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Buckling of Timoshenko beam under two-parameter elastic foundations

Introduction

Beams are slender structures resistant to vertical loads, shear forces and bending moments. They are widely used in civil, mechanical, aerospace engineering. Even if the deformation of the beam is, in first approach, proportional to the load, it is known that a subsequent compressive load will suddenly deflect the beam to the side rather than crushing it. Such buckling depends on the material, geometry and boundary conditions of the beam.

Research on beam buckling has a long history initiated by Euler. In order to extend the validity domain of the Euler's prediction, different theories exist. Among others, Haringx's theory, initially stated for helical springs, explains the fact that springs of small slenderness do not buckle [START_REF] Haringx | On the buckling and lateral rigidity of helical springs[END_REF]. Another well-known theory proposed by F. Engesser considers the influence of shear on the buckling load of straight bars [START_REF] Engesser | Die Knickfestigkeit gerader Stäbe[END_REF]. These two deformed cross-section. In Haringx's approach, the normal force is chosen normal to the deformed crosssection in the loaded state, whereas in Engesser's theory, the normal force is chosen parallel to the beam axis. During the last decades many researchers investigated beam behaviour, some of them supported the Engesser approach while others adapted Haringx strategy. So far, no accord is not reached yet.

Nänni studied the effect of shear forces on the buckling load of simply supported beam with narrow rectangular or elliptic cross-section and concluded that Engesser approach was superior [START_REF] Nänni | Das Eulersche Knickproblem unter Berucksichtigung der Querkräfte[END_REF]. While Reissner computed a one-dimensional large-strain beam theory for plane beams and noticed that Haringx theory provides better agreement [START_REF] Reissner | On one-dimensional finite-strain beam theory: the plane problem[END_REF]. Ziegler used different formulation for bars and privileged the Engesser approach to Haringx's, he also proposed an improvement by incorporating axial shortening [START_REF] Ziegler | Arguments for and against engesser's buckling formulas[END_REF]. However, Ziegler considers still that Haringx's model is more appropriate for helical springs. These conclusions were, short time later, refuted by Reissner who again supported Haringx's formulation, finding that both theories can be obtained by different forms of the one-dimensional stress-strain relations [START_REF] Reissner | A note on deflections of plates on a viscoelastic foundation[END_REF]. Bažant derived Engesser formula from the theoretical analysis of the problem [START_REF] Cedolin | Stability of structures: elastic, inelastic, fracture and damage theories[END_REF]. He considers theoretically the buckling behaviour of weak-in shear columns and, despite some correspondence between Engesser and Haringx formulations, concluded that Haringx formula gave better results [START_REF] Bažant | Shear buckling of sandwich, fiber composite and lattice columns, bearings, and helical springs: Paradox resolved[END_REF]. However, for sandwich buckling and using finite element method he recovered results corresponding to Engesser-type theory [START_REF] Bažant | Sandwich buckling formulas and applicability of standard computational algorithm for finite strain[END_REF].

This reversal shows how sensitive the models are to the problem under study. Accordingly, Blaauwendraad recommended Engesser's hypothesis in building and civil engineering [START_REF] Blaauwendraad | Timoshenko beam-column buckling. Does Dario stand the test ?[END_REF]. But these results were rebutted by Aristizabal who employed Haringx's for the static and dynamic studies of stability of uniform shear beam under generalized boundary conditions [START_REF] Aristizabal-Ochoa | Static and dynamic stability of uniform shear beam-columns under generalized boundary conditions[END_REF]. For sandwich structure the controversy exists too. On its study on the buckling behaviour of sandwich structures, Allen derived the Engesser formula [START_REF] Allen | Analysis and design of structural sandwich panels: the commonwealth and international library: structures and solid body mechanics division[END_REF] while Kardomateas et al made theoretical predictions and Finite Element Methods analysis with metallic laminated facings and foam or honeycomb cores under uniform axial compression, and noticed that Haringx formula was closer to their results [START_REF] Kardomateas | Buckling of sandwich wide columns[END_REF]. Attard computed an internal strain energy density for isotropic hyperelastic Hookean materials and showed that this formulation leads to a buckling load formula that agrees with Haringx's [START_REF] Attard | Finite strain-beam theory[END_REF]. It was confirmed by Simo and Kelly who performed a two-dimensional buckling analysis of multilayer elastomeric beam. They concluded that, as long as the beam theory assumptions holds, their formulation was in closer agreement with the Haringx theory [START_REF] Simo | Finite element analysis of the stability of multilayer elastomeric bearings[END_REF].

