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Abstract

We address the problem of defending predictive mod-
els, such as machine learning classifiers (Defender mod-
els), against membership inference attacks, in both the
black-box and white-box setting, when the trainer and
the trained model are publicly released. The Defender
aims at optimizing a dual objective: utility and privacy.
Both utility and privacy are evaluated with an external
apparatus including an Attacker and an Evaluator. On
one hand, Reserved data, distributed similarly to the De-
fender training data, is used to evaluate Utility; on the
other hand, Reserved data, mixed with Defender train-
ing data, is used to evaluate membership inference at-
tack robustness. In both cases classification accuracy or
error rate are used as metric: Utility is evaluated with
the classification accuracy of the Defender model; Pri-
vacy is evaluated with the membership prediction error
of a so-called “Leave-Two-Unlabeled” LTU Attacker ,
having access to all the Defender and Reserved data,
except for the membership label of one sample from
each. We prove that, under certain conditions, even a
“naı̈ve” LTU Attacker can achieve lower bounds on pri-
vacy loss with simple attack strategies, leading to con-
crete necessary conditions to protect privacy, including:
preventing over-fitting and adding some amount of ran-
domness. However, we also show that such naı̈ve LTU
Attacker can fail to attack the privacy of models known
to be vulnerable in the literature, demonstrating that
knowledge must be complemented with strong attack
strategies to turn the LTU Attacker into powerful means
of evaluating privacy. Our experiments on the QMNIST
and CIFAR-10 datasets validate our theoretical results
and confirm the role of over-fitting prevention and al-
gorithm randomness in the algorithms to protect against
privacy attacks.

Introduction
Large companies are increasingly reluctant to let any infor-
mation out, by fear of privacy attacks and possible ensuing
lawsuits. Even government agencies and academic institu-
tions, whose charter is to disseminate data and results pub-
licly, must be careful. Hence, we are in great need for simple

and provably effective protocols to protect data, while en-
suring that some utility can be derived from them. Though
critical sensitive data must never leave the source organi-
zation (Source) – company, government, or academia –, an
authorized researcher (Defender) may gain access to them
within a secured environment to analyse them and produce
models (Product). Source may desire to release Product, pro-
vided that desired levels of Utility and Privacy are met. We
consider the most complete release of model information,
including the Defender trainer, with all its settings, and the
trained model. This enables “white-box attacks” from po-
tential attackers (Nasr, Shokri, and Houmansadr 2019). We
devise an evaluation apparatus to help Source in its deci-
sion whether or not to release Product (Figure 1). The set-
ting considered is that of “membership inference attack”, in
which an attacker seeks to uncover whether given samples,
distributed similarly as the Defender training dataset, belong
or not to such dataset (Shokri et al. 2017). The apparatus
includes an Evaluator and a LTU Attacker . The Evaluator
performs a hold-out leave-two-unlabeled (LTU) evaluation,
giving the, LTU Attacker access to extensive information:
all the Defender and Reserved data, except for the member-
ship label of one sample from each. The contributions of our
paper include this new evaluation apparatus. Its soundness
is backed by some initial theoretical analyses and by pre-
liminary experimental results, which indicate that Defender
models can protect data privacy while retaining utility in
such extreme attack conditions.

Related work
Membership inference attacks (MIA) have been extensively
studied in the last years. (Li et al. 2013) developed a pri-
vacy framework called “Membership Privacy”, establishing
a family of related privacy definitions. (Shokri et al. 2017)
explored the first MIA scenario, in which an attacker has
black-box query access to a classification model f and can
obtain the prediction vector of the data record x given as
input. (Long, Bindschaedler, and Gunter 2017) proposed a
metric inspired from Differential Privacy to measure the pri-
vacy risk of each training record, based on the impact it has
on the learning algorithm. Similarly, (Song and Mittal 2021)
incorporate a fine-grained analysis on his systematic evalua-
tion of privacy risk. The bayesian metric proposed is defined
as the posterior probability that a given input sample is from



