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Approximate Message Passing Reconstruction of Quantitative Acoustic Microscopy Images
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A novel framework for compressive sensing (CS) data acquisition and reconstruction in quantitative acoustic microscopy (QAM) is presented. Three different CS patterns, adapted to the specifics of QAM systems, were investigated as an alternative to the current raster-scanning approach. They consist of diagonal sampling, a row random, and a spiral scanning pattern and can all significantly reduce both the acquisition time and the amount of sampled data. For subsequent image reconstruction, we design and implement an innovative technique, whereby a recently proposed approximate message passing method is adapted to account for the underlying data statistics. A Cauchy maximum a posteriori image denoising algorithm is thus employed to account for the non-Gaussianity of QAM wavelet coefficients. The proposed methods were tested retrospectively on experimental data acquired with a 250-or 500-MHz QAM system. The experimental data were obtained from a human lymph node sample (250 MHz) and human cornea (500 MHz). Reconstruction results showed that the best performance is obtained using a spiral sensing pattern combined with the Cauchy denoiser in the wavelet domain. The spiral sensing matrix reduced the number of spatial samples by a factor of 2 and led to an excellent peak signal-to-noise ratio of 43.21 dB when reconstructing QAM speed-of-sound images of a human lymph node. These results demonstrate that the CS approach could significantly improve scanning time, while reducing costs of future QAM systems.

I. INTRODUCTION

A LTHOUGH introduced more than 30 years ago, quantita- tive acoustic microscopy (QAM) is still a "new" imaging technology employed to investigate soft biological tissue at microscopic resolution by eliciting its mechanical property when irradiated with very high frequency ultrasound [START_REF] Marmor | Acoustic microscopy of the human retina and pigment epithelium[END_REF]. Specifically, by processing RF echo data, QAM yields 2-D quantitative maps of the acoustical and mechanical properties of soft tissues (e.g., speed of sound, acoustic impedance, and acoustic attenuation). Therefore, QAM provides a novel contrast mechanism compared to histology photomicrographs and optical and electron microscopy images [START_REF] Hildebrand | Acoustic microscopy of living cells[END_REF]. To date, our group and others have successfully used QAM to investigate a wide range of soft biological tissues such as liver samples, lymph nodes, retina, and even living cells [START_REF] Marmor | Acoustic microscopy of the human retina and pigment epithelium[END_REF]- [START_REF] Mamou | Ultrasound-scattering models based on quantitative acoustic microscopy of fresh samples and unstained fixed sections from cancerous human lymph nodes[END_REF]. Several of these recent studies were performed using QAM systems equipped with spherically focused single-element transducers having center frequencies of 250 or 500 MHz, which yielded 2-D maps of acoustic properties with spatial resolutions of 7 and 4 μm, respectively [START_REF] Rohrbach | Fineresolution maps of acoustic properties at 250 MHz of unstained fixed murine retinal layers[END_REF], [START_REF] Irie | Speed of sound in diseased liver observed by scanning acoustic microscopy with 80 MHz and 250 MHz[END_REF]. Currently, QAM requires a complete 2-D raster scan of the sample to form images, thus yielding a large amount of RF data when using a conventional spatial sampling scheme (e.g., 2 and 1 μm steps at 250 and 500 MHz, respectively). Likewise, sonography techniques exploiting ultrasound need to acquire a considerable amount of data (thus significantly exceeding the Nyquist rate) in order to perform high-resolution digital beamforming. Therefore, compressive sensing (CS) has been intensively studied as a breakthrough to overcome the limitation of contemporary technology [START_REF] Chernyakova | Fourier-domain beamforming: The path to compressed ultrasound imaging[END_REF].

From this perspective, this paper presents a novel approach to improve the efficiency of QAM RF data acquisition and reconstruction by developing a dedicated CS scheme.

Traditionally, statistical signal processing has been centered in its formulation on the hypotheses of Gaussianity and stationarity. This is justified by the central limit theorem and leads to classical least square approaches for solving various estimation problems. The introduction of various sparsifying transforms starting with the penultimate decade of the last century, together with the adoption of various statistical models that are able to model various degrees of non-Gaussianity and heavy-tails, have led to a progressive paradigm shift [START_REF] Unser | A unified formulation of Gaussian versus sparse stochastic processes-Part I: Continuous-domain theory[END_REF]. At the core of modern signal processing methodology sits the concept of sparsity. The key idea is that many naturally occurring signals and images can be faithfully reconstructed from a lower number of transform coefficients than the original number of samples (i.e., acquired according to Nyquist theorem) [START_REF] Candès | Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[END_REF]. In this sense, CS could prove to be a powerful solution to decrease the amount of data in QAM and to accelerate the acquisition process at potentially no cost to image quality. In terms of reconstruction, most CS methods rely on l 1 -norm minimization using a linear programming algorithm [START_REF] Chen | Atomic decomposition by basis pursuit[END_REF]. All these approaches do not exploit the true statistical distribution of the data and are motivated by the inability of the classical least-squares approach to estimate the reconstructed signal.