Banerjee and Williams analyzed shear-deformable uniform columns, derived the Engesser formula and buckling curves for the most common supporting conditions [START_REF] Banerjee | The effect of shear deformation on the critical buckling of columns[END_REF]. Xiang-Fang Li et al. studied the effects of Engesser's and Haringx's hypotheses on buckling of Timoshenko and higher-order shear deformable columns and they concluded that for shorter columns with weak shear rigidity Engesser beam theory gives the lowest estimate of the critical load, and it is more conservative [START_REF] Li | Effects of Engesser's and Haringx's hypotheses on buckling of Timoshenko and higher-order shear-deformable columns[END_REF]. Pedro Dias Simao [START_REF] Simão | Influence of shear deformations on the buckling of columns using the Generalized Beam Theory and energy principles[END_REF] studied the influence of shear deformations on the buckling of columns using the Generalized Beam Theory and deduced that Engesser load better agrees with their results.

Knowing that beam behaviour is also related to what surrounds it, many researchers examine beams supported on elastic foundation and their applications in modern engineering, such as soil foundation, strip foundation, foundation of the buildings. To describe the interactions of the beam and foundation, various kinds of foundation models have been proposed. The most common model for the elastic foundation is the Winkler model which regards the foundation as a series of separated springs without coupling effects between each other [START_REF] Winkler | Die Lehre von der Elasticitaet und Festigkeit: mit besonderer Rücksicht auf ihre Anwendung in der Technik, für polytechnische Schulen, Bauakademien, Ingenieure[END_REF]. Pasternak generalized the Winkler model and assumed existence of shear interactions between the spring elements [START_REF] Pasternak | On a new method of analysis of an elastic foundation by means of two foundation constants[END_REF]. According to Kerr [START_REF] Kerr | Elastic and Viscoelastic Foundation Models[END_REF], all along the paper the terminology two-parameter Winkler foundation encompassed Pasternack proposal and Filonenko-Borodich model.

Many results have later been obtained using simple or generalized Winkler models. Zhang et al. investigated the bifurcations of a beam on nonlinear foundations [START_REF] Zhang | Secondary buckling and tertiary states of a beam on a non-linear elastic foundation[END_REF], whereas G.Xia used a numerical method applied on beam on elastic foundation [START_REF] Xia | A numerical method for critical buckling load for a beam supported on elastic foundation[END_REF]. Challamel studied the buckling of elastic beam using Reissner model, and he also investigated the buckling of generic higher-order shear beam with elastic connections using local and nonlocal formulation [START_REF] Challamel | Buckling of elastic beams on non-local foundation: A revisiting of Reissner model[END_REF]. In the dynamic regime, Rajesh examined the free vibration of uniform Timoshenko beams on Pasternak foundation using coupled displacement field method [START_REF] Rajesh | Free vibrations of uniform Timoshenko beams on Pasternak foundation using coupled displacement field method[END_REF].

In this paper, we focus on an elastic, isotropic, homogenous straight Timoshenko beam with small, quasistatic plane transformation and linear constitutive load. A longitudinal load is imposed at the boundary but the beam is surrounded by two-parameters foundations. In many practical cases, this foundation has to increase the critical buckling stress. Furthermore, this foundation exerts an external force and moment per unit length (for example by means of springs that act on the boundary of the cross-section) in order to control displacement and rotation behaviour of the cross-section [START_REF] Rosa | Free vibrations of Timoshenko beams on two-parameter elastic foundation[END_REF][START_REF] Razaqpur | Exact analysis of beams on two-parameter elastic foundations[END_REF].

Geometrical general problem under these hypotheses is presented in a dimensionless form that leads to Haringx approach in the first section. The Engesser model is presented in a dimensional form and for the same two-parameter foundation too. A comparison between the two problems is performed in the second section where buckling loads and buckling modes are first exhibited in a general way, then for pinned-pinned boundary conditions. The third section introduces a finest analysis of buckling load where both values of the foundation stiffness and slenderness ratio are involved. In the fourth section, the discussion is enriched by incorporating the yield limit of the material constituent of the beam. It leads to a simple criterion that may be exploited by engineering analyses. The conclusion underlines the main points of the work and proposes some further considerations.

