at a pixel resolution of 2 11m per 2 11m. (bkd) Reconstructed images with 
the proposed Cauchy-AMP algorithm for spiral, diagonal, and row random 
sampling patterns. (ekg) Reconstructed images with ABE-AMP algorithm 
for spiral, diagonal, and row random sampling patterns. (h}-(j) Reconstructed 
images with ST-AMP algorithm for spiral, diagonal, and row random sampling 
patterns. Ali the results correspond to a measurement ratio of 40%. 

premise of sensing matrices satisfying mathematical complete­

ness such as restricted isometry property and incoherence to 

ensure perfect recovery of sparse signais. Nevertheless, since 

this paper prioritized the aspect of practical implementation 

of sensing strategy, the proposed sensing patterns unavoid­

ably followed deterrninistic sensing trajectories rather than 

randomness dominating CS sensing arena owing to meeting 

essential conditions stated above [34]. From this perspective, 

further study will focus on the development of practical 

sensing schemes retaining the pertinent properties of random 

matrices [35]. 

V. CONCLUSION

In this paper, we introduced a new framework for com­

pressive sampling reconstruction of QAM images together 



with associated sampling patterns. We proposed and tested 
three compressive sampling measurement matrices, with a 
view of reducing both acquisition time and the amount of 
samples required, while taking into account the constraints 
imposed by the design of current experimental QAM systems. 
Specifically, we assessed the relative merits of diagonal sam-
pling, row random sampling, and spiral scanning as underlying 
patterns in designing a CS measurement matrix. We adopted 
an AMP strategy for the image reconstruction component of 
our framework, owing to its similarity to lp minimization. 
In particular, in the multiscale wavelet domain, we employed a 
Cauchy-based MAP estimation algorithm to perform the image 
denoising step required by an AMP algorithm.

We tested our methods in comparison with various com-
pressive image reconstruction algorithms, when applied to 
QAM data. Our results showed improved performance both 
with respect to alternative AMP techniques that use differ-
ent denoising strategies as well as to other, more standard, 
approaches to CS reconstruction, which employ l1-norm, or lp 
minimization.

The results of this paper could prove invaluable in QAM 
imaging. CS has the potential to yield significantly improved 
scan times, smaller data sets, faster image formation without 
degrading image quality. Moreover, CS approaches would 
reduce experimental challenges currently encountered in QAM 
imaging. For example, the spiral sampling approach could be 
implemented on cheap, potentially less precise, servo motors. 
In addition, reducing scan time would reduce changes that 
the tissue properties may suffer during scan and would limit 
temperature variations, particularly in the coupling medium, 
which can greatly effect speed of sound estimates. Therefore, 
CS approaches could potentially bring about a new generation 
of QAM systems that would be lower in costs and simpler to 
use. Finally, the study of dominant factors having an effect on 
the convergence rate of the proposed method is definitely an 
interesting study that will be part of our future work.
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