In this paper, an approximate-message-passing-(AMP)based algorithm was designed to reconstruct QAM images from spatially undersampled measurements. AMP is a simplified version of message passing derived from belief propagation in graphical models [START_REF] Donoho | Message-passing algorithms for compressed sensing[END_REF] and is characterized not only by dramatically reduced convergence times but also by a reconstruction performance equivalent to l p -based methods. AMP uses an iterative process consisting of a sparserepresentation based image denoising algorithm performed at each iteration [START_REF] Donoho | How to design message passing algorithms for compressed sensing[END_REF]. Hence, selection of a robust denoiser and of the most efficient sparsifying basis are essential issues to address in order to achieve fast convergence and high recovery quality [START_REF] Tan | Compressive imaging via approximate message passing with image denoising[END_REF]. Our proposed AMP-based QAM imaging framework consists of the following two major modules.

1) In the data acquisition component of our system, we propose novel techniques for QAM data sampling, by choosing sensing matrices that simultaneously meet CS requirements and take into account the peculiarities of practical QAM acquisition devices, instead of. 2) In the image reconstruction component, we design and test a wavelet domain AMP-based approach, which exploits underlying data statistics through the use of a Cauchy-based maximum a posteriori (MAP) algorithm.1 This paper is structured as follows. Section II covers the essential, necessary background on QAM, CS, and AMP. Section III introduces the main theoretical contributions of this paper. Specifically, in Section III-A, we present the derivation of the wavelet-based Cauchy denoiser. In Section III-B, we describe three different sensing patterns for QAM. Section IV compares the performance of our proposed method with that of the existing CS reconstruction techniques, including previously proposed AMP algorithms. Finally, conclusions and future work directions are detailed in Section V.

II. THEORETICAL BACKGROUND

A. Quantitative Acoustic Microscopy

In QAM, a high-frequency (e.g., >50 MHz), single-element, spherically focused (e.g., F-number < 1.3) transducer transmits a short ultrasound pulse and receives the RF echo signals reflected from the sample that consists of a thin section of soft tissue affixed to a microscopy slide (Fig. 1). The echo RF data are composed of two main reflections (see S 1 and S 2 in Fig. 1): S 1 originates from the interface between the coupling medium (degassed saline) and the specimen and S 2 from the interface between the specimen and the glass substrate interface as illustrated in Fig. 1. At each scan location, the RF data are digitized, saved, and processed offline to yield values of speed of sound (c), acoustic impedance (z), and attenuation (α) [START_REF] Rohrbach | A novel quantitative 500-MHz acoustic microscopy system for ophthalmologic tissues[END_REF]. Signal processing also requires the use of a reference signal obtained from a region devoid of sample (S 0 in Fig. 1). Briefly, the ratio of the Fourier transform of a sample signal, S and S 0 , is computed and fit to a forward model to estimate the time of flight differences between S 1 and S 0 and S 2 and S 0 . These time differences are used to estimate c in the sample as well as the tissue thickness (i.e., Fig. 1. Illustrative working principle of QAM. RF data from the above sample location is composed of two reflections, while RF data from the above glass slide is composed of only one reflection. Many QAM systems operate in the so-called upside-down configuration, because holding the transducer from the top usually generates too much vibration at the tip of transducer creating blurring artifact in the reconstructed QAM images. d in Fig. 1) at that location. The forward model fit also provides the amplitude of S 1 , which is used to estimate z of the sample. Finally, the amplitude of S 2 , its frequency dependence, and the previously estimated tissue thickness are used to estimate α [START_REF] Rohrbach | A novel quantitative 500-MHz acoustic microscopy system for ophthalmologic tissues[END_REF]. The transducer is raster scanned and the values obtained at each scan location are then combined to form quantitative 2-D parameter maps. Fig. 2 shows the working principle of QAM as well as the 500-MHz QAM system used in this paper (Fig. 1), namely the transducer and the thin sample affixed to a microscopy slide. Samples are obtained from fixed or frozen samples sectioned using a microtome or a cryotome. In the case of fixed samples, the paraffin is removed and the sample is rehydrated before imaging. In the case of frozen samples, the sample is thawed and rehydrated before imaging. These protocols are common and used in histopathology. Following QAM data acquisition, the samples can be stained and imaged using optical microscopy approaches, and histology photomicrographs can easily be co-registered with QAM images. Therefore, successfully applying a CS approach to QAM acquisition could significantly reduce the amount of RF data recorded compared to conventional raster scanning without significantly degrading the quantitative 2-D maps of acoustic properties. In this paper, a new CS scheme is proposed for QAM, and to test it, it was applied retrospectively to decimated 2-D quantitative maps directly.