Figure 1: Methodology Flow Chart. (a) Defender: Source data are divided into Defender data, to train the model under
attack (Defender model) and Reserved data to evaluate such model. The Defender model trainer creates a model optimizing a
utility objective, while being as resilient as possible to attacks. (b) LTU Attacker : The evaluation apparatus includes an LTU
Attacker and an Evaluator: The evaluation apparatus performs a hold-out evaluation leaving two unlabeled examples (LTU) by
repeatedly providing the LTU Attacker with ALL of the Defender and Reserved data samples, together with their membership
origin, hiding only the membership label of 2 samples. The LTU Attacker must turn in the membership label (Defender data
or Reserved data) of these 2 samples (Attack predictions). (c) Evaluator: The Evaluator computes two scores: LTU Attacker
prediction error (Privacy metric), and Defender model classification performance (Utility metric).

the training set after observing the target model’s behavior
over that sample. (Jayaraman et al. 2020) explores a more
realistic scenario. They consider skewed priors where only
a small fraction of the samples belong to the training set,
and its attack strategy is focused on selecting the best infer-
ence thresholds. In contrast, our LTU Attacker is not trying
to address a realistic scenario.

(Yeom et al. 2018) studied the connection between over-
fitting and membership inference, showing that overfitting is
a sufficient condition to guarantee success of the adversary.
(Truex et al. 2019) continued exploring MIAs in the black-
box model setting, considering different scenarios accord-
ing to the prior knowledge that the adversary has about the
training data: black-box, grey-box and white-box. Recent
work also addressed membership inference attacks against
generative models (Hayes et al. 2018; Hilprecht, Härterich,
and Bernau 2019; Chen et al. 2020). This paper focuses on
the attack of discriminative models in an all ‘knowledgeable
scenario’, both from the point of view of model and data.

Several frameworks have been proposed to mitigate at-
tacks, among which Differential Privacy (Dwork et al. 2006)
has become a reference method. Work in (Abadi et al. 2016;

Xie et al. 2018) show how to implement this technique in
deep learning. Using DP to protect against attacks comes
at the cost of decreasing the model’s utility. Regularization
approaches have been investigated, in an effort to increase
model robustness against privacy attacks, while retaining
most utility. One of them inspired our idea to defend against
attacks in an adversarial manner: Domain-adversarial train-
ing (Ganin et al. 2016) introduced in the context of domain
adaptation. (Nasr, Shokri, and Houmansadr 2018) will later
use this technique to defend against MIA. (Huang et al.
2021) helped bridge the gap between membership inference
and domain adaptation.

Most literature addressing MIA considers a black-box
scenario, where the adversary only has access to the model
through an API and very little knowledge about the train-
ing data. Closest to the scenario considered in this paper, the
work of (Nasr, Shokri, and Houmansadr 2019) analyzes at-
tackers having all information about the neural network un-
der attack, including inner layer outputs; allowing them to
exploit privacy vulnerabilities of the SGD algorithm. How-
ever, contrary to the LTU Attacker we are introducing, the
authors’ adversary executes the attack in an unsupervised



way; without having access to membership labels of any
data sample. Bayes optimal strategies have been examined
in (Sablayrolles et al. 2019); showing that, under some as-
sumptions, the optimal inference depends only on the loss.
Recent work in (Liu et al. 2020) also aims to design the best
possible adversary, defined in terms of the Bayes Optimal
Classifier, to estimate privacy leakage of a model.

