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a b s t r a c t

The design and optimization of industrial water networks in eco­industrial parks are studied by formulat­

ing and solving multi­leader­follower game problems. The methodology is explained by demonstrating

its advantages against multi­objective optimization approaches. Several formulations and solution meth­

ods for MLFG are discussed in detail. The approach is validated on a case study of water integration in EIP

without and with regeneration units. In the latter, multi­leader­single­follower and single­leader­multi­

follower games are studied. Each enterprise’s objective is to minimize the total annualized cost, while

the EIP authority objective is to minimize the consumption of freshwater within the ecopark. The MLFG

is transformed into a MOPEC and solved using GAMS® as an NLP. Obtained results are compared against

the MOO approach and between different MLFG formulations. The methodology proposed is proved to

be very reliable in multi­criteria scenarios compared to MOO approaches, providing numerical Nash

equilibrium solutions and specifically in EIP design and optimization.

1. Introduction

During the last few decades, industrialization has contributed to rapid depletion of natural resources such as water and natural gas.

Consequently, there is a real need for industries to ensure minimum natural resources consumption, while maintaining good production

levels. In particular, industrial development is often linked to the use of high volumes of freshwater (Boix et al., 2010, 2011). In order to

work towards global environmental preservation while increasing business success, the concept of industrial ecology has emerged (Boix

et al., 2015). This concept, which is directly linked to sustainable development, aims at engaging separate industries, geographically closed

enough, in a collective approach so that exchanges of raw matter, by­products, energy and utilities (Chertow, 2000) are maximized. Indeed,

the most widespread manifestations of these kinds of industrial symbiosis are eco­industrial parks (EIP). A definition widely accepted of EIP

is “an industrial system of planned materials and energy exchanges that seeks to minimize energy and raw materials use, minimize waste,

and build sustainable economic, ecological and social relationships” (Boix et al., 2015; Montastruc et al., 2013; Alexander et al., 2000). As

it can be highlighted, a basic condition for an EIP to be economically viable is to demonstrate that benefits of each industry involved in it

by working collectively is higher than working as a stand­alone facility.

Boix et al. (2015) highlighted the lack of studies dealing with optimization in order to design optimal configuration of an EIP. However,

it is important to develop methodologies able to design an EIP where each industry has an effective gain compared to the case where

they operate individually, by also taking into account environmental concerns. Among EIP design studies, water­using network is the most

common type of cooperation modelled in literature (Boix et al., 2015). In this kind of studies, the case is often solved as a water­allocation

problem through a superstructure­based model where water has to be distributed, treated and discharged in an optimal way between the

process units of each enterprise/company involved in the EIP.
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Nomenclature

Latin symbols

nl number of leaders

L index set of leaders

xi decision variables of leader i

x−i decision variables of other leaders

w decision variables of the follower

f objective function of leader/leaders

g inequality constraints of leader/leaders

z objective function of the follower

m inequality constraints of the follower

np number of processes per enterprise

P index set of processes

nep number of enterprises

EP index set of enterprises

nr number of regeneration units

R index set of regeneration units

M contaminant load

Cmaxin, Cmaxout maximum contaminant concentration allowed in inlet/outlet of processes

Cout outlet concentration of contaminant in regeneration units

Fpart water flow between different processes

Fw freshwater inlet flow to processes

Fproreg water flow from processes to regeneration units

Fregpro water flow from regeneration units to processes

Fdis water processes to the discharge

minf minimum flowrate allowed

AWH annual EIP operating hours

Greek symbols

� Lagrange multipliers relative to m

� Lagrange multipliers relative to g

� Lagrange multipliers relative to s

�, �, �, �, ϕ slacks to inequalities of Prob. 7

˛ purchase price of freshwater

ˇ polluted water discharge cost

ı polluted water pumping cost

regenerated water cost

power associated to 


Modelling EIPs based on water­exchange networks is somewhat a complex problem, since, depending on the number of enterprises

and processes, a model with thousands of variables, constraints and disjunctions has to be solved. On the other hand, it is obvious that

the design of EIPs through mono­objective optimization it is not trivial, since to choice a single objective function is almost impossible

due to the size of the manifold of the possible objective functions. As aforementioned, the main aim of industrial symbiosis is to minimize

pollution and resources utilization while maximizing each company’s gain. For instance, by using a mono­objective optimization approach

and minimizing the EIP total annualized cost do not necessarily agree with environmental objectives. Indeed, it is due to the latter that

these kind of problems are better tackled with a multiobjective optimization (MOO) approach (Boix et al., 2015; Montastruc et al., 2013;

Boix and Montastruc, 2011).

Recently, Boix et al. (2012) developed a multi­objective optimization strategy based on the ε­constraint method applied to the case of a

water network in an EIP under several scenarios. The interest of dealing with multiobjective optimization is to build a Pareto front in which

several optimal solutions are available; then, an a posteriori tool of multi­criteria decision making is further applied. In the aforementioned

work, three antagonist objective functions were taken into account: freshwater consumption, number of connections and total regenerated

water­flowrate. On the other hand, a posterior work of Montastruc et al. (2013) has explored the flexibility of the designed EIPs by changing

parameters related to processes. The authors have also analyzed different indicators to test the EIP profitability. Then, a later extension of

this work was conducted by Ramos et al. (2015): they employed a multiobjective optimization approach by minimizing each enterprise

capital cost by using goal programming (GP). This approach is based on a recent study where GP has been proven to be a very reliable

method to design industrial water networks following multiple antagonist objective functions (Ramos et al., 2014).

Indeed, previous studies have widely explored Pareto front generation approaches but some numerical problems were encountered

especially when a very large number of binary variables are involved. In most cases, choosing the bounds for generating methods (e.g.

ε­constraint method) is a non­trivial task, and the choice of these bounds is important because if they are not well chosen the solver may

not succeed into obtaining a feasible solution. Furthermore, if a solution is found it remains a very long and tedious computational task.

That is why a GP approach shows more affinity with EIP design. However, Ramos et al. (2015) demonstrated that in different scenarios

and by tuning different optimization parameters (e.g. weight factors associated with the objective functions) one company is favoured

compared to the others. Although optimal solutions are intermediate and satisfying in terms of individual costs, it is of great interest to



Fig. 1. Example of a multi­leader­follower game (Leyffer and Munson, 2010).

Table 1

Summary of the state of the art.

Article Number of enterprises Number of processes

per enterprise

Regeneration units Comments

Lou et al. (2004) 2 1 No Nash equilibrium between 2 enterprises with

sustainability and profit objectives. Each enterprise has

its own process already optimized.

Chew et al. (2009) 3 5 No A posteriori game theory approach to choose the best

integration scheme among alternatives obtained by

classical optimization.

Aviso et al. (2010) 4 1 No SLMFG fuzzy optimization. Each enterprise has its own

process already optimized.

This work 3 5 Yes MLSFG/SLMFG with and without regeneration units.

The optimal configuration within each enterprise is

taken into account. Different models and solution

methods explored.

obtain more balanced solutions so that each enterprise/company is satisfied at the same time and moreover, by minimizing freshwater

consumption in order to insure the environmental performance of the EIP.

An interesting alternative particularly adapted to the optimal design of EIP is the Game Theory approach and most particularly the

concept of the generalized Nash equilibrium problem (GNEP). In fact, an EIP can be seen as the congregation of different non­cooperative

agents (i.e. the enterprises) which aim at minimizing their annualized operating costs and an EIP authority whose aim is to minimize

resources consumption (e.g. freshwater). This kind of non­cooperative game is very interesting for the concepts of EIP, since the main

barrier to integrate an EIP for industry is the issue of confidentiality between enterprises and this approach could be very promising to

overcome this problem. In fact, by introducing an impartial authority (or regulator) whose role is to collect all data necessary to design

the EIP, enterprises involved would be able to keep confidential data, without the need to share them with the other companies of the

park. Indeed, it could be useful to overcome the difficulties linked to information exchanges between companies in an EIP. However, it is

important to deal with an authority that attends to minimize environmental impacts of the EIP. In the context of non­cooperative games,

a single solution for the design of an EIP can be achieved and proposed by obtaining a Nash equilibrium. In this solution, no agent can

unilaterally deviate in order to improve its pay­off (Aussel and Dutta, 2008), that means, in our context and compared to the Pareto front

approach, that no enterprise will be in interested in changing his strategy. In fact, the Nash equilibrium is the solution driven by the set of

strategies in which each player has chosen an optimal strategy given the strategies chosen by other players. The latter is clearly a crucial

point in the design of an optimal EIP.

