N

N
N

HAL

open science

CSI-aided Robust Neural-based Decoders

Meryem Benammar, Eduardo Dadalto-Camara-Gomes, Pablo Piantanida

» To cite this version:

Meryem Benammar, Eduardo Dadalto-Camara-Gomes, Pablo Piantanida. CSI-aided Robust Neural-
based Decoders. 11th International Symposium on Topics in Coding, Aug 2021, Montréal, Canada.

pp-0. hal-03522702

HAL Id: hal-03522702
https://hal.science/hal-03522702

Submitted on 12 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-03522702
https://hal.archives-ouvertes.fr

- OATAO

Open Archive Toulouse Archive Ouverte

Open Archive Toulouse Archive Ouverte (OATAO)

OATAO 1is an open access repository that collects the work of some Toulouse

researchers and makes it freely available over the web where possible.

This is anauthor's version published in: https://oatao.univ-toulouse.fr/28710

Official URL :https://doi.org/10.1109/BRAINS52497.2021.9569808

To cite this version :

Benammar, Meryem and Dadalto-Camara-Gomes, Eduardo and Piantanida, Pablo CSl-aided Robust Neural-based
Decoders. (2021) In: 11th International Symposium on Topics in Coding, 30 August 2021 - 3 September 2021
(Montréal, Canada).

Any correspondence concerning this service should be sent to the repository administrator:

tech-oatao@listes-diff.inp-toulouse.fr




CSI-aided Robust Neural-based Decoders

Meryem Benammar
ISAE-Supaéro, Université de Toulouse
meryem.benammar @isae-supaero.fr

Eduardo Dadalto Camara Gomes and Pablo Piantanida

Laboratoire des Signaux et Systemes (L2S)

CentraleSupélec CNRS Université Paris Saclay

{eduardo.dadalto-camara-gomes,pablo.piantanida} @centralesupelec.fr

Abstract—In this work !, we investigate the design of neural
based channel decoders for the Binary Asymmetric Channel
(BAC), which exhibits robustness issues related to training/testing
channel parameters mismatch. Rather than enforcing the inde-
pendence of the trained model to the channel parameter as in our
previous work, we show that providing even a coarse (possibly
imperfect) quantized CSI to the decoder, allows to build a single
robust neural decoder for all values of channel parameters.

I. INTRODUCTION

Authors in [1], and references therein, showed that near-to-
optimal and low complexity channel decoders can be built
using neural networks. Following these results, extensive
research was undertaken in order to generalize the design
of neural based channel decoders and encoders to a variety
of communication channel models. However, while neural
based decoders allow to trade the online complexity with
an offline complexity pertaining to the training phase, the
performances of such neural based decoders depend strongly
on the design metap-arameters (structure of the network,
loss functions, optimizers, training channel paramater, ...) ,
and can exhibit severe robustness limitations especially to
possible channel model mismatches between training and
testing. Indeed, when for most classical channels, alike the
Binary Input Additive White Gaussian (BI-AWGN) channel,
the Binary Symmetric Channel (BSC) and the Binary Erasure
Channel (BEC), the neural based channel decoders developed
in literature exhibit good generalization capability to channel
parameters unseen during training (SNR, crossover probability,
erasure probability), there exist a family of channels for which
such robust neural based decoders cannot be built using the
existing design methodology, namely, the Binary Asymmetric
Channel (BAC) [2]. The BAC serves as an equivalent channel
model for density based communication channels, alike optical
channels with ON-OFF Keying (OOK) and direct detection, or
molecular communication, whose probability of misdetection
depends on the transmitted signal.

A first approach, which we implemented in [3], was to
implement Domain Adaptation (DA) techniques to the design
of neural based decoders. DA techniques are mostly inspired
from the supervised learning community [4], with particular
applications to computer vision, and consist in improving
the robustness of a given neural network classifier (decoder)
to mismatches between training (source) and testing (target)

IThis work was carried out when Mr Dadalto was a MSc student at ISAE-
Supaéro, he is currently with L2S, CentraleSupélec Université Paris Saclay.

datasets. Most DA techniques aim at enforcing some indepen-
dence between the neural classifier (decoder) and environment
variables (Channel State Information (CSI)), which improves
slightly the generalization property of the neural based de-
coders, but does not allow to perfectly adapt to all channel
parameters since enforcing a trade-off in the training phase.