Problem statement and methodology
We consider the scenario in which an owner of a data Source
DS wants to create a predictive model trained on some of
those data, but needs to ensure that privacy is preserved.
In particular, we focus on privacy from membership infer-
ence. The data owner entrusts an agent called Defender with
creating such a model, giving him access to a random sam-
ple DD ⊂ DS (Defender dataset). We denote by MD the
trained model (Defender model) and by TD the algorithm
used to train it (Defender trainer). The data owner wishes
to release MD, and eventually TD, provided that certain
standards of privacy and utility of MD and TD are met. To
evaluate such utility and privacy, the data owner reserves a
dataset DR ⊂ DS , disjoint from DD, and gives both DD and
DR to a trustworthy Evaluator agent. The Evaluator tags the
samples with dataset “membership labels”: Defender or Re-
served. Then, the Evaluator performs repeated rounds, con-
sisting in randomly selecting one Defender sample d and one
Reserved sample r, and giving to a LTU Attacker an almost
perfect attack dataset DA = DD − {membership(d)} ∪
DR − {membership(r)}, removing only the membership
labels of the two selected samples. The two unlabeled sam-
ples are referred to as u1 and u2, with each being equally
likely to be from the Defender dataset. We refer to this pro-
cedure as “Leave Two Unlabeled” (LTU), see Figure 1. The
LTU Attacker also has access to the Defender trainer TD
(with all its hyper-parameter settings), and the trained De-
fender model MD. He is tasked to correctly predict which
of the two samples d and r belongs to DD (independently
for each LTU round, forgetting everything at the end of a
round).

We use the LTU membership classification accuracy Altu

from N independent LTU rounds (as defined above), to de-
fine a global privacy score as:

Privacy =max{2 (1−Altu), 1}

± 2
√
Altu(1−Altu)/N (1)

where the error bar is an estimator of the standard error of the
mean (approximating the Binomial law with the Normal law,
see e.g. (Guyon et al. 1998)). The weaker the performance
of the LTU Attacker (Altu ≃ 0.5 for random guessing), the
larger Privacy, and the better MD should be protected
from attacks. We can also determine an individual mem-
bership inference privacy score for any sample d ∈ DD

by using that sample for all N rounds, and only drawing
r ∼ DR at random1 (see example in Appendix C).

1Similarly, we can determine an individual non-membership in-
ference privacy score for any sample r ∈ DR by using that sample
for all N rounds, and only drawing d at random.

The Evaluator also uses DuE = DR to evaluate the util-
ity of the Defender model MD. We focus on multi-class
classification, and measure utility with the classification ac-
curacy AD of MD, defining utility as:

Utility = (c AD−1)/(c−1)±c
√

AD(1−AD)/|DR| ,
(2)

where c is the number of classes.
While the LTU Attacker is all knowledgeable, we still

need to endow it with an algorithm to make membership
predictions. In Figure 2 we propose a taxonomy of LTU At-
tacker . In each LTU round, let u1 and u2 be the samples that
were deprived of their labels. The taxonomy has 2 branches:

• Attack on MD alone: (1) Simply use a generalization
Gap-attacker, which classifies u1 as belonging to DD

if the loss function of MD(u1) is smaller than that of
MD(u2) (works well if MD overfits DD); or, (2) train a
MD-attacker MA to predict membership, using as input
any internal state or the output of MD, and using DA as
training data. Then use MA to predict the labels of u1 and
u2.

• Attack on MD and TD: Depending on whether the De-
fender trainer TD is a white-box from which gradients can
be computed, define MA by: (3) Training two mock De-
fender models M1 and M2, one using (DD−{d})∪{u1}
and the other using (DD − {d}) ∪ {u2}, with the trainer
TD. If TD is deterministic and independent of sample or-
dering, either M1 or M2 should be identical to MD, and
otherwise one of them should be “closer” to MD. The
sample corresponding to the model closest to MD is clas-
sified as being a member of DD. (4) Performing one gra-
dient learning step with either u1 or u2 using TD, starting
from the trained model MD, and compare the gradient
norms.

A variety of Defender strategies might be considered:

• Applying over-fitting prevention (regularization) to TD.

• Applying Differential Privacy algorithms to TD.