The kind of problem described above (i.e. enterprises with an EIP authority/regulator) can be modelled generally as a multi­leader­

follower game where the role of leaders and followers depends on the priorities of the EIP, as it will be explained in the subsequent sections.

This kind of approaches is widely studied for modelling of deregulated electricity markets (Hu and Ralph, 2007; Hobbs et al., 2000; Aussel

et al., 2013). In this kind of games, leaders make simultaneous decisions and the followers react to these decisions (Leyffer and Munson,

2010). In other words, the followers play a Nash game between them so as the leaders. Fig. 1 shows an example of the general case of a

multi­leader­multi­follower game in which two large electricity producers act as the leaders, with a number of smaller producers acting

as the followers play a Nash game.

2. Previous studies

On the subject of EIP or even industrial symbiosis, Nash games, Multi Leader Follower Game (MLFG) and even game theory are very

little studied. For instance, Lou et al. (2004) studied the possible conflicts of profit and sustainability objectives of the member entities by

treating the EIP as a Nash game. This methodology was then applied to a very simple case with two enterprises by taking into account

uncertainty. In fact, they obtained conflicting results between the aforementioned objectives by evaluating the system. Then, Chew et al.

(2009) developed a game theory approach for the decision making process for water integration in an EIP. Nevertheless, the game theory

approach was employed a posteriori, i.e. in the decision making process after the optimization step. In this study, different configurations

of EIP’s are obtained by classical optimization and then, the different integration schemes were evaluated regarding Nash equilibrium.

Finally, Aviso et al. (2010) developed a single leader­multi follower game (SLMG) model with fuzzy optimization in order to model water

exchange in EIP. The methodology is then evaluated in a medium­sized case study and under different scenarios. Table 1 summarizes the

aforementioned state of the art. As it can be seen, this work deals with both MLSFG/SLMFG approaches for the design of EIP, in which at

least the former, to the best of authors’ knowledge, is an unexplored area of research regarding the design of EIP or even in any domain

of process engineering. The aim of this work is to develop an alternative methodology to multi­criteria optimization generally used in

the field of process engineering, by applying the methodology in an industrial ecology context. First, the MLSFG is formulated and solved

in an optimization manner, and algorithmic, modelling and reformulations issues are discussed alongside. Then, it is demonstrated the

power of such formulations by comparing them with MOO methodologies with a case study of considerable size where the consideration
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Fig. 2. General scheme of the proposed SLMFG.

of regeneration units is included. It is also important to specify that the optimal design of each plant is taken into account in the model.

The latter is a fundamental point when designing EIP, since by first optimizing each enterprise and then by optimizing the EIP like in Lou

et al. (2004) several optimal solutions could be discarded. In the subsequent sections, the MLFG approach is explained in detail, as well as

different formulations, models for water integration with and without regeneration units and solution methodologies. Successively, results

for each one of the case studies are presented, and comparisons with respective MOO results are made. Solving MLFG is a rather difficult task

(Aussel and Dutta, 2008; Leyffer and Munson, 2010; Pang et al., 2005), and the modelling has to be accomplished very carefully and on the

other side, solution methodologies have to be carefully chosen and tuned. Finally, it is important to highlight that large­scale MLFG models

such as those addressed in this work have never been treated in literature before, to the best of authors’ knowledge. Multi­leader­follower

game approach

In order to obtain a solution for the kind of systems as EIPs are, where heavy interactions exist and where each entity is biased by their

own interests, game theory is a viable tool for decision­making. As aforementioned, in Nash games, players make simultaneous optimal

decisions given the optimal strategies of other players. Indeed, Nash equilibrium denotes the state where all the casual forces internal to

the system balance each other out (Lou et al., 2004), and no player can improve its gain by unilaterally changing his strategy. By solving a

Nash game, it is possible to obtain this kind of solution by definition. On the contrary, by considering the problem as a MOO problem, an

ulterior decision­making procedure has to be successfully applied in order to obtain a solution where all participants are satisfied by the

solution, as demonstrated by Ramos et al. (2014). If the participant is not satisfied with the solution, another solution has to be chosen by the

decision maker from the pool of solutions or another solution has to be generated taking into account that preferences of the participants

are known. In contrast, Nash games do not need to have information on participants’ preferences. It is important to note that obtaining a

solution with MOO that satisfies all participants is a very difficult task, and even impossible for certain cases (Ramos et al., 2015). Moreover,

the case of MLSFG is impossible to model by MOO if leaders’ optimal responses are unknown, which is almost always the case.

2.1. Authority/regulator’s design of an EIP and game theory approach

The introduction of an authority/regulator to the design of viable water networks in EIP is an interesting alternative to overcome the

confidentiality problem on one hand, and on the other hand, to solve the problem of equilibrium benefits of the players involved. In fact,

the latter can be modelled as a MLSFG where the leaders are the enterprises whereas the EIP authority represents the only follower or as

a SLMFG, when the roles are inversed. The choice between these different formulations depends on the priorities of the EIP.

The design of EIP water network by MLFG consists in near­located enterprise process plants that are subjected to regulations imple­

mented in the park. Each enterprise has its own processes, and each process requires a specific water both in quantity and quality in order

to operate. Moreover, each process produces a certain amount of wastewater, given its contaminant flowrate and an upper bound on outlet

quality. In this particular case, only one contaminant is taken into account for the sake of simplicity. Each enterprise has access to water

regeneration units, shared within the EIP.

At this point, it is important to note that in the MLFG approach the choice of leaders and followers is crucial in the problem formulation.

As it will be explained later in terms of modelling and results, this choice changes completely the nature of the problem: On one hand, it

can be assumed that enterprises act as followers and the authority as the lone leader (SLMFG) or vice versa (MLSFG). It is assumed that

in the case of SLMFG the enterprises aim to minimize their total annualized cost, given the minimum flowrate consumption in the EIP,

determined by the authority. This is in fact the same game as the one proposed by Aviso et al. (2010). A general scheme of the SLMFG

proposed is shown in Fig. 2.

On the other hand, the game may be formulated as a MLSFG, where the EIP authority aims to minimize the total freshwater consumption,

given the recycle and reuse of wastewater inside each enterprise and between enterprises, which minimizes their individual operating

costs. A general scheme of the MLSFG proposed is shown in Fig. 3.

By changing the nature of the game as stated above, the priorities of the EIP are shifted. Indeed, in the latter case enterprises operating cost

is predominant compared to total freshwater consumption and vice versa in the former case. In fact, in the MLSFG freshwater consumption
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Fig. 3. General scheme of the proposed MLSFG.

is minimized only after each enterprise operating cost is minimized following the Nash game between the leaders. On the contrary, in the

SLMFG each enterprise operating cost is minimized subject to a minimal total consumption of freshwater. These two formulations may

be seen, the latter as a formulation where enterprises’ revenues have priorities and the former as a formulation where environmental and

sustainability issues are the priority. Clearly, the solutions obtained by both formulations are almost never the same. In consequence, it is

self­understood that priorities have to be carefully chosen by the modeller or may be self­imposed by the problem.

Given the latter structures, we now proceed to formally present each one of the game formulations. MLSFG is presented first, since it is

considerably more complicated than the SLMFG case.

2.2. Multi­leader single­follower game formulation

2.2.1. Bi­level model

A MLSFG has the following formal definition, without loss of generality (Aussel and Dutta, 2008; Leyffer and Munson, 2010; Kulkarni

and Shanbhag, 2014):

Let nl ≥ 1 be the number of leaders, and denote by L = {1, . . ., nl} the index set of leaders. Let xi, i ∈ L be the decision variables of leader i,

x−i the decision variables of other leaders. Letw be the vector of variables of the follower. The optimization problem solved by each leader

i is the following Prob. 1:

min
xi ≥ 0

w

fi(xi,w, x−i)

subject to



















gi(xi,w, x−i) ≥ 0

w solves :

min
w≥0

z(xi,w, x−i)

s.t.
{

m(xi,w, x−i) ≥ 0

}

(PF)

(Prob. 1)

Each leader minimizes his own objective fi with respect to xi subject to his inequality constraints gi which are different for each leader.

Moreover, the solution of each leader’s problem is constrained to also be solution of follower’s problem, which consist on minimizing z

with respect to w subject to follower’s inequality constraints m. Indeed, leaders play a Nash game between them, parameterized by the

follower’s problem.

It is very important to note that in the formulation shown in Prob. 1, follower’s response is common among leaders, i.e. each leader

makes two decisions: his strategy (xi) and his conjecture about the solution of the follower (w). On the other hand, proving uniqueness

of a solution to the MLSFG and even finding a solution is a very difficult task, given that each leader optimization problem is non­convex

(Aussel and Dutta, 2008; Leyffer and Munson, 2010; Kulkarni and Shanbhag, 2014). In general, for a given xi, ∀ i ∈ L, it does not exist unicity

of the conjecture w of problem (PF). Furthermore, it is well documented (Pang et al., 2005; Kulkarni and Shanbhag, 2014) that follower’s

decision variables status as common in each leader optimization problem is a non­negligible complication in order to solve such a problem,

which may even condition the problem to not have an equilibrium solution at all.