B. Compressive Sensing

CS is based on measuring a significantly reduced number of samples than what is dictated by the Nyquist theorem. Given a correlated image, the traditional transform-based compression method performs the following steps: 1) acquires all N samples of the signal; 2) computes a complete set of transform coefficients (e.g., discrete cosine transform or wavelet); and 3) selectively quantizes and encodes only the K N most significant coefficients. This procedure is highly inefficient, because a significant proportion of the output of the analog- An eye sample from eye bank is visible on the microscopy glass slide. Our QAM system does not currently employ a temperature controller; rather, we measure the coupling fluid temperature at the beginning and the end of the scanning, linearly interpolate between the two values, and use these values to estimate a speed of sound in water at each location. Typically, the variation of temperature is less than 0.5 °C.

to-digital conversion process ends up being discarded. CS is concerned with sampling signals more parsimoniously, acquiring only the relevant signal information, rather than sampling followed by compression. The main hallmark of this methodology is that, given a compressible signal, a small number of linear projections, directly acquired before sampling, contain sufficient information to effectively perform the processing of interest (such as signal reconstruction, detection, and classification). In terms of signal approximation, Candès et al. [START_REF] Candès | Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[END_REF] and Donoho [START_REF] Donoho | Compressed sensing[END_REF] have demonstrated that if a signal is K -sparse in one basis (meaning that the signal is exactly or approximately represented by K elements of this basis), then it can be recovered from M = cst•K •log(N/K ) N fixed (nonadaptive) linear projections onto a second basis, called the measurement basis, which is incoherent with the sparsity basis [START_REF] Candès | Sparsity and incoherence in compressive sampling[END_REF], and where cst > 1 is a small overmeasuring constant. The CS measurement model is

y = x + n (1) 
where y ∈ R M is the measurement vector, x ∈ R N is the signal to be reconstructed, ∈ R M×N is the measurement matrix, and n ∈ R M is an additive white Gaussian noise.

In terms of reconstruction, using the M measurements in the first basis and given the K -sparsity property in the other basis, the original signal can be recovered by taking a number of different approaches. The majority of these approaches solve constrained optimization problems. Commonly used approaches are based on convex relaxation (basis pursuit [START_REF] Candès | Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[END_REF]), nonconvex optimization (reweighted l p minimization [START_REF] Chartrand | Iteratively reweighted algorithms for compressive sensing[END_REF]), or greedy strategies (orthogonal matching pursuit [START_REF] Tropp | Signal recovery from random measurements via orthogonal matching pursuit[END_REF]). As another alternative, iterative thresholding approaches to CS recovery problem have attracted significant interest, owing to faster reconstruction than what can be achieved by convex optimization. Blumensath and Davies [START_REF] Blumensath | Iterative hard thresholding for compressed sensing[END_REF] and Donoho [START_REF] Donoho | De-noising by soft-thresholding[END_REF] proved that correct solution could be obtained via soft or hard thresholding of observations measured from sparse signals.

C. Approximate Message Passing Reconstruction

In the context of CS, AMP reconstructs an original image from a reduced number of linear measurements by performing elementwise denoising at each iteration. Indeed, the AMP algorithm can be interpreted as recursively solving an image denoising problem. Specifically, at each AMP iteration, one observes a noise perturbed original image. Reconstructing the image amounts to successive noise cancellations until the noise variance decreases to a satisfactory level. The algorithm can be succinctly summarized mathematically through the following two steps:

x t +1 = η t ( T z t + x t )
(2)

z t = y -x t + 1 δ z t-1 η t -1 T z t-1 + x t-1 (3) 
where x, y, z, and δ denote a sparse signal, observation, residual, and undersampling ratio (M/N), respectively. η(•) is a function that represents the denoiser, η (•) is its first derivative, and x = (1/N) N i=1 (x i ). The superscript t represents the iteration number and (•) T is the classical conjugate transpose notation. Given x = 0 and z = y as an initial condition, the algorithm iterates sequentially ( 2) and ( 3) until satisfying a stopping criterion or reaching a preset iteration number. The last term of the right-hand side in (3) is referred to as the Onsager reaction term and is also acknowledged to contribute to balancing the sparsity-undersampling tradeoff [START_REF] Donoho | Message-passing algorithms for compressed sensing[END_REF], [START_REF] Metzler | From denoising to compressed sensing[END_REF].

An extended wavelet-based AMP system can be generated by integrating a wavelet transform (denoted by W ) into ( 2) and (3) using the following transformation:

y = W -1 θ x x +n (4) 
where W -1 denotes the inverse wavelet transform W and θ x becomes the sparse representation of x within wavelet domain. Introducing as the new notation for W -1 , we get the following expressions:

θ t+1 x = η t T z t + θ t x ( 5 
)
z t = y -θ t x + 1 δ z t-1 η t -1 T z t-1 + θ t-1 x . ( 6 
)
The subsequently defined denoising algorithms seek to denoise the elements of θ t q = T z t + θ t x corresponding to the contaminated wavelet coefficients. To simplify the following notation, the i th element of θ t q is defined as θ t q,i = v and the i th element of the denoised output θ t+1 x is defined as θ t +1

x,i = ŵ (a denoised estimate of the true coefficient w).