• Training TD in a semi-supervised way (with transfer
learning) or using synthetic data (generated with a sim-
ulator trained with a subset of DD).

• Modifying TD to optimize both utility and privacy.

Theoretical analysis of naı̈ve attackers
We present several theorems outlining weaknesses of the
Defender that are particularly easy to exploit by a black-box
LTU Attacker , not requiring training a sophisticaled attack
model MA (we refer to such attackers as “naı̈ve”). First,
we prove, in the context of the LTU procedure, theorems
related to an already known result connecting privacy and
over-fitting: Defender trainers that overfit the Defender data
lend themselves to easy attacks (Yeom et al. 2018). The at-
tacker can simply exploit the loss function of the Defender
(which should be larger on Reserved data than on Defender
data). The last theorem concerns deterministic trainers TD:
We show that the LTU Attacker can defeat them with 100%
accuracy, under mild assumptions. Thus Defenders must



Figure 2: Taxonomy of LTU Attacker . Top: Any LTU Attacker has available the Defender trainer TD, the trained
Defender model MD, and attack data DA including (almost) all the Defender data DD and Reserved data DR DA =
DD − {membership(d)} ∪ DR − {membership(r)}. But it may use only part of this available knowledge to conduct
attacks. r and d are two labeled examples belonging DR and DD respectively, and u1 and u2 are two unlabeled examples, one
from DR and one from DD (ordered randomly). Left: Attacker MA targets only the trained Defender model MD. Right: MA

targets both MD and its trainer TD.

introduce some randomness in their training algorithm
to be robust against such attacks (Dwork et al. 2017).

Throughout this analysis, we use the fact that our LTU
methodology simplifies the work for the LTU Attacker since
it is always presented with pairs of samples for which ex-
actly one is in the Defender data. This can give it very simple
attack strategies. For example, for any real valued function
f(x), with x ∈ DS , let r be drawn uniformly from DR and
d be drawn uniformly from DD, and define:

pR = Pr
u1∼DR
u2∼DD

[f(u1) > f(u2)] (3)

pD = Pr
u1∼DR
u2∼DD

[f(u1) < f(u2)] (4)

Thus pR is the probability that discriminant function f
“favors” Reserved data while pD is the probability with
which it favors the Defender data. pR > pD occurs if for
a larger number of random pairs f(x) is larger for Reserved
data than for Defender data. If the probability of a tie is zero,
then pR + pD = 1.

Theorem 1. If there is any function f for which pR > pD,
a LTU Attacker exploiting that function can achieve an ac-
curacy Altu ≥ 1

2 + 1
2 (pR − pD).

Proof. A simple attack strategy would be predict that the
unlabeled sample with the smaller value of f(x) belongs
to the Defender data, with ties (i.e. when f(u1) = f(u2))
decided by tossing a fair coin. This strategy would give a
correct prediction when f(r) > f(d), which occurs with
probability pR, and would be correct half of the time when
f(r) = f(d), which occurs with probability (1− (pr+pd)).
This gives a classification accuracy:

Altu = pR +
1

2
(1− pR − pD) =

1

2
+

1

2
(pR − pD) . (5)

This is similar to the threshold adversary of (Yeom et al.
2018), except that the LTU Attacker does not need to know
the exact conditional distributions, since it can discriminate
pairwise. The most obvious candidate function f is the loss
function used to train MD (we call this a naı̈ve attacker),
but the LTU Attacker can mine DA to potentially find more
discriminative functions, or multiple functions to bag, and
use DA to compute very good estimates for pR and pD. We
verify that an Oracle attacker using a f function making per-
fect membership predictions (e.g., having the knowledge of
the entire Defender dataset and using the nearest neighbor
method) would get Altu = 1, if there are no ties. Indeed, in
that case, pR = 1 and pD = 0.

In our second theorem, we show that the LTU At-
tacker can attain an analogous lower bound on accuracy con-
nected to overfitting as the bounded loss function (BLF) ad-
versary of (Yeom et al. 2018).