Nevertheless, Kulkarni and Shanbhag (2014) proposed a shared­constraint approach for MLFG in which the solution space is enlarged

in order to allow more games to have equilibrium solutions. In fact, through the shared­constraint approach Kulkarni and Shanbhag (2014)

showed that under certain circumstances there exist links between the modified and the original problem (Prob. 1). This kind of approach

is very important to the problem presented in this study and is in fact the formulation employed in this work.



Let Prob. 1 be the equivalent of the ε formulation, i.e. the classical formulation of a MLFG, denoted by Kulkarni and Shanbhag (2014).

The modification proposed by the latter authors, consists in the following modification of the optimization problem Prob. 1 for each leader

i:

min
xi ≥ 0

wi

fi(xi,wi, x−i)

subject to























gi(xi,wi, x−i) ≥ 0

∀k ∈ L,wk solves :

min
wk≥0

zk(xk,wk, x−k)

s.t.
{

mk(xk,wk, x−k) ≥ 0

}

(PFk)

(Prob. 2)

In Prob. 2 it is to be noted in first place, that each variable of the follower is duplicated for each leader i.e. they inherited the i index.

Indeed, each leader does his own conjecture about the follower’s equilibrium. On the other hand, the modification entails that each leader

is now constrained by the problem of the follower regarding both his own conjecture as other leaders’ conjectures, i.e. follower’s problems

and variables are now duplicated for each leader, denoted by index k. Then, the ith leader problem is parameterized by the decision of

other leaders, i.e. x−i and other leaders’ conjectures about follower’s equilibrium, i.e. w−i. The formulation in Prob. 2 is the so called Nash

game with shared­constraints, which corresponds to formulation εae (all equilibrium) in Kulkarni and Shanbhag (2014). The result is that

for any i, wi satisfies the same constraints as in Prob. 1, but xi is constrained by additional constraints in Prob. 2. In fact, Kulkarni et al.

successfully proved that formulation εae may allow some games to have equilibrium solutions, even if formulation ε did not allow any

equilibrium. Additionally, the authors also provide a proof which states that every equilibrium of ε is an equilibrium of εae.

In order to transform the latter bi­level problem into a mathematically tractable form, Prob. 2 can be reformulated into a mathematical

problem with equilibrium constraints (MPEC), which is described in the subsequent section.

2.2.2. All equilibrium MPEC reformulation

Assuming that a follower k problem (PFk) is convex, i.e. z and m are respectively convex functions and concave functions in w, then

for any solution (wk, vk) of the following Karush–Kuhn–Tucker (KKT) optimality conditions, wk is a global optimal solution of (PFk). Note

that KKT conditions are equivalent to the parametric nonlinear complementarity problem (NCP) (Leyffer and Munson, 2010; Kulkarni and

Shanbhag, 2014):

∇wkzk(xk,wk, x−k) − ∇wkmk(xk,wk, x−k)�k ≥ 0 ⊥ wk ≥ 0

mk(xk,wk, x−k) ≥ 0 ⊥ �k ≥ 0

k ∈ L

(Prob. 3)

In Prob. 3, �k is Lagrange multipliers associated to constraints of the follower m(xk,wk, x−k). This convexity of the follower problem

will be fulfilled for each of the MLSFG and SLMFG formulations of our EIP design problems (cf. Prob. 10–Prob. 14). Indeed in our case the

objective function and the constraints of the respective followers are actually linear, thus convex and concave on the variables controlled by

the follower. Though, followers’ problems may have non­convex terms on the leaders’ variables, but they do not affect the non­convexity

since they are seen as parameters in the followers’ problems.

By substituting follower’s problem in each leader problem, the all equilibrium bilevel MLSFG described in Prob. 2 is transformed into

the following MPEC for each leader (Prob. 4):

min
xi ≥ 0

wi

�i

fi(xi,wi, x−i)

s.t.











gi(xi,wi, x−i) ≥ 0

∇wkzk(xk,wk, x−k) − ∇wkmk(xk,wk, x−k)�k ≥ 0 ⊥ wk ≥ 0, ∀k ∈ L

mk(xk,wk, x−k) ≥ 0 ⊥ �k ≥ 0, ∀k ∈ L

(Prob. 4)

Note that, depending of the values of coefficients Cmaxin/out (see Section 4), the classical qualification conditions may not be fulfilled

and thus Prob. 2 and Prob. 4 would not be equivalent. Nevertheless, in all cases, in order to be able to compute through existing theory

(Kulkarni and Shanbhag, 2014) and algorithms (Leyffer and Munson, 2010) we systematically replace the followers’ problems by their KKT

counterpart.

In Prob. 4 it can be seen, that each variable of the follower is duplicated for each leader (even multipliers), in a way consistent with

the bilevel εae formulation. Then, each leader is now constrained by the KKT conditions of the follower regarding both his own conjecture

as other leaders’ conjectures. In other words, leaders now control both their own variables, and their own conjectures about follower’s

response (multipliers included), while they are parameterized by other leaders’ variables and their conjectures about follower’s response.

Note that Prob. 4 ∀i ∈ L constitutes a so­called MOPEC (multiple optimization problems with equilibrium constraints). The MLSFG in

this form is indeed in a more convenient form in order to solve it. Solution methodologies are explained after introducing the SLMFG

formulation.



2.3. Single­leader multi­follower game formulation

The SLMFG formulation is analogue to the formulation featured in Prob. 1, by setting nl = 1 and by letting nf be the number of followers,

and denote by F = {1, . . ., nf} the index set of followers. Let wj, j ∈ F be the decision variables of follower j and w−j the decision variables

of other followers. The bilevel SLMFG formulation is then the following:

min
x ≥ 0

w

f (x,w)

subject to



















g(x,w) ≥ 0

∀j ∈ F,wj solves :

min
wj≥0

zj(x,wj,w−j)

s.t.
{

mj(x,wj,w−j) ≥ 0

}

(PFj)

(Prob. 5)

In Prob. 5, followers play a Nash game among them, given the equilibrium of the leader. It is important to note that even if MLSFG and

SLMFG are both MLFG the nature of the problem to be solved changes drastically. On the first hand, for SLMFG ε and εae formulations

discussion is not applicable, since there is only one shared leader among followers, thus there exists only one conjecture of followers’

equilibriums. On the other hand, the informal description of the game is the following: for every vector of x the followers calculate their

equilibria. Then, the leader selects among the obtained solutions, the couple (x,w) whichever minimizes f.

As the SLMFG is indifferent of ε and εae formulations, the MPEC transformation of the bilevel problem is given by Prob. 6, where each

follower’s KKT is now part of the leader optimization problem:

min
x ≥ 0

wj

�j

fi(x,wj)

s.t.











g(x,wj) ≥ 0

∇wjzj(x,wj,w−j) − ∇wjmj(x,wj,w−j)�j ≥ 0 ⊥ wj ≥ 0, ∀j ∈ F

mj(x,wj,w−j) ≥ 0 ⊥ �j ≥ 0, ∀j ∈ F

(Prob. 6)

Remark that Prob. 6 constitutes a sole MPEC by contrast to the MOPEC formed by the MLSFG formulation. Consequently, MLSFG are

harder to solve than SLMFG. However, both formulations share solution methodologies, which are discussed in detail in the following

subsection. Let us also observe that the transformation of Prob. 5 into Prob. 6 is valid under the condition that for any j the functions zj and

mj are respectively convex and concave in terms of wj and some qualification conditions hold true.

2.4. Solution methodologies

As discussed earlier, both MLSFG and SLMFG are solved in a very similar way. Consequently, in this section the solution methodologies

are explained explicitly for the MLSFG all equilibrium MPEC formulation (cf. Prob. 4). The equivalent resultant problem for the SLMFG is

presented as well, given the analogies between the former and the latter.