Problem statement

General ingredients

The kinematics of the Timoshenko beam are described in a Cartesian frame (e x , e y , e z ) where e z is oriented along the beam axis in the stress-free configuration, and the motion of the beam lies in the (e x , e z )-plane. 

N 1 = GA( ∂u 1 ∂S -φ), N 3 = EA ∂u 3 ∂S , M 2 = EI ∂φ ∂S ,
where A and I are the area and the quadratic moment of the cross-section, E and G are the Young modulus and shear modulus (including eventually a shear correction factor) of the beam material. The external compression load is:

P = -P d 3 , P ≥ 0 .
This load causes the buckling of the beam. This is countered by the foundations. For elastic foundation, the external applied force per unit length and external applied moment per unit length are respectively:

q(S) = -K 1 u 1 d 1 , m(S) = -K 2 φ d 2 ,
where K 1 and K 2 are translational and rotational stiffness [START_REF] Cheng | Static Timoshenko beam-columns on elastic media[END_REF][START_REF] Wang | Buckling of restrained columns with shear deformation and axial shortening[END_REF]. The motivation of the applied moment 

Equilibrium relations

Even for large transformation, equilibrium relations for this static problem states [START_REF] Marrec | Vibration of a Timoshenko beam supporting arbitrary large pre-deformation[END_REF] :

∂N ∂S + q = 0, ∂M ∂S + ∂u ∂S ∧ N + m = 0,
where, according to [START_REF] Hariz | Explicit analysis of large transformation of a timoshenko beam: post-buckling solution, bifurcation, and catastrophes[END_REF]:

∂u ∂S = ε + d 3 ,
and for which ε

= ε 1 d 1 +ε 3 d 3 , where ε 1 (S) = ∂u 1
∂S -φ is the shear strain and ε 3 (S) =

∂u 3
∂S is the longitudinal strain. As ∂d i ∂S = ∂φ ∂S d 2 ∧ d i and projecting along directors, one obtains the following system:

∂N 3 ∂S - ∂φ ∂S N 1 = 0 , ∂N 1 ∂S + ∂φ ∂S N 3 -K 1 u 1 = 0 , ∂M 2 ∂S + (1 + ε 3 )N 1 -ε 1 N 3 -K 2 φ = 0 . ( 1 
)
The present analysis concerns an infinitesimal perturbation superimposed on a finite longitudinal compression induced by a finite force P. In such case u 1 , ε 1 , φ and their derivatives are infinitesimal quantities.

Neglecting ε 3 N 1 in (1) is usually interpreted as an inextensible approximation. Accordingly a linearized version of ( 1) is obtained:

GA( ∂ 2 u 1 ∂S 2 - ∂φ ∂S ) - ∂φ ∂S P -K 1 u 1 = 0, EI ∂ 2 φ ∂S 2 + ( ∂u 1 ∂S -φ)(GA + P ) -K 2 φ = 0, (2) 
what corresponds to the application of Haringx model for Winkler foundation [START_REF] Cedolin | Stability of structures: elastic, inelastic, fracture and damage theories[END_REF][START_REF] Challamel | Buckling of generic higher-order shear beam/columns with elastic connections: local and nonlocal formulation[END_REF]. More precisely, if P is set to zero we recover the model from [START_REF] Rosa | Free vibrations of Timoshenko beams on two-parameter elastic foundation[END_REF] in its static version.

Non-dimensionalization procedure

Non-dimensional formulation of the problem ( 2) is introduced thanks to the following variables:

90 = I A , g = E G , κ 1 = K 1 E I A 2 , κ 2 = K 2 EA , = P EA . ( 3 
)
For any material g 2(1 + ν) where ν is the Poisson ratio then 2 g 3, For compression in the elastic regime 0 < < yield where yield is nothing else than the strain limit for which irreversible transformation occurs. For translational and rotational stiffness κ i , κ i = 0 in absence of foundation and κ i = ∞ for a rigid foundation. This paper focuses on the cases for which κ i < 1 that corresponds to foundations softer than the structures. The kinematical variables become in a non-dimensional form:

s = S , = L , u(s) = u 1 (S) , θ(s) = φ(S).
Note that = R/2 for circular cross-section of radius R therefore is twice the standard slenderness ratio.