Theorem 2. If the loss function ℓ(x) used to train the De-
fender model is bounded for all x, without loss of generality
0 ≤ ℓ(x) ≤ 1 (since loss functions can always be re-scaled),
and if eR, the expected value of the loss function on the Re-
served data, is larger than eD, the expected value of the loss
function on the Defender data, then a lower bound on the
accuracy of the LTU Attacker is given by the following func-
tion of the generalization error gap eR − eD:

Altu ≥ 1

2
+

1

2
(eR − eD) (6)

Proof. If the order of the pair (u1, u2) is random and the loss
function ℓ(x) is bounded by 0 ≤ ℓ(x) ≤ 1, then the LTU
Attacker could predict u1 ∈ DR with probability ℓ(u1), by
drawing z ∼ U(0, 1) and predicting u1 ∈ DR if z < ℓ(u1),
and u1 ∈ DD otherwise. This gives the desired lower bound,



derived in more detail in Appendix A:

Altu =
1

2
Pr

u1∼DR

[z < ℓ(u1)] +
1

2

(
1− Pr

u1∼DD

[z < ℓ(u1)]

)
=

1

2
E

u1∼DR

[ℓ(u1)] +
1

2
− 1

2
E

u1∼DD

[ℓ(u1)]

=
1

2
+

eR − eD
2

(7)

where eR := E
u1∼DR

[ℓ(u1)] and eD := E
u1∼DD

[ℓ(u1)]

This is only a lower bound on the accuracy of the attacker,
connected to the main difficulty in machine learning - over-
fitting of the loss function. Other attack strategies may be
more accurate. However, neither of the attack strategies in
Theorems 1 and 2 is dominant over the other: shown in Ap-
pendix B. The strategy in Theorem 1 is more widely appli-
cable, since it does not require the function to be bounded.

In the special case when the loss function used to train
the Defender model is the 0-1 loss, and that is used to attack
(i.e., f = ℓ), the strategies in Theorems 1 and 2 are different,
but have the same accuracy:

pR = Pr
u∼DR

[ℓ(u) = 1](1− Pr
u∼DD

[ℓ(u) = 1])

pD = (1− Pr
u∼DR

[ℓ(u) = 1]) Pr
u∼DD

[ℓ(u) = 1]

pR − pD = Pr
u1∼DR

[ℓ(u) = 1]− Pr
u∼DD

[ℓ(u) = 1]

= eR − eD

Note that u is a dummy variable. The first line of the
derivation is due to the fact that the only way the loss on the
Reserved set can be greater than the loss on the Defender set
is if the loss on the Reserved set is 1, which has probability
Pru∼DR

[ℓ(u) = 1], and the loss on the Defender set is zero,
which has probability 1 − Pru∼DD

[ℓ(u) = 1]. The second
line is derived similary.
Theorem 3. If the Defender trainer TD is deterministic,
invariant to the order of the training data, and injective,
then the LTU Attacker has an optimal attack strategy, which
achieves perfect accuracy.

Proof. The proof uses the fact that the LTU Attacker knows
all of the Defender dataset except one sample, and knows
that the missing sample is either u1 or u2. Therefore, the
attack strategy is to create two models, one trained on u1

combined with the rest of the Defender dataset, and the other
trained on u2 combined with the rest of the Defender dataset.
Since the Defender trainer is deterministic, one of those two
models will match the Defender model, revealing which un-
labeled sample belonged in the Defender dataset.

Formally, denote the subset of DA labeled “Defender” as
DD−{d}, and the two membership unlabeled samples as u1

and u2. The attacker can use the Defender trainer with the
same hyper-parameters on (DD − {d}) ∪ {u1} to produce
model M1 and on (DD − {d}) ∪ {u2} to produce model
M2.