Generally, one computationally attractive way to solve MLFG consists in replacing each leader MPEC by its strong stationarity conditions

and concatenate all resultant KKT conditions (Leyffer and Munson, 2010; Facchinei and Pang, 2007). It is important to note that the resultant

optimization problems are always non­convex due to the presence of complementarity constraints. Then, by using this method in reality

strong stationarity points are obtained for each optimization problem. By itself, the problem derived with this method is an NCP (Prob. 7),

using the MPEC in Prob. 4. For the sake of simplicity, follower’s inequality KKT constraints are grouped as follows:

ri = (wi, �i)

si(xi, ri, x−i) =

(

∇wizi(xi,wi, x−i) − ∇wimi(xi,wi, x−i)�i

mi(xi,wi, x−i)

)

i ∈ L

(1)

∇xi fi(xi,wi, x−i) − ∇xigi(xi,wi, x−i)�i −
∑

k∈ L

∇xi sk(xi, rk, x−i)�k ≥ 0 ⊥ xi ≥ 0, ∀i ∈ L

∇ri fi(xi,wi, x−i) − ∇rigi(xi,wi, x−i)�i −
∑

k∈ L

∇ri sk(xi, rk, x−i)�k ≥ 0 ⊥ ri ≥ 0, ∀i ∈ L

gi(xi,wi, x−i) ≥ 0 ⊥ �i ≥ 0, ∀i ∈ L

sk(xi, rk, x−i) ≥ 0 ⊥ �k ≥ 0, ∀k ∈ L

sk(xi, rk, x−i) ≥ 0 ⊥ rk ≥ 0, ∀k ∈ L

(Prob. 7)

where ∇xi gi(xi,wi, x−i) and ∇xi sk(xi, rk, x−i) stand respectively for the Jacobian matrix of vector­valued functions gi and sk.



Note that Prob. 7 is not a squared NCP, since each rk is matched with two orthogonality constraints. Therefore, this formulation is very

hard to solve (and even more for large­scale problems) by using standard NCP solvers (i.e. PATH (Dirkse and Ferris, 1996)) since constraints

violate any classical constraint qualification due to the presence of complementarity conditions (Leyffer and Munson, 2010).

However, the NCP formulation illustrated in Prob. 7 can be used to derive NLP formulations of a MLFG. A very interesting alternative

which exploits the capacity of modern NLP solvers is the so­called penalty formulation (Biegler, 2010). This formulation consists in moving

the complementarity constraints to the objective function, which is minimized. The latter is very convenient for the MLSFG, since it do not

exhibit a typical NLP formulation, i.e. no objective function. Hence, the remaining constraints are well behaved. The formulation for the

MLSFG is illustrated next (Prob. 8), after introducing slacks �i, �i, �i, ϕi to inequalities:

min
x, r,

�, �,

�,�,

�,ϕ

Cpen =

∑

i′ ∈ L

[

xT
i′
�i′ +�T

i′
�i′ +wT

i′
�i′ + ϕT

i′
�i′ + ϕT

i′
ri′
]

s.t.











































∇xi fi(xi,wi, x−i) − ∇xigi(xi,wi, x−i)�i −
∑

k∈ L

∇xi sk(xi, rk, x−i)�k = �i, ∀i ∈ L

∇ri fi(xi,wi, x−i) − ∇rigi(xi,wi, x−i)�i −
∑

k∈ L

∇ri sk(xi, rk, x−i)�k = �i, ∀i ∈ L

gi(xi,wi, x−i) = �i, ∀i ∈ L

sk(xi, rk, x−i) = ϕk, ∀k ∈ L

xi ≥ 0, ri ≥ 0,�i ≥ 0, �i ≥ 0,�i ≥ 0, �i ≥ 0, �i ≥ 0, ϕi ≥ 0, ∀i ∈ L

(Prob. 8)

The above formulation is in fact one of the several formulations to solve general MPEC problems (cf. Biegler, 2010) for all possible

formulations and it is the most adequate to solve MLFG problems and MPECs in general (Biegler, 2010). In addition, Leyffer and Munson

(2010) proved that if Cpen = 0 and if all variables describe a local solution of the minimization problem, then the solution is a strong

stationarity point of the MLFG. By moving complementarities to the objective function, most difficulties of the NCP formulation are

overcome including the non­square nature of Prob. 7. The analogous formulation for the SLMFG is described in Prob. 9, where � > 0

corresponds to a penalization parameter:

min
x, r,

�, ϕ

C ′ = f (x,w) + �
∑

j∈ F

ϕT
j
rj

s.t.























g(x,w) = �

sj(x, rj, r−j) = ϕj, ∀j ∈ F

� ≥ 0

x ≥ 0

rj ≥ 0, ϕj ≥ 0, ∀j ∈ F

(Prob. 9)

In this work, both NCP and NLP solution methods were tested. However, the NLP formulation is preferred for the reasons stated above.

All problems were modelled in GAMS® (Brooke et al., 1998) 24.4.2 and transformed into Prob. 7 through the extended mathematical

programming framework (EMP). The framework uses the solver JAMS to reformulate Nash games (in MPEC form) into NCPs. Evidently, it

is the modeller task to transform the original MLFG into his MPEC formulation. Then, it is the modeller choice to solve it through Prob. 7 or

Prob. 8/Prob. 9 formulation. In the former case, the solver employed has to be capable of solving NCP, e.g. PATH (Dirkse and Ferris, 1996)

and in the latter a standard NLP solver is required. In this work, a combination of CONOPT, IPOPTH (Wächter and Biegler, 2002) and BARON

(Tawarmalani and Sahinidis, 2005) (if one solver fails to find a solution, then the other is called) was used. In the context of a penalization

scheme like the one in Prob. 8, a global solver like BARON is very useful to find the solution where Cpen = 0. Moreover, recent work (Zhang

and Sahinidis, Globa) demonstrated the usefulness of BARON in general MPCC problems, using recent versions of it. All results reported in

this work are those corresponding to the solution of Prob. 8/Prob. 9 formulation.

In the following section, the EIP specific model is introduced, with their specific MLFG formulations and results of each specific case

study.

3. EIP problem statement, case studies and results

Water integration in EIP is modelled as an industrial water network (IWN) allocation problem, according to numerous previous works

(Boix et al., 2010; Ramos et al., 2014; Pang et al., 2005; Kulkarni and Shanbhag, 2014). Indeed, the way to model a IWN allocation problem

is based on the concept of superstructure (Yeomans and Grossmann, 1999; Biegler et al., 1997). From a given number of regeneration units

and processes, all possible connections between them may exist, except recycling to the same unit. This constraint forbids self­recycles on

process and regeneration units, although the latter is often relevant in some chemical processes. For each water flowrate using process,

input water may be freshwater, output water from other processes and/or regenerated water. Indeed, output water from a process may be

directly discharged, distributed to another process and/or to regeneration units. For the sake of simplicity and generalization, the problem

is built as a set of black boxes. In this kind of approach, physical or chemical phenomena occurring inside each process is not taken into

account. In addition, each process has a contaminant load over the input flowrate of water. As aforementioned, only one contaminant is

considered in the presented EIP. A general view of the superstructure is given in Fig. 4.



Fig. 4. General view of the superstructure for IWN allocation problem (modified from Boix et al., 2012).

Mathematically speaking, let np denote the given number of processes per enterprise, P = {1, 2, . . ., np} denote the index set of processes,

and let nep denote the given number of enterprises/plants in the EIP, EP = {1, 2, . . ., nep} denote the index set of enterprises/plants; let

nr denote the total number of regeneration units, R = {1, . . ., nr} denote the index set of regeneration units. Each process p ∈ P of each

enterprise ep ∈ EP has a given contaminant load, denoted by Mep,p, a given maximum concentration of contaminant allowed either in the

inlet as in the outlet, denoted by Cmaxinep,p, Cmaxoutep,p respectively. It is important to highlight that contaminant partial flows are neglected,

since their magnitude is considerably lower in comparison to water flows. Therefore, it is assumed that the total flow between processes is

equivalent to only water flowrate. Moreover, it is assumed that processes will only consume the exact amount of water needed to satisfy

concentration constraints. Consequently, processes water outlet will have a concentration equivalent to Cmaxoutep,p (cf. Bagajewicz and Faria,

2009) for detailed explanation. Equivalently, each regeneration unit r ∈ R has a given output contaminant concentration, denoted by Coutr .

In terms of variables, each process of each enterprise p ∈ P, ep ∈ EP sends water to process p ’ ∈ P of enterprise ep ’ ∈ EP, {ep ’ , p ’} /= {ep, p},

taken into account by variable Fpartep,p,ep’,p’, receives water, denoted by variable Fpartep’,p’,ep,p and has an inlet flow of freshwater, denoted

by Fwep,p. In addition, each process may send polluted water to regeneration unit r ∈ R or receive low contaminant concentration water

by the latter, denoted by Fproregep,p,r, Fregpror,ep,p respectively, or may send water directly to the discharge, denoted by Fdisep,p.