Contribution: In this work, rather than enforcing the invari-
ance of the neural decoder to the channel parameters (CSI),
we will rather enforce a full dependence of the decoder on
the channel parameters, by means of a carefully designed
quantized CSI. To this end, we start by showing, through a
simple information theoretic analysis, that a quantization of
the CSI can be as informative as a perfect CSI, from which we
infer an approximation of the number of quantization levels.
Then we show that we can build a single neural decoder which
remains optimal for all parameters, provided that a carefully
quatized CSI is provided to the neural decoder during training.
To this end, we compare two sources of quantized CSI,
namely a genie-aided CSI quantizer, and a blind quantized
CSI estimator, and show that in both cases, optimal neural
based decoding can be built for the BAC.

The remainder of the work is as follows. We introduce
the definitions and previous results in Sections II and III.
In Section IV, we introduce the suggested method and list
possible constructions of the CSI quantizer.

Notations: Random variables (resp. their realizations) are
denoted by capital case letters (resp. lower case letters), e.g.
X (resp. x). In this paper, pmf stands for probability mass
function. The pmf of a random variable X is denoted as Py (-),
while the conditional pmf of a random variable X knowing
Y, is denoted as Px |y (-|-). The operators IE(-) and 1[] stand
respectively for the expectation operation and the indicator
function. The notations H(X), H(X|Y) and I(X;Y) refer
respectively to the entropy of X and the conditional entropy
of X knowing Y and the mutual information between X and
Y. The conditional (termed also ergodic) mutual information
between two variables X and Y given a variable P writes as

I(X;Y|P) £ EpI(X;Y|P = p). (1)

The binary entropy is defined on [0 : 1] by
ha(x) £ —xlogy () — (1 — x) logy(1 — ). 2
An n-dimensional sequence is denoted as ™ = (x1,...,%y,)

where x; is the i-th component of the sequence.



II. DEFINITIONS AND PREVIOUS RESULTS
A. The channel coding problem

In this work, we investigate the channel coding problem
depicted in Figure 1, and which consists in:

Noisy
Channel
y'ﬂ

k Channel
Encoder
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Decoder
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Fig. 1. The channel coding problem

- A k-bit input message u* with i.i.d Bern(0.5) entries.
- An encoder f.(-) which maps the k-bit input message u
into an n-symbol sequence z™ from an alphabet X = {0, 1}.
Throughout this work, we will assume that the encoder
fe(:) is an (n, k) Polar code with generator matrix G, i.e.,
2" = G.u* where G is a submatrix of T £ T2® og2(") and
A 10
=111
matrix G corresponds to the sub-space generated by the non-
frozen positions of the matrix 7.
- A memoryless noisy channel with output alphabet ) =
{0,1} and conditional pmf Pyn x» given by, for all
(.,Lm,’yn) c X" x yn’

Pyaxe(y™a™) = [ ] Pyix (wila:)- 3)
i=1
- A decoder g4(-) which maps each received sequence y” into
an estimate message sequence 4.
The channel coding problem consists in devising, given a
fixed encoding rule f.(-), decoding rules g4(-) which minimize
the probability of error given by:

P APWUK £U"). 4)

k

is Arikan’s binary kernel. The generator

In this work, we will be interested in two families of decoding
rules: the theoretically optimal Maximum A Posteriori (MAP)
decoding rule gy ap(+), and neural based decoding rules. To
this end, let us first introduce in more details the channel model
of interest, and characterize the MAP decoder for this channel.

B. The Binary Asymmetric Channel

In this work, we investigate the channel coding problem for
the BAC. In this binary-input binary-output channel, depicted
in figure 2, the crossover probability takes two possible values
p or q, depending on the value of the input bit, X = 0 or 1.

0 1—p 0

Fig. 2. The BAC (p, q)

The channel transition probability of the BAC is given by
Py (yla) p"PY(1 —p)l 7Y if 2 =0,

xT) =

Y|X Y qm@y(l o q)lf:rEBy ifr=1.