By definition of the LTU Attacker , the missing sample
d is either u1 or u2, and DD ∩ DR = ∅, so u1 ̸= u2.
There are two possible cases. If u1 = d, then DD =
(DD − {d}) ∪ {u1}, so that M1 = MD, since TD is de-
terministic and invariant to the order of the training data.
However, DD ̸= (DD − {d}) ∪ {u2}, since u2 ̸= u1, so
M2 ̸= MD, since TD is also injective. Therefore, the LTU
Attacker can know, with no uncertainty, that u1 has mem-
bership label “Defender” and u2 has membership label “Re-
served”. The other case, for u2 = d, has a symmetric argu-
ment.

Under the hypotheses above, the LTU Attacker achieves
the optimal Bayesian classifier using:

Pr[ui ∈ DD|Mi = MD] = 1

Pr[ui ∈ DR|Mi = MD] = 0

Pr[ui ∈ DD|Mi ̸= MD] = 0

Pr[ui ∈ DR|Mi ̸= MD] = 1

Data and experimental setting
We are using two datasets in our experiments: CIFAR-
10 (Krizhevsky, Hinton, and others 2009), and QMNIST
(Yadav and Bottou 2019). CIFAR-10 is an object classifi-
cation dataset with 10 different classes, well-known as a
benchmark for membership inference attacks (Rahman et al.
2018; Hilprecht, Härterich, and Bernau 2019; Shokri et al.
2017). QMNIST (Yadav and Bottou 2019) is a handwritten
digit recognition dataset, similarly preprocessed as the well-
known MNIST (LeCun et al. 1998), but including the whole
original NIST Special Database 192 data (402953 images).
QMNIST includes meta-data that MNIST was deprived of,
including writer IDs and its origin (high-school students or
Census Bureau employees), which could be used in future
studies of attribute or property inference attack. They are
not used in this work.

To speed up our experiments, we preprocessed the data
using a backbone neural network pretrained on some other
dataset, and used the representation of the second last
layer of the network. For QMNIST we used VGG19 (Si-
monyan and Zisserman 2014) pretrained on Imagenet (Deng
et al. 2009). For CIFAR-10, we rely on Efficient-netv2 (Tan
and Le 2021) pretrained on Imagenet21k and finetuned on
CIFAR-100.

The data were then split as follows: The 402953 QM-
NIST images were shuffled, then separated into 200000
samples for Defender data and 202953 for Reserved data.
The CIFAR-10 data were also shuffled and split evenly
(30000/30000 approximately).

Results
Black-box attacker
We trained and evaluated various algorithms of the scikit-
learn library as Defender model and evaluated the Utility

2https://www.nist.gov/srd/
nist-special-database-19.

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://www.nist.gov/srd/nist-special-database-19
https://www.nist.gov/srd/nist-special-database-19


and Privacy, based on two subsets of data: 1) 1600 ran-
dom examples from the Defender (training) data and 2) 1600
random examples from the Reserved data (used to evaluate
Utility and Privacy). We performed N = 100 independent
LTU rounds and then computed Privacy based on the LTU
membership classification accuracy through Equation 1. The
Utility of the model was obtained with Equation 2. We used
a Black-box LTU Attacker (number (3) in Figure 2).

The results shown in Table 1 are averaged over 3 trials3.
The first few lines (gray shaded) are deterministic meth-
ods (whose trainer yields to the same model regardless of
random seeds and sample order). For these lines, consistent
with Theorem 3 , Privacy is zero, in all columns.4 The al-
gorithms use default scikit-learn hyper-parameter values. In
the first two result columns, the Defender trainers are forced
to be deterministic by seeding all random number genera-
tors. In the first column, the sample order is fixed to the or-
der used by the Defender trainer, while in the second one
it is not. Privacy in the first column is near zero, consistent
with the theory. In the second column, this is also verified
for methods independent of sample order. The third result
column corresponds to varying the random seed, hence al-
gorithms including some level of randomness have an in-
creased level of privacy.

