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Summary Plane bending of a Timoshenko beam is derived using Cosserat formulation by the mean of a material curve and a moving
director frame. Equilibrium relations are derived in the case of linear stress-strain relations and for both large strains and large dis-
placements. Beam bending is controlled by magnitude and direction of a force and a bending moment. By a series of transformations,
equilibrium equations are rearranged where pre and post buckling solutions are given in terms of Jacobi elliptic functions. From our
knowledge this is the first attempt where such solution are derived by taking account a control of the bending moment.

KINEMATICS AND INTERNAL FORCES UNDER COSSERAT FORMULATION

We consider a Timoshenko model for plane motion of an homogeneous straight beam of length L. In a Cartesian
frame, the beam axis is oriented along ez in the stress-free configuration, and the motion lies in the (ex, ez)-plane.
However, for such a Cosserat-like structure it is justified to use a moving director frame (d1,d2,d3) for which d2 = ey
and d3 is normal to the cross-section, because this basis is orthonormal d1 = d3∧d2. In the stress-free configuration this
basis coincide with the Cartesian frame, however during motion, the orientation of the section is not uniform, {di(S)}
depends on the curvilinear abscissa S of the beam. d3 is not tangent to the center line as in the Euler-Bernoulli model.
Kinematics of the beam are governed by the placement ϕ(S) of the center line and rotation θ(S) of the section around
d2. Following [6], deformation are described thanks to the curvature κ(S) and generalized strains ε̃(S) with

κ :=
∂θ

∂S
d2 = κ2d2 , ε̃ :=

∂ϕ

∂S
− d3 = ε1d1 + (ε3 − 1)d3 . (1)

Hereafter the kinematical variables are the component κ2(S) of the curvature and components ε1(S) and ε3(S) of the
deformation ∂ϕ

∂S of the center-line. In particular ε1 is the shear strain and ε3 − 1 is the longitudinal strain. Internal force
acting on a section is N = N1d1 +N3d3 where N1 and N3 are the shear and normal components respectively. Internal
moment isM =M2d2 where M2 is the bending moment.
Linear constitutive law is assumed : N1 = GAε1, N3 = EA(ε3 − 1) and M2 = EIκ2 where A and I are the area and
the quadratic moment of the section, E and G are the Young modulus and shear modulus (including eventually a shear
correction factor) of the beam material.

EQUILIBRIUM RELATIONS

Equilibrium relations for this static problem states [1, 2] :

∂N

∂S
= 0 ,

∂M

∂S
+
∂ϕ

∂S
∧N = 0 . (2)

Non-dimensional kinematical variables are given thanks to the gyration radius % =
√
I/A:

s =
S

%
, ` =

L

%
, εi(s) = εi(S) , κ2(s) = % κ2(S) , i = 1, 3 . (3)

Last, a material parameter g = E/G is introduced. Note that g ' 2(1+ν) where ν is the Poisson’s ratio, then 2 . g . 3.
Hence (2) become in a non-dimensional form (the prime stands for derivation over s) :

ε′1 + g(ε3 − 1)κ2 = 0 (4)
g ε′3 − ε1κ2 = 0 (5)

g κ′2 + ε1ε3 − g ε1(ε3 − 1) = 0 (6)

In order to prevent rigid motion θ(0) and ϕ(0) are set to zero. In this work boundary conditions are fixed by imposing
force and moment at s = `. Let us denote N` := N(`) and M` := M(`). In terms of force, either orientation φ` and
magnitude N` or equivalently shear and longitudinal components N1` and N3` may be prescribed. Here φ` is measured
from the opposite normal of the section, then N1` = −N` sin (φ`) and N3` = −N` cos (φ`).
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Figure 1: Internal longitudinal force N3(s) and shear force N1(s) for various bending moments at boundary M2(`) = M`. Here
` = 200, g = 2.5 and the external loadN` = 10−4 is fixed and purely longitudinal (φ` = 0 thenN1` = 0). Note that for such material
the Euler critical buckling is Pe = gπ2/`2 ∼ 6 · 10−4 then a priori |N3`| < Pe. The yellow line M` = 2

√
gN` ∼ 0.03 splits the M`

domain where a < 0 (left) and a > 0 (right).

PRE AND POST BUCKLING SOLUTIONS

From the first relation of (2), the force is uniform N(s) = N `. This motivate us to introduce φ(s) ∈] − π;π[ such
that N1(s) = −N` sin (φ(s)) and N3(s) = −N` cos (φ(s)) with φ(`) = φ`. According to (4) or (5) it is straight forward
to obtain φ′ = −κ2. Injecting this relation into (6) we obtain after integration

−(gφ′)2 + 2gN` cosφ+ (g − 1)N2
` cos2 φ = µ` . (7)

The constant of integration µ` is imposed by boundary conditions as µ` = −M2
2`−2gN3`+(g−1)N2

3`. With the change
of variable t(s) = tan (φ(s)/2), (7) may be written as

(t′)2 = a(t2 − α−)(t2 − α+) with a =
(g − 1)N2

` − 2gN` − µ`

4g2
α∓ =

(g − 1)N2
` + µ` ∓ 2N`

√
g2 + (g − 1)µ`

(g − 1)N2
` − 2gN` − µ`

that is completely determined by µ` and magnitudeN`. Let us note ω∓ = |α∓|. For practical application α+ < 0 but sign
of α− and a may vary according to the set {µ`, N`}. This would strongly affect the solution of the differential equation:

If a < 0 and α− < 0 no real-valued solution

If a < 0 and α− > 0 t(s) = ±√ω− sn
(√
|a|ω+(s− s0)

∣∣− ω−
ω+

)
or t(s) = ±√α−

If a > 0 and α− < 0 t(s) = ±√ω− sc
(√
|a|ω+(s− s0)

∣∣ 1− ω−
ω+

)
where s0 is a constant choosen in order to satisfy boundary conditions. Jacobian functions sn(z

∣∣m) and sc(z
∣∣m) are

defined according to [3].
An illustration is given for a practical application in Fig.1. It must be emphasized that for moderates bending momentum at
the boundary, some homogeneous solutions may appears in addition to the non-homogenous ones depicted in the figures.
Hence three equilibrium positions are possible for moderate bending boundary condition. The non-homogeneous solution
observed for moderate bending moment corresponds to solution observed after such iterative process (i) impose a large
external load in order to reach buckling (ii) reduce progressively the external load.
It is then interesting to investigate the stability of all these solutions in order to complete the analysis.
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