The BAC generalizes three main classes of binary-input
binary-output channels, namely the BSC(p = q), the Z-channel
(p = 0) and the S-channel (¢ = 0). In the following, we
characterize the MAP decoder for the BAC(p, q).

Lemma 1 (MAP decoding for the BAC).
The MAP decision rule of the BAC(p, q) is given by

gmap(y") = argmax {log(l —p) | (xn(uk)”

uk€[0:1]%

+log(1 —q) |11 (x”(uk))] +log (1:0) (xg(uk) D yg)

g (1) (et @) | ©

where, for any codeword x™, the quantities Io(x™), I;(z™),
al, b, yi, and y} are defined as follows, for all b € {0,1}:

I (™) {iel:n], z,=0b}, (6)

A
xy 2 (#i)ier,(zn) and yl?é(yi)iejb(zn)’ 7

and where | I, (z™) | refers to the cardinality of the set I, (™).

Proof. The proof of this lemma follows from [2, 3.3] O

As can be seen from (5), the MAP decoding rule complexity
is exponential in the message length k, which renders its im-
plementation impractical even for moderate message lengths.
Besides, it relies on prior knowledge of the specific parameters
(p, q). Following the general understanding that quasi-optimal
low complexity decoders can be built from neural networks,
we investigate in the following the design and performances
of neural based decoders as an alternative to the MAP.

III. NEURAL BASED DECODING FOR THE BAC

The idea behind neural based decoding is to replace the
decoding rule g4(-) with a pretrained neural network which
maps every received sequence 3" to a message estimate "
To this end, the design of the neural based decoder calls for
a careful choice of the training meta-parameters, and more
specifically, of the training crossover probabilities of p and q.
In the following, we summarize our previous findings [3] on
neural based decoding for the BAC. Throughout this work, we
will we fix a value for ¢ = 0.07, and assess the performances
of neural based decoders for all possible values of p.

A. Robustness issues for neural based decoders

In [3], we built neural based decoders for the (16,4) polar
code, trained under different values of the parameter p: p =
0.01,p = 0.1 and p = 0.4. Table I summarizes the parameters
of the neural based decoder.

TABLE I
PARAMETERS OF CSI-AIDED NEURAL DECODER
Parameter Value
(n, k) code (16, 4) Polar
Network structure [128,16]
Activation [Relu, Softmax]
Epochs 212
# Messages 1000
Batch size 256
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Fig. 3. Neural network decoder BER performance trained with 3 different
training channel parameter p.

We show in Figure 3 the performances of the different
neural networks obtained at these different training p. The
results highlight clearly a robustness issue when generalizing
to other values of p. This can be intuitively understood from
the fact that even the optimal decision rule, i.e., the MAP,
requires the knowledge of the channel parameters (p, ¢). This
robustness impairment was scarcely noticed for most usual
channels, namely, the BSC, BEC and BI-AWGN channels
which have been investigated in literature, partly due to the
fact that their MAP decision rule is invariant to the channel
parameter (crossover probability, erasure probability or SNR).

B. Domain adaptation techniques

Our first attempt to tackle this robustness impairment of
neural based decoding for the BAC was to apply Domain
Adaptation (DA) techniques to the channel coding problem
under investigation. DA techniques, mostly used in computer
vision [4], consist in tackling the mismatch between the source
datatset (training) and the target dataset (testing) which might
exhibit distinct statistics. In the following, we summarize our
previous contributions on how to build robust neural based
decoders by enforcing a channel-oblivious neural decoder.

- Loss mixtures: we train the neural network using samples
drawn from multiple training values of p. This amounts to
training the neural decoder on a mixture of losses, with mixing
proportions corresponding to the relative proportions of the
corresponding training p samples in the training dataset.

- Models mixtures: we train distinct neural decoders, each
for a distinct parameter p, and then train a meta model
which combines the outputs of the different models to yield a
decision without retraining the individual models.

- Domain invariant training: we train the neural decoder on
two different training values of p (namely p = .01 and
p = 0.1) by passing each transmitted sequence u* through the
two channels in parallel, and regularizing the loss function to
enforce also that the decoded message u* from the received
signals on both channels be the same.