More generally, beam model is justified for 20. The terminology slender beam is used if 40 whereas 20 40 characterizes a thick beam.

Therefore (2) takes the form:

u -gκ 1 u -(1 + g )θ = 0, gθ + (1 + g )u -(1 + g + gκ 2 )θ = 0, (4) 
where the convention f := ∂f ∂s for any function f (s) is used.
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Another model widely used for buckling is proposed by Engesser [START_REF] Engesser | Die Knickfestigkeit gerader Stäbe[END_REF] for which the non-dimensional equilib-rium relations are in case of two-parameter foundations:

(1 -g )u -gκ 1 u -θ = 0, gθ + u -(1 + gκ 2 )θ = 0.
(5)

Buckling modes

Secular relations and eigenfunctions

For harmonic solution u(s) = U e iks and θ(s) = Θe iks , the linear differential system becomes KV = 0 where V = (U, Θ) T and the (hermitian) rigidity matrix is, for (4) and ( 5) respectively:

K H =    k 2 + gκ 1 ik(1 + g ) -ik(1 + g ) 1 + g(k 2 + + κ 2 )    , K E =    k 2 (1 -g ) + gκ 1 ik -ik 1 + g(k 2 + κ 2 )    . (6) 
Non-trivial solutions arise if det (K) = 0 what may be written as a secular equation:

P H ( , k) = g k 2 κ 2 + k 2 -(g + 1) + κ 1 gκ 2 + g + k 2 + 1 , P E ( , k) = g k 2 κ 2 (1 -g ) -gk 2 + 1 + k 2 + κ 1 gκ 2 + gk 2 + 1 . ( 7 
)
By solving P( ) = 0 (for a fixed k), one finds a polynomial with respect to whose real positive roots are

H = gκ 1 + (gκ 1 + k 2 ) gκ 1 + (1 + 4gκ 2 )k 2 + 4gk 4 -k 2 2gk 2 , E = κ 2 + k 2 1 + g(κ 2 + k 2 ) + κ 1 k 2 . ( 8 
)
Hence explicit expressions of the critical strain are obtained for a given structure (the material parameter g 100 and the stiffnesses κ i of the foundations) and a given wavenumber k. This latter will be fixed by boundary conditions. Without foundation the Euler critical load is k 2 EI/L 2 , where k = k/ is the dimensional wavenumber. In a non-dimensional form the critical strain associated to Euler critical load is eu = k 2 . By taking κ 1 = κ 2 = 0 and applying Taylor expansion to [START_REF] Bažant | Shear buckling of sandwich, fiber composite and lattice columns, bearings, and helical springs: Paradox resolved[END_REF] for small k and taking first approximation one gets:

= k 2 + O(k 4 ), (9) 
for both models. Hence the two models are in first approximation equal to Euler's critical load if no foundation is present and if k 1. the Haringx and Engesser's models gives distinct estimations of but curiously these estimations are in first approximation independent of the stiffness of the foundation. Note that E < H in this regime as mentioned in [START_REF] Li | Effects of Engesser's and Haringx's hypotheses on buckling of Timoshenko and higher-order shear-deformable columns[END_REF].

ǫ eu ǫ E , κ2 = 0 ǫ H , κ2 = 0 ǫ E , κ2 = 10 -3 ǫ H , κ2 = 10 -3 ǫ E , κ2 = 10 -2 ǫ H , κ2 = 10 -2 k 10 -2 10 -1 10 0 κ 1 = 0 κ 1 = 10 -4 κ 1 = 10 -5
Conversely, for fixed , P is a second degree polynomial with respect to k 2 . Hence u(s) and θ(s) have the general form:

u(s) = ae ik1s + be -ik1s + ce ik2s + de -ik2s , θ(s) = Ξ(k 1 )(ae ik1s -be -ik1s ) + Ξ(k 2 )(ce ik2s -de -ik2s ), (10) 
where a, b, c and d will be defined by boundary conditions. Here, (k 1 ) 2 and (k 2 ) 2 are the two roots of P(k 2 ) = 0. The expression of θ(s) is obtained by solving K 11 U + K 12 Θ = 0 therefore Θ = iΞ U where iΞ = -K 11 /K 12 . In details:

Ξ H = k 1 1 + g + gκ 1 k 1 1 + g , Ξ E = k(1 -g ) + gκ 1 k . ( 11 
)
Taylor expansion in terms of gives:

Ξ H = Ξ E + O( κ 1 k , k 2 ). ( 12 
)
By construction κ 2 is not explicit in Ξ but intervenes implicitly through .