Finally, it is to be noted that the original model (e.g. Bagajewicz and Faria, 2009; Boix et al., 2012; Ramos et al., 2014) was formulated as

a mixed­integer linear programme (MILP), since it takes into account minimum allowable flowrate between processes and/or regeneration

units (namely, the minimum allowed water flowrate was fixed at 2 T/h in Boix et al. (2012)). Nevertheless, in a MLFG formulation discrete

variables are rather impossible to handle (at least for now). In consequence, in the present article minimum flowrate minf is handled by

an elimination algorithm which is explained afterwards.

3.1. Model without regeneration units formulation

Given the aforementioned notation, the model without regeneration units presented by Ramos et al. (2014) for the IWN in EIP is

presented below:

­ Water mass balance around a process unit p ∈ P of an enterprise ep ∈ EP:

Fwep,p +

∑

ep′ ∈EP

∑

p′ ∈P

Fpartep′,p′,ep,p =

∑

ep′ ∈EP

∑

p′ ∈P

Fpartep,p,ep′,p′ + Fdisep,p {ep, p} /= {ep′, p′} (2)

­ Contaminant mass balance around a process unit p ∈ P of an enterprise ep ∈ EP:

Mep,p +

∑

ep′ ∈EP

∑

p′ ∈P

Cmaxoutep′,p′Fpartep′,p′,ep,p = Cmaxoutep,p

(

∑

ep′ ∈EP

∑

p′ ∈P

Fpartep,p,ep′,p′ + Fdisep,p

)

{ep, p} /= {ep′, p′} (3)

­ Inlet/outlet concentration constraints for a process unit p ∈ P of an enterprise ep ∈ EP:

∑

ep′ ∈EP

∑

p′ ∈P

Cmaxoutep′,p′Fpartep′,p′,ep,p ≤ Cmaxinep,p

(

Fwep,p +

∑

ep′ ∈EP

∑

p′ ∈P

Fpartep′,p′,ep,p

)

{ep, p} /= {ep′, p′} (4)

­ Freshwater positivity for a process unit p ∈ P of an enterprise ep ∈ EP:

Fwep,p ≥ 0 (5)



­ Flow between processes positivity going from a process unit p ∈ P of an enterprise ep ∈ EP to a process p ’ ∈ P of an enterprise ep ’ ∈ EP,

{ep ’ , p ’} /= {ep, p}:

Fpartep,p,ep′,p′ ≥ 0 (6)

­ Discharge flow positivity for a process unit p ∈ P of an enterprise ep ∈ EP:

Fdisep,p ≥ 0 (7)

From the aforementioned equations, some variables may be eliminated in order to produce a more succinct model with less variables

but equivalent. Indeed, by combining Eqs. (2) and (3) we obtain:

Mep,p +

∑

ep′ ∈EP

∑

p′ ∈P

Cmaxoutep′,p′Fpartep′,p′,ep,p = Cmaxoutep,p

(

Fwep,p +

∑

ep′ ∈EP

∑

p′ ∈P

Fpartep′,p′,ep,p

)

∀ep ∈ EP, p ∈ P {ep, p} /= {ep′, p′} (8)

As Fdisep,p is now eliminated from the model, his positivity constraint is now expressed as follows:

Fwep,p +

∑

ep′ ∈EP

∑

p′ ∈P

Fpartep′,p′,ep,p ≥

∑

ep′ ∈EP

∑

p′ ∈P

Fpartep,p,ep′,p′ ∀ep ∈ EP, p ∈ P {ep, p} /= {ep′, p′} (9)

From the aforementioned model, MLSFG and SLMFG problems are formulated, depending on the structures shown in Figs. 3 and 2,

respectively. For both cases, an enterprise ep ∈ EP aims to minimize his annualized operating cost, defined by:

Ctotep (Fpart, Fpart, Fw) = AWH















˛
∑

p∈P

Fwep,p + ˇ
∑

p∈P

(

Fw +

∑

ep′ ∈EP

∑

p′ ∈P

Fpartep′,p′,ep,p −

∑

ep′ ∈EP

∑

p′ ∈P

Fpartep,p,ep′,p′

)

+ı
∑

p∈P

∑

p′ ∈ P

p /= p′

Fpartep,p,ep,p′ +
ı

2

∑

ep′ ∈ EP

ep′ /= ep

∑

p′ ∈P

∑

p∈P

(

Fpartep,p,ep′,p′ + Fpartep′,p′,ep,p

)















, (10)

where ˛ stands for the purchase price of freshwater, ˇ for the cost associated to polluted water discharge and ı for the cost of pumping

polluted water from one process to another. Indeed, each enterprise pays the cost of pumping water both to a process and from a process.

Remark that each enterprise pays the totality of the cost associated with water pumping between their processes, and regarding water

shared with and from other enterprises the cost is shared between enterprises instead (i.e. ı/2). On the other hand, the EIP authority aims

to minimize total freshwater consumption in the EIP.

In the MLSFG problem, enterprises act as leaders and the EIP authority as the common follower. In order to maintain the same notation

as in Section 3, we define:

Fw = (Fwep,p : 1 ≤ ep ≤ nep,1 ≤ p ≤ np)

Fpartep = (Fpartep,p,ep′,p′ : 1 ≤ ep′ ≤ nep,1 ≤ p, p′ ≤ np, {ep, p} /= {ep′, p′})
(11)

Formally, each enterprise’s ep ∈ EP optimization problem is the following:

min
Fpartep

Fw

Ctotep (Fpartep, Fpart−ep, Fw)

s.t.



























Fpartep ≥ 0

Fw solves :

min
Fw

∑

ep∈EP

∑

p∈P

Fwep,p

s.t.
{

Eq.4 − Eq.5, Eq.8 − Eq.9

(Prob. 10)

As it can be seen from Prob. 10, each enterprise controls the flows from each one of its processes to all other processes (included those

to other enterprises), while his problem is parameterized by the same respective variables of other enterprises and the freshwater flow to

its processes, controlled by the follower.



On the other hand, on the SLMFG problem, the common leader is the EIP authority and the followers are the enterprises. Using the

above notation, the formal definition of the problem is the following:

min
Fw

Fpart

∑

ep∈EP

∑

p∈P

Fwep,p

s.t.



















Fw ≥ 0

Fpartep solves ∀ep ∈ EP :

min
Fpartep

Ctotep (Fpartep, Fpart−ep, Fw)

s.t.
{

Eq.4, Eq.6, Eq.8 − Eq.9

(Prob. 11)

In this case, the game consists in: between the different possible Nash equilibrium for the Nash Game, defined by the family of enterprises’

problems, parameterized by the vector Fw, the leader (regulator) chooses the equilibrium for which the total freshwater consumption in

the EIP in minimized.

Actually the MLSFG formulation (Prob. 10) can be further simplified: as it can be noted, a direct expression for freshwater flowrate can

be derived from Eq. (8). By deriving the latter and by replacing in Prob. 10, the follower problem disappears to produce an equivalent GNEP

between enterprises (Eqs. (12)–(14)), thus dropping the bilevel structure.

∑

ep′ ∈EP

∑

p′ ∈P

Cmaxoutep′,p′Fpartep′,p′,ep,p ≤
Cmaxinep,p

Cmaxoutep,p

(

Mep,p +

∑

ep′ ∈EP

∑

p′ ∈P

Cmaxoutep′,p′Fpartep′,p′,ep,p

)

∀ep ∈ EP, p ∈ P, {ep, p} /= {ep′, p′}

(12)

Mep,p +

∑

ep′ ∈EP

∑

p′ ∈P

Cmaxoutep′,p′Fpartep′,p′,ep,p ≥ Cmaxoutep,p

∑

ep′ ∈EP

∑

p′ ∈P

Fpartep,p,ep′,p′ ∀ep ∈ EP, p ∈ P, {ep, p} /= {ep′, p′} (13)

Mep,p +

∑

ep′ ∈EP

∑

p′ ∈P

Cmaxoutep′,p′Fpartep′,p′,ep,p − Cmaxoutep,p

∑

ep′ ∈EP

∑

p′ ∈P

Fpartep′,p′,ep,p ≥ 0 ∀ep ∈ EP, p ∈ P, {ep, p} /= {ep′, p′} (14)

Then, each enterprise’s ep ∈ EP optimization problem is defined as follows:

min
Fpartep

Ctotep (Fpartep, Fpart−ep)

s.t.

{

Eq.6

Eq.12 − Eq.14

(Prob. 12)

The formulation illustrated in Prob. 12 will be used for the case of EIP without regeneration units. Nevertheless, for the case of SLMFG

the problem cannot be simplified as stated above, since the nature of the problem does not allow it (i.e. minimization of freshwater

consumption in the upper level). Summarizing, the corresponding formulations used in the present work are Prob. 11 and Prob. 12, for the

case without regeneration units.