- Domain independent training: we train the neural decoder
in an adversarial manner to enforce that the decoder output

be independent statistically from the channel parameter. To
this end, we regularize the loss function so as to impose
the maximization of the conditional entropy H (U*|P) while
minimizing the original loss function.
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Fig. 4. Comparison of different DA techniques and MAP decoding

Figure 4 shows the results obtained by each of these DA
techniques, as compared to the MAP decoding. It can be seen
that none of these methods, even with extensive fine tuning
of the metaparameters (mixture parameters, networks design,
optimizers) allows to approach the MAP decoder everywhere.

IV. CSI-AIDED NEURAL BASED CHANNEL DECODING
(CSI-ND)

Throughout the remainder of this work, we will denote by
CSI any form of knowledge the decoder may have on the
channel parameter p. In this section, we first show that even
a coarse quantized CSI can be informative enough, and then
assess the performances of two possible quantized CSI aided
neural based decoder: Genie-Aided quantized CSI and a blind
quantized CSI estimator.

A. Quantized CSI is sufficient

Unlike classical decoders (MAP, Successive Cancellation
decoders (SC), BCIR, ...), to which we can feed continuous
valued CSI, a neural based decoder requires a discrete repre-
sentation of the CSI, which we term hereafter quantized CSI.
In this work, we suggest to obtain the quantized CSI by first
applying a (possibly non-uniform) quantization to the channel
parameter p, and then encoding the obtained classes in a one-
hot vector which is then passed on as an additional input to
the neural decoder. We show through an information theoretic
analysis that a coarsely quantized CSI should be informative
enough for the decoding task.

To this end, let us assume that the channel parameter P is
a uniform random variable over the interval [0 : p,,], where
D 1s the maximum value of crossover probabilities under
investigation. Assume as well that C'p is a uniformly quantized
version of P over N levels in the interval [0 : p,,]. The
quantized CSI variable, which can be interpreted as well as
the class to which P belongs, can be written as

P
Cp= {AJ A, ®)



where |z] stands for the integer floor of z, and A is the quan-
tization step. Note that, since we apply uniform quantization
over the interval [0 : p,,], A = @, and thus, the quantized
CSI is a function of both p,, and]\{\f and is given by

P

_ | NP
Cp = {pmNJ X 9)

In the following, we will define the set C as

Pm N -1
c2 o Mt

N N (10)

In order to design the number of levels [N, we compare two
conditional mutual information, respectively, I(X;Y|P) and
I(X;Y|Cp), which capture the information content shared be-
tween the input and output of the channel given, respectively,
perfect or quantized CSI.

Lemma 2 (Conditional MI under perfect CSI). The Condi-
tional mutual information between the channel input X and
the channel output Y, given the perfect knowledge of P, is

1-P+gq

I(X;Y|P) =Ep [hg ( .

1 1
> - ghz(P) - ihz((I)

Proof. The proof follows from the definition of conditional
mutual information in (1) assuming Px ~ Bern(0.5). O

Lemma 3 (Conditional MI under quantized CSI). The condi-
tional mutual information under quantized CSI writes as

1 Pm
“ Nt
I(X;Y|Cp) = E¢g,p |ho 5
1 DPm 1
— 5ha (e + 2% ) = Shala) [(1D)

where Cp is uniformly distributed over the set C (9).

Proof. The proof of this lemma is given in Appendix A.

In Figure 5, we plot the conditional mutual information
under perfect and quantized CSI, as a function of the number
of quantization levels N and considering p,, = 0.5. It can be
seen that N = 4 yields an already satisfying result. Having
proved that a quantized estimate is enough to capture all the
information necessary for the channel knowledge, we will
hereafter assume that the parameter of interest C), lies in a
discrete set, and consists in the class to which p belongs,
with a cardinality of at least 4 classes. In the following,
we investigate two possible constructions of CSI-aided neural
decoders based on either a Genie-Aided (GA) quantized CSI
or a blind quantized CSIL.