Pinned-pinned beam

Without loss of generality, we consider a pinned-pinned beam for which (non-dimensional) boundary conditions are in terms of kinematical variables u(s) = 0, θ (s) = 0 at s = 0 and s = . This forms a set of four linear equations in terms of X = (a, b, c, d) T that may be written algebraically as MX = 0 with

M =          1 1 1 1 k 1 Ξ(k 1 ) k 1 Ξ(k 1 ) k 2 Ξ(k 2 ) k 2 Ξ(k 2 ) e ik1 e -ik1 e ik2 e -ik2 k 1 Ξ(k 1 )e ik1 k 1 Ξ(k 1 )e -ik1 k 2 Ξ(k 2 )e ik2 k 2 Ξ(k 2 )e -ik2          . ( 13 
)
Again, non trivial solutions exist if det (M) = 0 that gives the following relation:

k 1 Ξ(k 1 ) -k 2 Ξ(k 2 ) 2 sin(k 1 ) sin(k 2 ) = 0. ( 14 
)
Direct computation shows that k 1 Ξ(k 1 ) = k 2 Ξ(k 2 ). First it is observed that k 1 and k 2 play a similar role therefore one focuses on k ≡ k 1 in the following. According to [START_REF] Attard | Finite strain-beam theory[END_REF] non-trivial solutions exist only if sin(k ) = 0, this implies that k must be chosen among an infinite countable set of values, more precisely:

k n = nπ , n ∈ N * . ( 15 
)
One should note that in order to respect beam hypotheses the dimensional wavelength λ has to satisfy λ > 2R = 4 for circular cross-sections, or in a non-dimensional way λ = λ/ > 4 and since λ n = 2π/k n > 4 so the following conditions are obtained:

n < 2 , k n ≤ 1 . ( 16 
)
From this information, it means that even for a thick beam, k must be explored in a variation domain ]0, 1]. According to equation ( 13), the modal amplitude may be obtained up to an arbitrary constant, by solving:

AY = -aZ, where Y = (b, c, d) T ,
with A ij = M ij and Z i = M i1 for 1 ≤ i ≤ 3 and 2 ≤ j ≤ 4. Fixing a = 1 and k n = nπ/ one obtains:

u(s) = sin( nπ s), θ(s) = Ξ( nπ ) cos( nπ s). ( 17 
)
Hence and κ i intervenes in the modes chapes only through the parameter Ξ(k, , κ). In other words, the general shape of the eigenmode is not qualitatively modified by the loads and the stiffnesses κ i of the foundations. As Ξ is distinct for Haringx and Engesser models, the mode shapes may differ for the two models even if the value of critical load obtained for each model is similar.

General case 125

For a general boundary conditions k could still be organized as an increasing countable sequence {k n } n

where k n = O( n ). In the following, it is considered that the variation domain ]0, 1] of k, obtained for pinned-pinned boundary conditions, is valid for other boundary conditions. From Fig. 2, it is observed that in this domain, the estimation (k) mainly coincides for Engesser and Haringx models.

The expression of the eigenmodes still refers to [START_REF] Blaauwendraad | Timoshenko beam-column buckling. Does Dario stand the test ?[END_REF] but the detailed expression may be less clear than [START_REF] Li | Effects of Engesser's and Haringx's hypotheses on buckling of Timoshenko and higher-order shear-deformable columns[END_REF].
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However the general methodology explained above (17) holds.

Buckling limit

Till now the buckling mode is not fixed. As this latter must respect the boundary conditions, the buckling mode is associated to a wavenumber k b among the list {k n }. Even if {k n } is an increasingly sorted list, k b is not a priori k 1 . Indeed, as k b prescribes the first buckling mode, it must be chosen in such a way that it corresponds to the minimal critical strain:

b := (k b ) = min n ( (k n )) . ( 18 
)

Continuous approximation of the critical strain

Solving (18) consists on a discrete optimisation. In order to have a first overview of the solution, the problem is here explored in its continuous version. Indeed, from Fig. 2, (k) is a strictly convex function for any model (and for fixed κ i ). This ensures the existence and uniqueness of a global minimum of (k).