3.1.1. Low­flowrate elimination algorithm

Another important point is the replacement of discrete decisions in the MLFG framework. Indeed with available optimization methods

and solvers for MINLP problems, it is not reasonable to be thinking of considering binary or integer variables. Thus as explained at beginning

of Section 4, we initially consider all possible connections between processes, and between processes and regeneration units through the

variables Fpart, Fproreg and Fregpro respectively.

Note that any connection is represented by two variables since we consider only non­negative flow variables. Then, we apply a finite

sequence of steps, each step being composed of first the resolution of the MLSFG/SLMFG problem in his NLP formulation (Prob. 8/Prob. 9),

second, an elimination procedure that aims to force to zero the flow of any oriented connection for which step 1 gave a flow lower that a

minimum fixed bound minf. This is indeed modelled by big­M constraints and binary variables in the former classical water integration

(Ramos et al., 2014; Bagajewicz and Faria, 2009) model. In this work, we developed an a posteriori algorithm to add bounds to existing

flows and to eliminate low flows. Indeed, the MLFG is solved several times until all flows are equal or superior to minf. The algorithm is

described in detail next, using as example Fpartep,p,ep’,p’ (all other flows are handled simultaneously and equivalently):

1) The initial MLFG is solved to optimality.

2) For all ep, ep ’ ∈ EP, p, p ’ ∈ P, {ep, p} /= {ep ’ , p ’}:

a. If Fpartep,p,ep′,p′ ≥ 3
4

min f , then a lower bound of the flow is imposed that is the constraint Fpartep,p,ep’,p’ ≥ minf is added to the model.

b. If Fpartep,p,ep′,p′ < 3
4

min f , then the flow is fixed Fpartep,p,ep’,p’ = 0

c. Else, if all flows Fpartep,p,ep’,p’ ≥ minf, then the problem has converged and no further treatment is required.

3) The bound­modified MLFG problem is tried to be solved to optimality:

a. If optimality is achieved, then go to 2).

b. Else, try solving to optimality with a different solver.

i. If optimality is achieved, then go to 2).

ii. Else, restore initial bounds of the variables of the process whose constraint/s are infeasible. Go to 3).

In the aforementioned way, low­flowrates are systematically eliminated. It is important to note that in our numerical experience the

algorithm almost never failed by bounding critical flows thus driving to infeasible models. However, it is evident that the solution obtained



Table 2

Case study parameters (Olesen and Polley, 1996).

Enterprise Process Cmax(ppm) Cmax(ppm) Mep,p(g/h)

1 1 0 100 2000

2 50 80 2000

3 50 100 5000

4 80 800 30,000

5 400 800 4000

2 1 0 100 2000

2 50 80 2000

3 80 400 5000

4 100 800 30,000

5 400 1000 4000

3 1 0 100 2000

2 25 50 2000

3 25 125 5000

4 50 800 30,000

5 100 150 15,000

Table 3

Associated costs.

Parameter Value ($/tonne)

˛ 0.13

ˇ 0.22

ı 2e­2

does not assure in any way neither local nor global optimality in terms only of discrete decisions. Nevertheless, it represents an efficient

way to deal with the latter, given the natural complexity of the problem.

3.1.2. Case study, results and discussion

All problems were initialized with the trivial feasible solution where the flows between enterprises do not exist, i.e. Fpartep,p,ep’,p’ = 0,

∀ ep, ep ’ ∈ EP, p, p ’ ∈ P, {ep, p} /= {ep ’ , p ’}, and therefore, processes are only fed with freshwater. It is important to note that this solution

represents a feasible solution (at least for the concentration constraints) that is indeed far from being optimal solution. It is then important

to be particularly careful with the initialization of the problem, due to its non­convex and nonlinear nature.

The case study consists on an EIP made up of 3 enterprises each one with 5 processes. In fact, it consists on a hypothetic literature

example originally developed by Olesen and Polley (1996) and then modified by different authors (Boix et al., 2012; Chew et al., 2009) in

order to use it in an EIP context. Parameters of this case study are given in Table 2.

Additionally, prices are shown in Table 3. Freshwater and discharged water cost is extracted from Chew et al. (2008) (which is assumed

to include pumping) and the approximated cost of pumping water between processes is calculated by simulating the energy consumption

of pumping 1 T/h of water in Aspen Plus® with a� Pressure of 3 bar. The minimum flowrate allowed is minf = 2 T/h and it is assumed that

the EIP operates AWH = 8000 hours/year. As mentioned earlier, results obtained are mainly compared to both the results obtained with

classic MOO (the original MILP model cf. Boix et al., 2012), and solved through GP with weight factors = 1 for all objective functions and

minimizing the distance to the ideal solution, cf. Ramos et al. (2014) and the case where all enterprises operate by themselves, i.e. no EIP

exists. Results obtained consist on MLSFG and SLMFG solutions and are illustrated as follows: first, the case where there is no EIP (i.e. each

enterprise by itself) in Table 4 and EIP results in Table 5.

Optimization problems Prob. 8–Prob. 12 and Prob. 9–Prob. 11 respectively associated to MLSFG and SLMFG have respectively, as reported

by GAMS, 2164 and 522 continuous variables, and 1401 and 261 constraints. Solution times were 5.3 CPUs and 25.2 CPUs. The latter solution

time is due to the addition of low­flow elimination algorithm.

Results shown above underline several important points. In the first place, it is obvious that enterprise 3 is the most water­demanding

one, since its production (represented by Mep,p) is considerably higher than other enterprises. Consequently, its operating cost is higher.

Then, another important aspect is that enterprises naturally consume more freshwater when they operate by themselves (i.e. ∼340 tonne/h)

that when they operate inside the EIP (i.e. ∼314 tonne/h). Also, from the MOO solution it can be seen that enterprises take advantage of

exchanges throughout the EIP configuration to minimize their operating cost. Nevertheless, it is to be noted that only enterprises 1 and 2

achieve an operating cost inferior to the case where they operate alone. Indeed, this is exactly the kind of drawback discussed earlier in

this work regarding MOO techniques and specifically GP. Under these conditions, it is manifest that enterprise 3 will not be interested into

participating in an EIP.

Table 4

Results of each enterprise operating by itself without regeneration units.

Enterprise 1 2 3 Total

Water flowrate (T/h) Fresh 98.33 54.64 186.67 339.64

Cost (MMUSD/year)

Freshwater + discharge 0.28 0.15 0.52 0.95

Reused water 0.01 0.01 0.02 0.03

Total 0.28 0.16 0.54 0.98



Table 5

Summary of results of the EIP without regeneration units.

MOO

Enterprise 1 2 3 Total

Water flowrate (T/h) Fresh 88.33 20.00 206.02 314.36

Shared 76.67 61.04 82.00 219.71

Cost (MMUSD/year)

Freshwater + Discharge 0.18 0.11 0.59 0.88

Reused water 0.01 0.02 0.02 0.06

Total 0.20 0.13 0.61 0.94

Nash equilibrium (MLSFG)

Enterprise 1 2 3 Total

Water flowrate (T/h) Freshwater (tonne/h) 146.67 33.62 134.06 314.35

Shared 186.67 84.18 138.73 409.58

Cost (MMUSD/year)

Freshwater + Discharge 0.24 0.13 0.50 0.88

Reused water 0.02 0.02 0.03 0.07

Total 0.27 0.15 0.54 0.95

Nash equilibrium (SLMFG)

Enterprise 1 2 3 Total

Water flowrate (T/h) Freshwater (tonne/h) 136.59 39.34 138.42 314.35

Shared 186.67 96.67 140.16 423.49

Cost (MMUSD/year)

Freshwater + Discharge 0.23 0.14 0.52 0.89

Reused water 0.02 0.02 0.02 0.06

Total 0.26 0.16 0.54 0.95

Regarding Nash equilibrium solutions, it can be seen that for the MLSFG case all enterprises are satisfied since each enterprise’s annual

operating cost is inferior to when operating by themselves, even if enterprise 3 has a very low gain. On the other hand, the SLMFG solution

satisfies every enterprise but enterprise 3, where the operating cost is equal to the case where it operates alone. Indeed, it is remarkable

that regarding freshwater consumption, MLSFG and SLMFG provide different results, which is completely coherent with both formulations.

For instance, enterprises have a relative gain of 5.77%, 8.45% and 0.38% respectively in the former formulation, and 9.2%, 5.09% and 0.0%.

It is noticeable that sharing water cost is very inferior to freshwater and discharge cost, hence, benefits that can be achieved by sharing

water between enterprises is still low. With introduction of regeneration units, the latter cost can be lowered and can favour exchanges

between enterprises.