The most important design consideration is arguably the choice of the shrinkage (denoising) function η in (5). In the following, we introduce two previsouly defined functions [START_REF] Dabov | Image denoising by sparse 3-D transform-domain collaborative filtering[END_REF], [START_REF] Metzler | From denoising to compressed sensing[END_REF], which will be later used for comparison purpose within our experimental results in Section IV-A. 1) Soft Threshold Denoiser:

ŵ = η(v) = sign(v)(|v| -τ ) • (|v|>τ ) η (v) = (|v|>τ ) (7)
where (•) is the indicator function. The threshold τ is defined as the Mth largest magnitude value of θ t q [START_REF] Donoho | Message-passing algorithms for compressed sensing[END_REF]. 2) Amplitude-Scale-Invariant Bayes Estimator Denoiser:

ŵ = η(v) = (v 2 -3σ 2 ) + v η (v) = (v 2 >3σ 2 ) • 1 + 3 σ v 2 (8)
where σ 2 is the noise variance at iteration t and (•) + is the right handed function where (u) + = 0 if u ≤ 0 and (u)

+ = u if u > 0.
As far as the CS reconstruction of conventional ultrasound images is concerned, the denoiser in (8) was shown to achieve a better performance than iteratively reweighed least squares (IRLS) and l p programming [START_REF] Kim | Ultrasound image reconstruction from compressed measurements using approximate message passing[END_REF]. Therefore, we hypothesize that ABE should also be a successful criterion for QAM images; consequently, we shall use it for benchmarking our method. Fig. 3 illustrates the behavior of the denoising function for four different denoisers, of which ABE and the Cauchy-based denoisers that are introduced in the subsequent section can be regarded as a compromise between soft-thresholding and hard-thresholding [START_REF] Figueiredo | Wavelet-based image estimation: An empirical Bayes approach using Jeffrey's noninformative prior[END_REF]. The labels on the horizontal and vertical axes correspond to corrupted wavelet coefficient and their denoised version, respectively. Subscript i represents the index of each element, which implies elementwise denoising, as stated before.

III. CAUCHY-AMP FOR COMPRESSED QAM IMAGING

This section describes the key features of wavelet-based Cauchy-AMP together with the practical sensing patterns as a novel approach for QAM CS reconstruction.

A. Wavelet-Based Cauchy-AMP

Wavelet coefficients provide a sparse representation for natural images [START_REF] Donoho | Ideal spatial adaptation by wavelet shrinkage[END_REF]. In addition, they can be accurately modeled using heavy tailed distributions [START_REF] Kutay | On modeling biomedical ultrasound RF echoes using a power-law shot-noise model[END_REF], [START_REF] Petropulu | Power-law shot noise and its relationship to long-memory alpha;-stable processes[END_REF] such as the α-stable distribution [START_REF] Achim | Novel Bayesian multiscale method for speckle removal in medical ultrasound images[END_REF], [START_REF] Achim | Image denoising using bivariate α-stable distributions in the complex wavelet domain[END_REF]. The Cauchy distribution is a special case of the α-stable family that not only has a heavy tailed form but also has a compact analytical probability density function given in [START_REF] Hill | Compressive imaging using approximate message passing and a Cauchy prior in the wavelet domain[END_REF] 

P(w) = γ w 2 + γ 2 (9)
where w and γ are the wavelet coefficient value and the dispersion parameter (controlling the spread of the distribution), respectively. Given (9), a MAP estimator method (10) can lead to the derivation of explicit formulae ( 14) estimating a clean wavelet coefficient w from an observed coefficient observation v contaminated with additive Gaussian noise (i.e., n = v -w with noise variance σ 2 ) [START_REF] Ilow | Analytic alpha-stable noise modeling in a Poisson field of interferers or scatterers[END_REF] ŵ = arg max

w P w|v (w|v). ( 10 
)
The posterior probability P w|v (w|v) can be expressed, by Bayes' theorem, as

P w|v (w|v) = P v|w (v|w)P w (w) P v (v) . ( 11 
)
Assuming that P v|w (v|w) ∼ N(0, σ 2 ), the logarithmic form of ( 10) is given in [START_REF] Ilow | Analytic alpha-stable noise modeling in a Poisson field of interferers or scatterers[END_REF], which is mathematically more intuitive. The evidence P v (v) is constant for all inputs and, therefore, can be ignored

ŵ(v) = arg max w - (v -w) 2 2σ 2 + log γ w 2 + γ 2 . ( 12 
)
To find the solution to [START_REF] Ilow | Analytic alpha-stable noise modeling in a Poisson field of interferers or scatterers[END_REF], take the first derivative of the terms in the bracket relative to w and set to zero

ŵ3 -v ŵ2 + (γ 2 + 2σ 2 ) ŵ -γ 2 v = 0. ( 13 
)
Using Cardano s method, the estimate of w can be found in [START_REF] Rohrbach | A novel quantitative 500-MHz acoustic microscopy system for ophthalmologic tissues[END_REF] of which the first derivative is (15)

ŵ = η(v) = v 3 + s + t (14) ŵ = η (v) = 1/3 + s + t ( 15 
)
where s and t are values determined by v and σ 2 iteratively updated at each iteration together with a constant value γ ; σ 2 is estimated as the variance of the z vector defined in [START_REF] Dabov | Image denoising by sparse 3-D transform-domain collaborative filtering[END_REF]. s and t are defined as

s = 3 q 2 + dd, t = 3 q 2 -dd dd = p 3 /27 + q 2 /4 p = γ 2 + 2σ 2 -v 2 /3 q = vγ 2 + 2v 3 /27 -(γ 2 + 2σ 2 )v/3. ( 16 
)
s and t are found as follows: s = q /2 + dd 3(q/2 + dd) (2/3) , t = q /2dd 3(q/2dd) (2/3) 

dd = p p 2 /9 + q q/2 2dd p = -2v/3 q = -2σ 2 /3 + 2γ 2 /3 + 2v 2 /9. ( 17 
)