Finding in R * + such position k min of the minimum leads to calculate ∂ ∂k kmin = 0. According to (8) one obtains for Haringx and Engesser respectively:

∂ H ∂k = 2k 6 -κ 1 gκ 1 + 2gκ 2 k 2 + (gκ 1 + k 2 ) (gκ 1 + 4gk 4 + 4gκ 2 k 2 + k 2 ) + k 2 k 3 (gκ 1 + k 2 ) (gκ 1 + k 2 (4gκ 2 + 4gk 2 + 1)) = 0, ∂ E ∂k = 2k (gκ 2 + gk 2 + 1) 2 - 2κ 1 k 3 = 0 . ( 19 
)
Knowing that g > 0, κ 1 > 0 and κ 2 > 0, we deduce the solution of ( 19)

k H min = 1 2 √ κ 1 1 + 1 + 4g (κ 2 + √ κ 1 ) , k E min = √ κ 1 (1 + gκ 2 ) 1 -g √ κ 1 . ( 20 
)
As κ i < 1, leading terms approximation with respect to κ 1 and κ 2 gives, for both models:

k min ∼ κ 1/4 1 (21) 
This behaviour of k min is illustrated in Figure (3). 

Discrete analysis of the critical strain

The preceding analysis may be used to define the buckling wavenumber k b ∈ {k n } and then b . Practically, two cases have to be studied.

Thick beam on soft foundations

Considering first the case where k min ≤ k 1 (and k 1 ≤ 1). Since (k) is an increasing function for k ≥ k min then the criterion ( 18) is satisfied for k b = k 1 . Note that k b could be far larger than k min and the only attainable information is

k b = O(π/ ) < 1.
According to [START_REF] Kerr | Elastic and Viscoelastic Foundation Models[END_REF] and the discussion in the section 3.3,

k min ≤ k 1 is satisfied only if κ 1/4 1
< O(π/ ), or in a more proper (non-dimensional or dimensional) version, if:

κ 1 4 1, K 1 L 4 EI 1 .
Such situation appears if the foundation is soft or if the beam has a moderate slenderness ratio. This regime is called small-regime hereafter, as both the length and the stiffness are small numbers.

From [START_REF] Bažant | Shear buckling of sandwich, fiber composite and lattice columns, bearings, and helical springs: Paradox resolved[END_REF] and since κ 1 ∼ k 4 min < k 4 b ≤ 1 and κ 2 < 1, the buckling strains estimated by the two model are similar. It may be approached by:

b (k b ) = k 2 b 1 + gk 2 b + κ 1 k 2 b + κ 2 (1 + gk 2 b ) 2 , ( 22 
)
for thick or slender beam. For thin structure, k b 1, allows some simplification:

b (k b ) = k 2 b + κ 1 k 2 b + κ 2 . ( 23 
)

Thin beam on stiff foundations 140

For k min k 1 , the situation is different. This regime appears for slender structure or for stiff foundations.

It is called large-regime, and is controlled by κ 1 4

1. In that case k b = O(k min ) in order to minimize the buckling strain (k b ). Note that one observes the following hierarchy

k b = O(k min ) = O(κ 1/4 1 ) O(1/ ), however as κ 1 < 1 then 1/ k b ≤ 1.
The wavelength λ b = 2π/k b of the buckling mode satisfies

145 λ b ∼ 2π κ 1/4 1 . ( 24 
)
It is controlled by κ 1 = K 1 I/(EA 2 ) only, in particular it is independent of the length of the structure.

The buckling appears with a pattern having several arches. The number of arches observed on a buckled structure is N := 2 /λ b (a wavelength is considered as composed of two arches). The order of magnitude of this parameter is:

N ∼ π κ 1/4 1 , ( 25 
)
where • denotes the floor function.
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In terms of strain criterion, since κ i gk, one obtains:

b = O(2 √ κ 1 + κ 2 ) , (26) 
for both models.