At this point, an important remark has to be made. In a real context, an EIP should be made up of several more enterprises working in

symbiosis. Therefore, it is crucial to analyze scaling of the formulation in order to analyze if it can be suited to a real EIP context. For this

purpose, we generated and ran a test with 10 enterprises each one with 5 processes maintaining the former three enterprises and adding

7 fictional enterprises, by using similar contaminant charge M and similar Cmaxin/out to the original case study in a SLMFG configuration.

Resulting test problem consisted of 7483 continuous variables and 3970 constraints. We solved to optimality a single instance of Prob.

8–Prob. 11 (without applying the low­flowrate elimination algorithm) in 16.5 CPUs. The solution obtained contained no more than 0.53%

of low­flowrates. Thus, it emphasize that it is still feasible to run real­world large­scale of the formulation presented in this work in decent

CPU time.

3.2. Model with regeneration units formulation

The model with regeneration units has the same basis of the aforementioned model. It is assumed that all regeneration units are shared

and that the EIP authority is concerned with all decisions involved with them since on an EIP context the more convenient is to share

all resources. Indeed, early results with these kinds of considerations were not consistent with EIP philosophies. Therefore, only shared

regeneration units are considered, i.e. owned by the EIP.

Model constraints are as follows, consistent with the formulation mentioned earlier in this section:

­ Water mass balance around a process unit p ∈ P of an enterprise ep ∈ EP:

Fwep,p +

∑

ep′ ∈EP

∑

p′ ∈P

Fpartep′,p′,ep,p +

∑

r ∈R

Fregpror,ep,p =

∑

ep′ ∈EP

∑

p′ ∈P

Fpartep,p,ep′,p′ +

∑

r ∈R

Fregpror,ep,p + Fdisep,p {ep, p} /= {ep′, p′} (15)

­ Contaminant mass balance around a process unit p ∈ P of an enterprise ep ∈ EP:

Mep,p +

∑

ep′ ∈EP

∑

p′ ∈P

Cmaxoutep′,p′Fpartep′,p′,ep,p +

∑

r ∈R

Coutr Fregpror,ep,p

= Cmaxoutep,p

(

∑

ep′ ∈EP

∑

p′ ∈P

Fpartep,p,ep′,p′ +

∑

r ∈R

Fregpror,ep,p + Fdisep,p

)

{ep, p} /= {ep′, p′} (16)



­ Inlet/outlet concentration constraints for a process unit p ∈ P of an enterprise ep ∈ EP:
∑

ep′ ∈EP

∑

p′ ∈P

Cmaxoutep′,p′Fpartep′,p′,ep,p +

∑

r ∈R

Coutr Fregpror,ep,p

≤ Cmaxinep,p

(

Fwep,p +

∑

ep′ ∈EP

∑

p′ ∈P

Fpartep′,p′,ep,p +

∑

r ∈R

Fregpror,ep,p

)

{ep, p} /= {ep′, p′} (17)

­ Contaminant concentration constraints for regeneration unit r ∈ R:
∑

ep∈EP

∑

p∈P

Cmaxoutep,pFproregep,p,r ≥ Coutr

∑

ep∈EP

∑

p∈P

Fregpror,ep,p (18)

­ Mass balance around a regeneration unit r ∈ R (water and contaminant losses are neglected):
∑

ep∈EP

∑

p∈P

Fproregep,p,r =

∑

ep∈EP

∑

p∈P

Fregpror,ep,p (19)

­ Flow between processes and regeneration unit positivity going from a process unit p ∈ P of an enterprise ep ∈ EP to a regeneration unit

r ∈ R:

Fproregep,p,r ≥ 0 (20)

­ Flow between regeneration unit to a process unit p ∈ P of an enterprise ep ∈ EP from a regeneration unit r ∈ R:

Fregpror,ep,p ≥ 0 (21)

­ In the same way as is the model without regeneration units, combining Eq. (15) with Eq. (16) leads to:

Mep,p +

∑

ep′ ∈EP

∑

p′ ∈P

Cmaxoutep′,p′Fpartep′,p′,ep,p +

∑

r ∈R

Coutr Fregpror,ep,p

= Cmaxoutep,p

(

Fwep,p +

∑

ep′ ∈EP

∑

p′ ∈P

Fpartep′,p′,ep,p +

∑

r ∈R

Fregpror,ep,p

)

{ep, p} /= {ep′, p′} (22)

­ Fdisep,p positivity for a process unit p ∈ P of an enterprise ep ∈ EP:

Fwep,p +

∑

ep′ ∈EP

∑

p′ ∈P

Fpartep′,p′,ep,p +

∑

r ∈R

Fregpror,ep,p ≥

∑

ep′ ∈EP

∑

p′ ∈P

Fpartep,p,ep′,p′ +

∑

r ∈R

Fproregep,p,r {ep, p} /= {ep′, p′} (23)

Given these simplifications, the total annual operating cost of each enterprise ep ∈ EP is redefined as follows:

Ctotep (Fpart, Fw, Fproreg, Fregpro)

= AWH
















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∑

p∈P

Fwep,p + ˇ
∑

p∈P









Fwep,p +

∑

ep′ ∈EP

∑

p′ ∈P

Fpartep′,p′,ep,p +

∑

r ∈R

Fregpror,ep,p−

∑

ep′ ∈EP

∑

p′ ∈P

Fpartep,p,ep′,p′ +

∑

r ∈R

Fregpror,ep,p


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∑

p∈P

∑

p′ ∈ P

p /= p′
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∑

r ∈R

∑

p∈P

(

Fproregep,p,r + Fregpror,ep,p
)
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∑

ep′ ∈ EP

ep′ /= ep

∑

p′ ∈P

∑

p∈P

(

Fpartep,p,ep′,p′ + Fpartep′,p′,ep,p

)

+

∑

r ∈R

∑

p∈P


rFregpro
 
r,ep,p















, (24)

where besides the same costs as in the model without regeneration, enterprises pay pumping to and from regeneration units, and the cost

of regenerating water, depending of the specified outlet concentration. This cost is represented by 
 r. Note that regenerated water cost is

non­linear, due to the power  < 1. In fact, the latter is to take into account that the larger is the volume of water regenerated, the lesser

is the operating cost which implies larger regeneration units, and therefore augmented capital costs even if the latter are not taken into

account in the present study.

The corresponding MLSFG formulation is defined in Prob. 13, defining the following notation in addition to Eq. (11):

Fproregep = (Fproregep,p,r : 1 ≤ p ≤ np, 1 ≤ r ≤ nr)

Fregproep = (Fregpror,ep,p : 1 ≤ p ≤ np, 1 ≤ r ≤ nr)
(25)



Table 6

Parameters associated with regeneration units.

Regeneration unit type Parameter

Coutr (ppm) 
 r($/tonne)

1 15 0.85

2 20 0.695

3 30 0.54

min
Fpartep

Fw

Fproreg

Fregpro

Ctotep (Fpartep, Fpart−ep, Fw, Fproregep, Fregproep)

s.t.











































Fpartep ≥ 0

(Fw, Fproreg, Fregpro) solve :

min
Fw

Fproreg

Fregpro

∑

ep∈EP

∑

p∈P

Fwep,p

s.t.
{

Eq.5, Eq.17 − Eq.23

(Prob. 13)

As it can be noted, leaders’ problems remain unchanged in comparison to the first case, whereas it is not the case for the follower problem.

Given the flows between process units which minimize each enterprise’s operating cost, the EIP authority determines the minimum

freshwater consumption of the EIP by determining the freshwater flowrates to processes, the flowrates from processes to regeneration

and flow from regeneration units to processes, as well. Note that this problem is much more complex than the first one, and that any

simplifications cannot be done.

The corresponding SLMFG problem is defined as follows (Prob. 14):

min
Fw

Fproreg

Fregpro

Fpart

∑

ep∈EP

∑

p∈P

Fwep,p

s.t.



















Eq.5, Eq .18 − Eq.21

Fpartep solves ∀ep ∈ EP :

min
Fpartep

Ctotep (Fpartep, Fpart−ep, Fw, Fproregep, Fregproep)

s.t.
{

Eq.6, Eq.17, Eq.22 − Eq.23

(Prob. 14)

In this case, it is the EIP authority who determines the minimum freshwater consumption in the EIP by choosing Fw, Fregpro and Fproreg.

Given the latter, enterprises react by playing a Nash game between them in order to determine their minimum total operating cost.