B. Practical Sensing Patterns for QAM

Theoretically, optimal sensing matrices based on random ness are impractical for QAM data acquisition because RF data are typically acquired continuously as the motor stages are moved. Therefore, this paper investigates three practical sensing schemes, which can be easily implemented using servo motors. The diagonal sensing schemes raster scan oblique lines using a constant predefined angle that is used to vary the measurement rate, that is, a smaller angle leads to denser sam pling. The row random sensing pattern is a naive but practical attempt to preserve randomness. Data are also collected using a practical raster scanning approach, but only on randomly selected rows using the random number generator (mg) of MATLAB. An input value for mg is used to dictate the measurement rate. Finally, the spiral sensing scheme is also a practical sensing scheme that originates in the center of area to be sampled and spreads out following a spiral pattern. The pace of the spreading is parameterized and used to prescribe the measurement rate. For comparison purposes, the spiral pattern was truncated to cover the same square area as the other two patterns. In actual experiments, the scanned area by the spiral pattern would consist approximately of a circle passing through the four corners of the square.

Fig. 4 illustrates all sensing schemes used to sample data from a target composed of 256 x 256 pixel. A measurement rate of 20% is shown for all three schemes and the white pixels correspond to the area to be spatially sampled.

IV. SIMULATION RESULTS

Two different sets of experiments have been conducted and results are reported in Sections IV-A and IV-B. The objective of the first set of experiments was to evaluate the performance of the proposed Cauchy-AMP algorithm. The second set of experiments shows the interest of the proposed sampling schemes in QAM and the ability of Cauchy-AMP algorithm to recover high-quality images from the resulting undersampled data. In addition to visual inspection, the peak signal-to-noise ratio (PSNR) and the structural similarity (SSIM) index [START_REF] Wang | Image quality assessment: From error visibility to structural similarity[END_REF] were used to assess the quality of the reconstructed images by comparing them to the corresponding fully sampled quantita tive maps.

A. Simulation A: Reconstruction Results With Random Sensing Schemes

The objective of this section is to validate the efficiency of the proposed Cauchy-AMP algorithm in comparison to alter native methods, previously proposed for CS reconstruction. Two of these were described in Section 11-C and, while also the AMP-based algorithm, they use ST and ABE as shrink age fonctions in [START_REF] Unser | A unified formulation of Gaussian versus sparse stochastic processes-Part I: Continuous-domain theory[END_REF] and [START_REF] Candès | Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[END_REF]. In addition, we also compare to conventional CS reconstruction algorithms, including the LILS method and the IRLS algorithm for l 1 -norm and l p rninimization, respectively. These are succinctly outlined in the following. l) Lll.S (l1-Regularized Least Squares): This 1 1 -based algorithm solves an optimization problem of the form rnin l l <I>x -Yll 2 + À. Llxd [START_REF] Tropp | Signal recovery from random measurements via orthogonal matching pursuit[END_REF] i=l where À., a positive number, is a regularisation parame ter; in this paper we adopted, by cross validation, 0.01 as the value of À. . 2) /Rl.S:

x = min llxll p s.t. y= <I>x. X [START_REF] Blumensath | Iterative hard thresholding for compressed sensing[END_REF] When it cornes to estimating a sparse vector character ized by an a-stable distribution, [START_REF] Blumensath | Iterative hard thresholding for compressed sensing[END_REF] leads to solving an l p minimization problem. Thus, in order to choose the optimum value of p, we employed the approach described in [START_REF] Achim | Compressive sensing for ultrasound RF echoes using α-stable distribution[END_REF]. This approach was found to be superior to existing l P sol vers when applied to CS reconstruction of conventional B-mode images. The incoherence between the sensing matrix and the spar sifying transform is important in CS applications. Hence, in order to fairly evaluate the performance of the reconstruc tion algorithms, the results in this section are obtained with two random sensing matrices widely used in the CS literature: image projections on random Gaussian vectors and point-wise multiplication with Bernoulli vectors formed by uniformly random distributed zeros and ones.

o�-�--�-�--�-�-�

Two experimental data volumes were used, from which impedance maps were estimated point-wise using the method in [START_REF] Rohrbach | A novel quantitative 500-MHz acoustic microscopy system for ophthalmologic tissues[END_REF]. The first was acquired from a spatial-resolution target consisting of small bars of known width and spac ing. Recause the chrome used to form those bars is deposited using photolithography, the metal thickness (i.e., �0.12 µm) is much smaller than the wavelength at 250 MHz (i.e., �6 µm); therefore, only an effective acoustic impedance (Zeff) can be estimated. The amplitudes of the reflected signal (A) and the reference signal (B) were used to calculate Zeff using the following equation from the pressure reflection law [START_REF] Kinsler | Fundamentals of Acoustics[END_REF]:

(1 + Rrefi) Zeff = Zw ( l R A) -Ref7J ( 20 
)
where Zw is the known acoustic impedance of water and Rref is the pressure reflection coefficient between water and glass slide

R Zg -Zw ref = Zg +zw ( 21 
)
where Zg is the known acoustic impedance of the glass slide.