B. Genie-aided CSI quantizer and neural decoding

Let us assume that the true value of the channel parameter
is given by a genie. Then, Figure 7 shows the block diagram
for the GA neural based decoder. The genie encodes the true
channel parameter p into a one hot vector as follows:
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0.230

2 4 3 B 10
Number of iterations

Fig. 5. Comparison of information rates for perfect and quantized CSI
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Fig. 6. One hot encoding of p into discrete intervals for model prediction. The
intervals of choice were {(0,0.01), (0.01,0.1), (0.1,0.3), (0.3,0.4)}.

This CSI is then concatenated with the observed sequence
y™ and used as the input for the neural based decoder in the
training phase as shown in Figure 7 (training parameters are
given in I ). Figure 8 shows the resulting BER as compared to
that of the MAP. It can be clearly seen that, although provided
with only coarsely quantized CSI, the neural based decoder
can actually encode the information of the state in its decoding
structure, and hence, adapt to varying channel parameters p.

Genie
Aided
f p Pi1H
u e Channe Noisy Channel &k
Encoder Channel Decoder
x" yn

Fig. 7. Genie aided decoder illustrated.

C. Blind CSI quantizer and neural decoding

In this section, we replace the genie with a blind (non
pilot-aided) quantized CSI estimator based on an iterative
MAP estimator of the class C,, which alleviated the short
blocklength limitation. To this end, let us denote P(t;p the prior
at iteration ¢, and let PCQP = [0.25,0.25,0.25,0.25] be a totally
uninformative initial prior. We choose to approximate the prior
on C,, at iteration ¢ + 1 by the following

Pynic, (y"]ep) PE, (cp)
Zc; Pynic, (y"lep) PE ()

Pé‘-:l(cp) = Pé’,,\Y" (cply™) =
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Fig. 8. Genie aided decoder and MAP decoder BER performance.

In order to reduce the complexity of this algorithm, we train
a neural network to generate from both a prior Pép and a
received sequence y", the prior of the following iteration
Péjl. Alike the iterative MAP, we will use this blind neural
CSI estimator in an iterative manner as well as shown in Figure
9 and concatenate it with the neural based decoder.
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Fig. 9. Joint CSI estimation and decoding illustrated diagram.
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Figure 10 shows that the performance of the obtained neural
based decoder meets that of the MAP decoder although a blind
quantized CSI estimator is used.
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Fig. 10. Joint CSI estimation and decoding BER performance.

V. CONCLUSION

In this work, we showed that a unique, robust and quasi-
optimal neural based decoder can be built for the BAC, by
feeding a quantized (even coarse, and possibly blind) CSI to
the neural decoder in the training phase. Further work could

be done on the design of more evolved channel decoders based
on RNN or CNN which could encompass the CSI estimation
step, whilst remaining low complexity and low latency.

APPENDIX A
PROOF OF LEMMA 3

In order to express this information rate, we will first show
that under quantized CSI-R, the channel Py x ¢, is equivalent
to a BAC with a specific pair of parameters which depend
on P, N (number of quantization levels) and ¢. Then the
conditional mutual information will follow similarly to a BAC
with perfect CSI. We can write that

Rw@me::/hmmwmm%mm%m@
P

N
- / N Py ix.p(ylz,p) dp
Pep(cp) Pm

N CerA
= o Py x,p(ylz,p) dp
where we used the fact that
fr(p)
frice(Dley) = WPCP\P(CP|p)
P\-D
1 1

= o T Jr ) dp P E P

= pﬁll(p € P(cp))-

m

Next, by simplifying the integral, we can show that:

Pyix.p(ylz =1,¢p) = ¢ (1 — )" ¥ (12)
Pm
PY\X,CP(HSC = O, Cp) = Cp + ﬁ (13)
Pm
Pyix.cn(Oz =0,c,) =1 (cp + ﬁ) 7 (14)

where we have used the fact that:

cp+A p
PY\X70P<]“$:0’0P):?/C pdp:Cerﬁ (15)

m )

Thus, the channel under quantized CSI c,,, can be considered
to be a BAC with parameters (cp + %7 q). It then follows
that the mutual information writes as

I(X§ Y|OP = Cp)
Pm

"% 9N

2

+4q

= hs - %f@ (Cp + pﬂ) - }h2(Q),

2N

where Cp is chosen uniformly in its support set C in (9).
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