For pinned-pinned beam the modal amplitudes are approached by ( 12) that gives:

Ξ ∼ κ 1/4 1 (1 -gκ 2 ) . ( 27 
)
This shows the high influence of foundation stiffness in this large-regime: it uniquely defines the buckling load [START_REF] Rosa | Free vibrations of Timoshenko beams on two-parameter elastic foundation[END_REF], the modal amplitude [START_REF] Razaqpur | Exact analysis of beams on two-parameter elastic foundations[END_REF] and the buckling's wavelength [START_REF] Challamel | Buckling of elastic beams on non-local foundation: A revisiting of Reissner model[END_REF]. An illustration of the buckled 155 shape in the large-regime is given in Fig. 4 for pinned-pinned boundary conditions.
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Discussion

The estimations of b for large and small regimes (in [START_REF] Rosa | Free vibrations of Timoshenko beams on two-parameter elastic foundation[END_REF] and [START_REF] Xia | A numerical method for critical buckling load for a beam supported on elastic foundation[END_REF], respectively) are given in Fig. 5. The given approximations are clearly justified for both models. It is the occasion to highlight that the largeregime approximation (26) of b is included in [START_REF] Xia | A numerical method for critical buckling load for a beam supported on elastic foundation[END_REF] as:

lim k b →κ 1/4 1 k 2 b + κ 1 k 2 b + κ 2 = 2 √ κ 1 + κ 2 .
This fundamental equation ( 23) corresponds to the differential equation: 26) and ( 23), respectively.

u (4) + ( b -κ 2 ) u + κ 1 u = 0 .
This corresponds to the superposition of the Euler-buckling equation with the Pasternak foundation model.

In the non-dimensional form used in this paper, these latter are respectively: 4) -κ 2 u + κ 1 u = 0 .

u (4) + b u = 0, u ( 

Yield limit

It must be recalled that the proposed models are accompanied by some physical hypotheses such as < yield . For steel-like material yield 2•10 -3 and for fiber reinforced composite 5•10 -2 . If this hypothesis is respected the Engesser and Haringx predictions of for a given wavenumber k coincide (see Fig. 5).

Let us consider first the small-regime where κ 1 4

1 (sec-4.2.1). As ( 23) is the sum of three positive terms, the criterion < yield implies that three constrains have to be satisfied a minima: k 2 b < yield , κ 1 /k 2 b < yield and κ 2 < yield . The first involves 1 < yield 2 that is already present in the Euler model without foundation: this criterion is satisfied for most of the slender structure but could be violated for thick beam. The second may be rewritten as κ 1 2 < yield , however if the preceding criterion is satisfied the following hierarchy is observed κ 1 4 < 1 < yield 2 then κ 1 2 < yield is verified. Lastly, the third criterion κ 2 < yield gives a constraint on κ 2 for a given material but independently of the length of the beam.

For the situation where 1 κ 1 4 (26) gives two constraints on the foundation stiffness that have to be satisfied a minima : √ κ 1 < yield and κ 2 < yield .

If the material of the structure (and then yield ) is known, these analyses exhibit non-trivial necessary condition on κ i and for-which buckling may appear before irreversible transformation:

κ 2 < yield in all the cases and > 1 √ yield if κ 1 4 1 κ 1 < 2 yield if 1 κ 1 4 (28) 
In the small-regime, combining > 1/ √ yield and κ 1 4

1 leads to κ 1 < 2 yield . Hence the preceding constraints may be easily synthesized, regardless of the regime, by:

> 1 √ yield , κ 1 < 2 yield , κ 2 < yield equivalently max 1 2 , √ κ 1 , κ 2 < yield ( 29 
)
From the point of view of the authors, such bounds may be of particular interest for engineering design of slender structures subjected to elastic foundation.

The constraints [START_REF] Wang | Buckling of restrained columns with shear deformation and axial shortening[END_REF] have motivated the choice of the values of κ 1 ≤ 10 -4 and κ 2 ≤ 10 -2 in Fig. 2, Fig. 3 and Fig. 5 as yield ≤ 5 • 10 -2 for most of the standard material.

Of course, because (29) are necessary conditions, for a given problem the more restrictive sufficient condition < yield has to be checked even if (29) is respected. Hence, note that even if [START_REF] Wang | Buckling of restrained columns with shear deformation and axial shortening[END_REF] are satisfied in Fig. 5, the criterion < yield doesn't look systematically satisfied. This is particularly true if κ 1 = 10 -4 where b is systematically larger than 10 -2 while yiled > 10 -2 is not necessarily obtained for large range of material.

This illustrates the non-sufficient character of conditions [START_REF] Wang | Buckling of restrained columns with shear deformation and axial shortening[END_REF]. Note also that Engesser and Haringx models differ in a regime for which > yiled for most of the standard material.