The second data volume was acquired from a 12-µm-thick section obtained from a lymph node excised from a colorectal cancer patient using the 250-MHz QAM system. For both Gaussian and Bernoulli measurement matrices, the reconstruc tion results correspond to a measurement rate of 25%, that is, the ratio between the number of CS measurements and the number of pixels in the fully sampled QAM image. 1) Gaussian Random Measurements: Figs. 5 and6 illustrate the impedance images obtained with the five reconstruction algorithms from Gaussian random measurements. It high lights that IRLS and LlLS methods severely distorted the fully sampled image compared to the AMP-based algorithms. By closely comparing the AMP-based methods, one may remark that Cauchy-AMP shows a tendency of noise removal with a slightly excessive smoothing effect, whereas ST-AMP and ABE-AMP suffer from several reconstruction artifacts. Table I regroups the PSNR and SSIM values corresponding to the results in Figs. 5 and6. In addition, Table II provides the runtime of the five methods, averaged over 30 trials. Ali the algorithms were implemented in MATLAB R2014a environment and executed on a desktop computer equipped with a 2.6 GHz Intel(R) CoreTM i7 -6500C processor with 8 GB RAM.

AMP algorithms outperform the two conventional recovery approaches IRLS and LlLS. Particularly, Cauchy-AMP yields the most accurate results compared to its AMP counterparts, at the cost of an execution rime marginally higher than ABE and ST-AMP. The execution time increase per iteration is explained by the number of parameters to be estimated during the denoising process. Indeed, Cauchy-AMP requires the estimation of an extra parameter compared with ST-AMP and ABE-AMP, that is, the dispersion parameter that determines the spread of the Cauchy distribution. However, the extra computational cost per iteration is significantly mitigated by the faster convergence of Cauchy-AMP as revealed in Fig. 7.

2) Bernoulli Random Measurements: The above overall evaluation confirms that AMP-based algorithms are the most promising QAM recovery methods from undersampled data. Nevertheless, measurements obtained by linear projections on Gaussian vectors are not of practical use in QAM. As explained previously, QAM data is acquired point-wise by raster scanning the sample. Thus, Bernoulli random measurements corresponding to random spatial positions are further adapted to QAM acquisition system. Therefore, the three AMP-based methods are tested in this section on the same image used previously but on Bernoulli randomly sampled data. Similar to the previous results, the proposed Cauchy-AMP outperforms the ABE-AMP and ST-AMP algorithms. The three reconstructed images are shown in Figs. 8 and9. The corresponding quantitative results are regrouped in Table III.

B. Simulation B: Reconstruction Results With Sensing Schemes Dedicated to QAM

The results shown in the previous section proved the superiority in reconstructing QAM images of the proposed Cauchy-AMP algorithm against four well-established methods. However, Gaussian random measurements are impractical for The simulations used experimental results obtained from three real QAM maps. The fi rst map corresponds to the speed of sound (SoS) map obtained from a human cornea sample using the 500-MHz QAM system. The two other maps are SoS and impedance maps obtained using the 250-MHz QAM system on a human lymph node thin section obtained from a colorectal cancer patient. The fully sampled images correspond to standard raster scanning at conventional spatial scanning frequencies, resulting into a pixel size of 1 µm per 1 µm and respectively of 2 µm per 2 µm for the 500-and 250-MHz data.

Ail the AMP-algorithm investigations were performed using measurement ratios ranging from 20% to 60% of the data obtained using the conventional raster scanning approach. Fig. 10 evaluation corresponding to the figures, the numerical results are in Table IV offered. Overall, visual inspections of these images are consistent with the results shown in Fig. 10, the spiral pattern provides the best result, and the quality of the reconstructions improves with measurement ratio. The In contrast, the spiral and diagonal sensing patterns do not contain any visually apparent artifacts. In order to determine which of these two sensing patterns performs better for QAM, one can arguably see in Figs. 11-13 that the dense yellow area are better reconstructed using the spiral than the diagonal sensing pattern. This visual assessment is consistent with the quantitative results shown in Fig. 10 and Table IV. Another potential benefit of spiral pattern resides in significantly reduced scanning time. QAM estimation time is typically Jess important than QAM data acquisition time because tissue properties may change during scanning. Nevertheless, while the proposed AMP approach significantly decreases scanning time, it turns out that it also significantly decreases image formation time, because QAM parameter estimation is done independently on each RF line and is much more time consuming than AMP (see Ta ble Il). For example, in the case of the 40% spiral, scanning time is reduced by more than 80% because in conventional raster scanning most of the time is spent accelerating and decelerating in each scan line, whereas the spiral is a smooth continuous curve that can be scanned at almost constant speed with servo motors.