It is important to make a remark on which agent controls which constraints, in order to successfully model MLFG. Constraints where

at least one of the followers’ controlled variables appear, have to be part of the follower problem. On the other hand, if in the involved

constraint only variables controlled by a given leader are involved, then that constraint is part of that leader problem, e.g. in Prob. 14

the EIP authority’s problem consists on constraints where only variables controlled by him are involved, i.e. Fproreg, Fregpro. Finally, the

low­flowrate issue was treated in the same way as in the model without regeneration units.

3.2.1. Case study, results and discussion

All case study parameters of the case without regeneration units still apply to the case with regeneration units (i.e. Tables 2 and 3).

In addition, regeneration units operating parameters are illustrated in Table 6. It is assumed that there are 3 different regeneration units

which are distinguished by their capacity to regenerate water, i.e. their outlet concentration on contaminant.

Remark that regenerated water cost is superior regarding freshwater cost. Nevertheless, as regenerated water cost is non­linear, it is

not always necessarily true that freshwater is cheaper than regenerated water. Regarding the power , it is assumed that when enterprises

operate by themselves  = 0.8 and when they are part of an EIP  = 0.6. The latter takes into account the fact that by sharing regeneration

units in the EIP, and by purifying larger volumes of polluted water capital costs of units would be cheaper. The aforementioned cost­

associated parameters were chosen in order to effectively demonstrate the usefulness of the approach adopted in this work.

Results are shown on the same manner regarding the case without water regeneration (Tables 7 and 8).

Optimization problems Prob. 8–Prob. 13 and Prob. 9–Prob. 14 respectively associated to MLSFG and SLMFG have, as again reported by

GAMS, 4272 and 612 continuous variables, and 2397 and 270 constraints. Solution times were 6.5 CPUs and 10.9 CPUs.

In Table 8 shared water makes reference to both water sent to other enterprises and also regeneration units. Results of the case

study with water regeneration units highlight the importance of the inclusion of regeneration units in the EIP under study. Firstly, it is



Table 7

Results of each enterprise operating by itself with regeneration units.

Enterprise 1 2 3 Total

Water flowrate (tonne/h) Fresh 98.33 22.00 97.50 217.83

Regenerated 0.00 38.17 111.46 149.63

Cost (MMUSD/year)

Freshwater + discharge 0.28 0.06 0.27 0.61

Reused water 0.01 0.02 0.05 0.08

Regenerated water 0.00 0.08 0.19 0.27

Total 0.28 0.17 0.51 0.96

Table 8

Summary of results of the EIP with shared regeneration units.

MOO

Enterprise 1 2 3 Total

Water flowrate (tonne/h)

Fresh 20.00 20.00 122.80 162.80

Shared 103.82 67.71 84.32 255.85

Regenerated 89.59 0.00 78.80 168.39

Cost (MMUSD/year)

Freshwater + Discharge 0.02 0.04 0.40 0.46

Reused water 0.04 0.03 0.05 0.11

Regenerated water 0.13 0.00 0.09 0.22

Total 0.19 0.06 0.54 0.79

Nash equilibrium (MLSFG)

Enterprise 1 2 3 Total

Water flowrate (tonne/h)

Freshwater (tonne/h) 77.10 48.14 94.38 219.62

Shared 86.38 63.56 124.93 274.87

Regenerated 23.95 0.00 96.30 120.24

Cost (MMUSD/year)

Freshwater + Discharge 0.17 0.13 0.31 0.61

Reused water 0.03 0.01 0.04 0.09

Regenerated water 0.05 0.00 0.11 0.15

Total 0.24 0.14 0.44 0.83

Nash equilibrium (SLMFG)

Enterprise 1 2 3 Total

Water flowrate (tonne/hr)

Freshwater (tonne/hr) 20.00 20.00 20.00 60.00

Shared 126.49 149.54 226.66 502.69

Regenerated 100.62 64.67 166.64 331.93

Cost (MMUSD/year)

Freshwater + Discharge 0.04 0.02 0.11 0.17

Reused water 0.04 0.03 0.08 0.15

Regenerated water 0.12 0.08 0.19 0.39

Total 0.19 0.13 0.39 0.71

noted that by working standalone (and with given costs) any enterprise can really make benefit of using regeneration units, e.g. enter­

prise 1 does not use regenerated water at all, whereas freshwater consumed is considerably decreased globally. It is important to note

that this kind of results was expected, since cost parameters were chosen on purpose to demonstrate the usefulness of EIPs and MLFG

methodology.

On the contrary, when enterprises work in an EIP configuration, the benefit of using water regeneration units is clear. Yet again, MOO

results do not provide satisfaction to all players in the EIP given the arbitrary GP parameters, proving the usefulness of the proposed MLFG

approach. Regarding the MLSFG results, it is highlighted that all enterprises have noticeable benefits compared to the standalone case,

where the solution correspond to an equilibrium state between the operating costs of the three leaders involved, earning respectively 14.53,

13.59 and 14.0%. Total freshwater consumption is decreased regarding the standalone case, as expected, from 314.355 T/h to 219.62 T/h

(which means a decrease of 30%). It is important to note that even if e.g. enterprise 2 does not use regenerated water at all, its total operating

cost is effectively lowered when other enterprises use regenerated water.

Secondly, the SLMFG results demonstrate that minimum freshwater in the EIP is attained at 60 T/h, by only feeding with freshwater

processes which have Cmaxin = 0. Given the latter, shared and regenerated water are maximized providing all enterprises a relative gain

superior to the case of MLSFG, i.e. 31.91, 19.39 and 25.1% respectively. By regenerating the maximum amount of water, its cost is even

inferior to that of freshwater, fact which explains the results obtained in the SLMFG case. However, if this amount is not maximized

(i.e. results obtained in the MLSFG case) enterprises have lower gains but its solutions are in equilibrium (or at least it corresponds to

the solution which satisfies strong stationarity conditions), according to the structure of the game. Again, to be precise, both solutions

correspond to different kind of games and do not necessarily correspond to Nash equilibrium but to a solution which satisfies strong

stationarity conditions.

An important aspect yet to be addressed is the solution times of the MLFG formulations. For the EIP with regeneration units’ case,

each optimization problem in the form of Prob. 8 is solved in a matter of seconds to optimality (even if it is solved with BARON to global

optimality). By applying the low­flowrate elimination algorithm, the total solution times of the corresponding MLSFG and SLMFG are



5.626 s and 174 s. In fact, the majority of the CPU time is due to achieving the condition where all low­flowrates are eliminated. Moreover,

this can be achieved either in the first or in the nth outer iteration.

4. Conclusions

In this work, MLFG formulations for the effective design of EIP were successfully addressed. Results underline the effectiveness of

the proposed methodology, compared to traditional multi­objective/multi­decision optimization methods, e.g. goal programming. By

formulating the problem in a Nash game manner solutions obtained correspond (if solved to optimality) at least to the case where each

player objective function value matches the value if the player operates standalone, without having to add additional constraints to the

given objective functions. Moreover, the solution obtained corresponds most of the times to an equilibrium solution where all players

attain fair gains respectively.

On the other hand, the formulation and proofs provided by Kulkarni and Shanbhag (2014) were numerically proven to be effective

and pertinent to MLSFG especially in cases were traditional formulations do not admit equilibrium. In fact, it is also important to note

that this kind of formulation (to the best of authors’ knowledge) was never modelled and effectively solved in mathematical modelling

environments such as GAMS®. In a parallel way, the effectiveness of the solution methods adopted for MLFG was proven to be reliable

indeed in medium/large scale problems, solving to optimality this kind of problems in a matter of seconds, even if solution methods do

not solve the Nash equilibrium directly but its strong stationarity conditions. Although, it is to be highlighted that the given industrial

water network models provided in the present work correspond to a linear model and as a perspective more non­linear models are yet

to be solved. However, given the considerable number of complementarity conditions (which are very hard to solve) already included

in the MLFG framework, non­linear models of industrial water networks may not pose too much additional efforts. It is furthermore

important to notice that SLMFG are easier to solve than MLSFG and generally multi­leader multi­follower games, since there is no need to

duplicate follower’s conjectures given the nature of a single­leader in the game, which is numerically speaking very convenient. Given the

latter, in this work is successfully introduced a reliable alternative to solve chemical/process engineering problems with multiple decision

objectives. Moreover, we emphasized that real­world large­scale EIP case studies can be tackled by the methodologies and formulations

presented in this work.

It is also important to underline that the introduction of an EIP regulator plays a major role in the above quoted improvements of the

EIP integration model since it allows considering MLSFG and SLMFG structures.

Finally, it was also underlined the usefulness of EIPs in the context of industrial symbiosis to produce more sustainable industrial

outcomes. The results obtained show that, by unifying efforts, wastes are lowered and effective gain can be achieved. As a perspective,

simultaneous energy and water networks will be taken into account with a MLFG approach.
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