At last, for κ 1 < 10 -4 , (24) induces λ b > 20π in the small-regime. In a dimensional point of view the wavelenght is λ b > 20π (for a cylindrical beam of radius R, λ b > 10πR).

Conclusion

Analytical study of buckling of a beam supported by foundation has been performed. The problem was stated for plane, quasi-static and infinitesimal motion of a straight and uniform Timoshenko beam superimposed to a finite longitudinal force such as Haringx and Engesser models were used. Foundations operate external densities of moment and transversal force. These densities are linearly related to rotation and transverse displacement of the beam in accordance with the two-parameters Winkler model of foundations.

The problem was formulated in a non-dimensional way in order to reduce the number of independent parameters such as allowing a general statement.

For both models, buckling analysis was performed by investigating, in an analytical way, the relation between the critical buckling load and the wavenumber of buckling modes according to the foundation parameters. The explicit expression of the buckling mode and critical stress were given for pinned-pinned beam and general formulation was exhibited for general boundary conditions.

Introducing the yield stress of the material of the beam completes the discussion by introducing a criterion for which buckling prevails over irreversible transformation. The non-dimensional form of this simple criterion makes it particularly suitable for engineering design. In the buckling-regime the Engesser and Haringx model converge to the same estimation of the critical buckling stress and buckling modes have the same behaviour.

In the regime for which the effect of foundation is relevant, the equation used to determine buckling stress and eigenmodes coincides with the superposition of the Euler-buckling equation with the Pasternak foundation model. These two models were build on Euler-Bernoulli beam theory and then the Timoshenko theory proposed through the Engesser or Haringx models looked too sophisticated for the description of the problem of buckling of beam supported by two-parameter foundations. As a corollary consequence, the discussion about the meaning of the second parameter of the generalized Winkler foundations (whether it is associated to rotation θ of the section or slope u of the centerline) is not relevant as the kinematical constraint u -θ = 0 holds for Euler-Bernoulli beam.
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  However, for such a Cosserat-like structure it is justified to use a moving director frame basis (d 1 , d 2 , d 3 ) for which d 2 = e y and d 3 is normal to the cross-section, as this basis is orthonormal d 1 = d 3 ∧ d 2 and (d 1 , d 2 ) defines the plane of a rigid cross-section. As the orientation of the beam is not uniform, this basis {d i (S)} depends on the curvilinear abscissa S of the beam (it is mainly implicit hereafter). In contrary to Euler-Bernoulli model d 3 is not necessarily tangent to the center line. Of course for linearized theory d 1 e x and d 3 e z . The kinematics of the beam is governed by the displacement u(S) = u 1 (S)d 1 (S) + u 3 (S)d 3 (S) of any point of the center-line and rotation φ(S) of the section around d 2 . With the same formalism, the internal force acting on the beam is of the form N(S) = N 1 d 1 + N 3 d 3 where N 1 (S) is the shear force and N 3 (S) is the normal force and the moment M(S) = M 2 d 2 where M 2 (S) is the bending moment. Linear constitutive laws are assumed:

Figure 1 :

 1 Figure 1: Motivation for the rotational reaction of the soil. Left: a beam structure in blue with glued rigid transversal blades embedded in an elastic media is modeled by a discrete system of springs. Right: an auger blade (Photo courtesy of N.Belhabchi.)

Figure 2 :

 2 Figure 2: Secular equations (8) for various κ 1 and κ 2 where g = 5/2.

Figure 2

 2 Figure2presents the variation of H and E for various stiffnesses ; the non-dimensional Euler's critical strain eu = k 2 is presented too. For k 1 Haringx and Engesser's models give the same estimation of critical strain . Of course, this estimation is sensible to the stiffnesses κ i . On the other hand, for 1 k,
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 23 Figure 3: Solutions k min of (20) versus κ 1 for various κ 2 . Comparison between Haringx and Engesser models with g = 5/2.

Figure 4 :

 4 Figure 4: Shape of a pinned-pinned beam under a Winkler foundation. g = 5/2, = 100, κ 1 = 10 -4 , κ 2 = 10 -2 . The buckling mode associated to the smallest strain that is the third one: k b = 3π/ with a critical strain b = 3 • 10 -2 .
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 110511045 Figure 5: Report of Fig.2 where all previous curves are in black. The new superimposed curves are the small-regime and large-regime estimations of b given in (26) and (23), respectively.