In addition, initial parameter estimation time is also reduced by 60% prior to the application of the AMP algorithm. The raster scanning and parameter estimation times for the lymph node example (Figs. 12 and13) were approximately 20 and 15 min. The 40% spiral AMP approach would reduce these times to approximately 4 and 8 min. In conclusion, these sets of simulations reveal that combining a spiral sensing pattern with a measurement ratio of 40%, and a Cauchy-AMP recovery is the best compromise between a practical spatial sampling patten easily implementable with servo motors and image reconstruction quality for QAM imaging. However, in three graphs (right column) corresponding to ST-AMP of Fig. 10, intractable problems are found. To date researches associated with CS recovery normally have been reporting that the relationship between recovery quality and measurement ratio is a monotonically increase or decrease within usually simulated range. By contrast, ST-AMP shows unfamiliar results. Indeed CS has been constructed on the •. . premise of sensing matrices satisfying mathematical complete ness such as restricted isometry property and incoherence to ensure perfect recovery of sparse signais. Nevertheless, since this paper prioritized the aspect of practical implementation of sensing strategy, the proposed sensing patterns unavoid ably followed deterrninistic sensing trajectories rather than randomness dominating CS sensing arena owing to meeting essential conditions stated above [START_REF] Emmanuel | An introduction to compressive sampling[END_REF]. From this perspective, further study will focus on the development of practical sensing schemes retaining the pertinent properties of random matrices [START_REF] Kutyniok | Theory and applications of compressed sensing[END_REF].

V. CONCLUSION

In this paper, we introduced a new framework for com pressive sampling reconstruction of QAM images together with associated sampling patterns. We proposed and tested three compressive sampling measurement matrices, with a view of reducing both acquisition time and the amount of samples required, while taking into account the constraints imposed by the design of current experimental QAM systems. Specifically, we assessed the relative merits of diagonal sampling, row random sampling, and spiral scanning as underlying patterns in designing a CS measurement matrix. We adopted an AMP strategy for the image reconstruction component of our framework, owing to its similarity to l p minimization. In particular, in the multiscale wavelet domain, we employed a Cauchy-based MAP estimation algorithm to perform the image denoising step required by an AMP algorithm.

We tested our methods in comparison with various compressive image reconstruction algorithms, when applied to QAM data. Our results showed improved performance both with respect to alternative AMP techniques that use different denoising strategies as well as to other, more standard, approaches to CS reconstruction, which employ l 1 -norm, or l p minimization.

The results of this paper could prove invaluable in QAM imaging. CS has the potential to yield significantly improved scan times, smaller data sets, faster image formation without degrading image quality. Moreover, CS approaches would reduce experimental challenges currently encountered in QAM imaging. For example, the spiral sampling approach could be implemented on cheap, potentially less precise, servo motors. In addition, reducing scan time would reduce changes that the tissue properties may suffer during scan and would limit temperature variations, particularly in the coupling medium, which can greatly effect speed of sound estimates. Therefore, CS approaches could potentially bring about a new generation of QAM systems that would be lower in costs and simpler to use. Finally, the study of dominant factors having an effect on the convergence rate of the proposed method is definitely an interesting study that will be part of our future work.
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 2 Fig. 2. (a) Photograph of the 500-MHz QAM system. (b) Block diagram of working principle. (c) Magnification of sample mounting and transducer.An eye sample from eye bank is visible on the microscopy glass slide. Our QAM system does not currently employ a temperature controller; rather, we measure the coupling fluid temperature at the beginning and the end of the scanning, linearly interpolate between the two values, and use these values to estimate a speed of sound in water at each location. Typically, the variation of temperature is less than 0.5 °C.

Fig. 3 .

 3 Fig. 3. Comparison of behavior among four different denoisers.
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 45 Fig. 4. Proposed three difforent types of sampling masks. (a) Diagonal. (b) Row random. (c) Spiral.

Fig. 6 .

 6 (a) Human Iympb node's fully sampled impedance (M Ray/) map representing a reconstruction results from Gaussian random measurements for a measurement ratio of 0.25 witb (b) proposed Caucby-AMP, (c) ABE-AMP, (d) ST-AMP, (e) IRLS, and (f) LJLS algoritbms.

Fig. 7 .

 7 Fig. 7. Comparison of normalized mean squared error (NMSE) according to iteration number for three AMP recovery metbods. NMSE values are averaged over 30 simulated QAM images.
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 89 Fig. 8. (a) Fully sampled impedance (M Ray/) map estimated from RF data acquired on the USAF 1951 resolution test chart, reconstruction results fr om Bernoulli random measurements for a measurement ratio of 0.25 with (b) proposed Cauchy-AMP, (c) ABE-AMP, and (d) ST-AMP algorithms.

Fig. 10 .

 10 Fig. 10. PSNR results as a function of the measurement rate, the sensing pattern (diagonal, random rows, or spiral), and recovery algorithm (proposed Cauchy-AMP, ABE-AMP, and ST-AMP). (a) Cauchy, (b) ABE, and (c) ST of human cornea at 500 MHz of SoS mode. (d) Cauchy, (e) ABE, and (f) ST of human lymph node at 250 MHz of SoS mode. (g) Cauchy, (h) ABE, and (i) ST of human lymph node at 250 MHz of impedance mode.

Fig. 11 .

 11 Fig. 11. Reconstruction results of Sos (mis) rnap estirnated frorn hurnan comea data acquired at 500 MHz. (a) Original fully sarnple data at a pixel resolution of 1 11m per 1 µm. (b}-{d) Reconstructed images with the proposed Cauchy-AMP algorithrn for spiral, diagonal, and row randorn sarnpling patterns. (e}-{g) Reconstructed images with the ABE-AMP algorithrn for the spiral, diagonal, and row randorn sarnpling patterns. (h)-(j) Reconstructed images with ST-AMP algorithrn for the spiral, diagonal, and row randorn sarnpling patterns. Ail the results correspond to a rneasurernent ratio of 40%.

  displays the resulting PSNR values and permits comparing the QAM image reconstruction quality between the three proposed sensing patterns and the three AMP-based reconstruction algorithms. Blue regions in these images were not included in quantitative analyses because they were devoid of tissues. lndependent of the image or algorithm under consideration, results indicate that the spiral pattern always provided the highest PSNR, followed by the diag onal pattern. Figs. 11-13 show the fully sampled images and the ones recovered by the three algorithms from data generated with the three considered patterns for a measure ment rate of 40%. Also for the sake of the quantitative

Fig. 12 .

 12 Fig. 12. Reconstruction results of SoS (mis) rnap estimated from hurnan lyrnph node data acquired at 250 MHz. (a) Original fully sarnple data at a pixel resolution of 2 11m per 2 11m. (b}-{d) Reconstructed images with the proposed Cauchy-AMP algorithrn for spiral, diagonal, and row random sarnpling patterns. (e}-{g) Reconstructed images with ABE-AMP algorithrn for spiral, diagonal and row randorn sarnpling patterns. (h)-(j) Reconstructed images with ST-AMP algorithrn for spiral, diagonal, and row random sarnpling patterns. Ail the results correspond to a measurernent ratio of 40%.

  Fig. 10 reveals that Cauchy denoising provides better PSNR values. The corresponding 2-D maps are shown in Figs. 1 l-13[(b)-(d)]. The row random pattern results show many artifacts appearing as "transverse" lines.

Fig. 13 .

 13 Fig. 13. Reconstruction results of impedanoe (M Ray/) map estimated from human lymph node data acquired at 250 MHz. (a) Original fully sample data at a pixel resolution of 2 11m per 2 11m. (bkd) Reconstructed images with the proposed Cauchy-AMP algorithm for spiral, diagonal, and row random sampling patterns. (ekg) Reconstructed images with ABE-AMP algorithm for spiral, diagonal, and row random sampling patterns. (h}-(j) Reconstructed images with ST-AMP algorithm for spiral, diagonal, and row random sampling patterns. Ali the results correspond to a measurement ratio of 40%.

TABLE I NUMERICAL RESULTS OF RECO VERY QUALITY (GAUSSIAN RANDOM SENSINC)

 I 

	Method	SSIM Lymph Node USAF	PSNR (dB) Lymph Node USAF
	Cauchy	0.841	0.429	39.08	37.54
	ABE	0.811	0.418	39.01	37.45
	ST	0.724	0.380	38.41	35.95
	IRLS	0.698	0.333	34.97	32.85
	LlLS	0.457	0.290	32.14	31.30

TABLE II COMPARISON OF EXECUTION TIME: THE AVERACEO VALU ES ÜV ER 30 TRIALS

 II 

	Method	Runtime (secs) Lymph Node USAF
	Cauchy	3.32	3.47
	ABE	2.86	3.00
	ST	2.82	2.93
	IRLS	62.88	333.61
	LlLS	4.10	6.88

TABLEN NUMERICAL RESULTS OF RECOVERY QUALITY FOR THE RECONSTRUCTED IMAGES SHOWN IN FICS. 11-13

  

	Image	Method	SSIM SPIRAL DIAGONAL
	Conear 500MHz (SoS)	Cauchy ABE ST	0.530 0.509 0.502	0.458 0.435 0.373
	Lymph Node 250MHz (SoS) Lymph Node 250MHz (lmpedance)	Cauchy ABE ST Cauchy ABE ST	0.445 0.'IS!I 0.4l!S 0.911 0.907 0.896	0.388 0.374 O.s:>l 0.884 0.878 0.868
	images obtained with a measurement ratio of 40%, that is,
	Figs. 11-13 illustrate nicely the relative performance of each
	tested sensing pattern.			

An intial version of this algorithm was presented in[START_REF] Hill | Compressive imaging using approximate message passing and a Cauchy prior in the wavelet domain[END_REF], but the work therein was focused on natural images.

ACKNOWLEDGMENT

The authors would like to thank Dr. D. Rohrbach for his help with the acquisition and processing of the experimental data.

was supported in part by CIMI Labex, Toulouse, France, under Grant ANR-11-LABX-0040-CIMI and Program ANR-11-IDEX-0002-02. (Adrian Basarab and Alin Achim are shared last authors.

Jonghoon Kim received the master's degree in biomedical engineering from the University of Bristol, Bristol, U.K., in 2016, where he is currently pursuing the Ph.D. degree with the Visual Information Laboratory.

His current research interests include inverse problem, sparsity approaches, and sampling theory with application to reconstruction of quantitative acoustic microscopy images.