The results of Table 1 show that there is no difference be-
tween the column 2 and 3; suggesting that, just with the ran-
domness associated to altering the order of the training sam-
ples, is enough to make the strategy fails. These results also
expose one limitation of black-box attacks: example-based
methods indicated in red (e.g., SVC), which store examples
in the model, obviously violate privacy. However, this is not
detected by a black-box LTU Attacker , if they are prop-
erly regularized and/or involve some degree or randomness.
White-box attackers solve this problem.

White-box attacker
We implemented a white-box attacker based on gradient cal-
culations (method (4) in Figure 2). We evaluated the effect of
the proposed attack with QMNIST on two types of Defender
models: A Deep Neural Networks (DNN) trained with su-
pervised learning or with unsupervised domain adaptation
(UDA) (Wang and Hou 2017).5

For supervised learning, we used ResNet50 (He et al.
2016) as the backbone neural network, which is pre-trained
on ImageNet (Deng et al. 2009). We then retrained all its
layers on the Defender set of QMNIST. The results are re-
ported in Table 2, line “Supervised”. With the very large De-
fender dataset we are using for training (200000 examples),
regardless of variations on regularization hyper-parameters,

3Code is available at https://github.com/
JiangnanH/ppml-workshop/blob/master/
generate_table_v1.py.

4Results may vary depending upon which scikit-
learn output method is used (predict proba(),
decision function(), density function()), or
predict(). To achieve zero Privacy, consistent with the theory,
the method predict() should be avoided.

5Code is available at https://github.com/
JiangnanH/ppml-workshop#white-box-attacker.

Table 1: Utility and Privacy on QMNIST and CIFAR-10 of dif-
ferent scikit-learn models with three levels of randomness: Orig-
inal sample order + Fixed random seed (no randomness); Random
sample order + Fixed random seed; Random sample order + Ran-
dom seed. The Defender data and Reserved data have both 1600
examples. All numbers shown in the table have at least two sig-
nificant digits (standard error lower than 0.004). For model imple-
mentations, we use scikit-learn (version 0.24.2) with default val-
ues. Results with Utility or Privacy > 0.90 are highlighted and
those meeting both criteria are underlined. Shaded in gray: fully
deterministic models with Privacy≡ 0.

QMNIST
Utility | Privacy

Orig.
order +
Seeded

Rand.
order +
Seeded

Not
Seeded

Logistic lbfgs 0.92|0.00 0.91|0.00 0.91|0.00
Bayesian ridge 0.92|0.00 0.92|0.00 0.89|0.00
Naive Bayes 0.70|0.00 0.70|0.00 0.70|0.00
SVC 0.91|0.00 0.91|0.00 0.88|0.00
KNN* 0.86|0.27 0.86|0.27 0.83|0.18
LinearSVC 0.92|0.00 0.92|0.69 0.91|0.63
SGD SVC 0.90|0.03 0.92|1.00 0.89|1.00
MLP 0.90|0.00 0.90|0.97 0.88|0.93
Perceptron 0.90|0.04 0.91|1.00 0.92|1.00
Random Forest 0.88|0.00 0.88|0.99 0.85|1.00

CIFAR-10
Utility | Privacy

Orig.
order +
Seeded

Rand.
order +
Seeded

Not
Seeded

Logistic lbfgs 0.95|0.00 0.95|0.00 0.95|0.00
Bayesian ridge 0.91|0.00 0.90|0.00 0.90|0.00
Naive Bayes 0.89|0.00 0.89|0.01 0.89|0.00
SVC 0.95|0.00 0.94|0.00 0.95|0.00
KNN* 0.92|0.44 0.91|0.49 0.92|0.49
LinearSVC 0.95|0.00 0.95|0.26 0.95|0.22
SGD SVC 0.94|0.32 0.94|0.98 0.93|0.99
MLP 0.95|0.00 0.94|0.98 0.95|0.97
Perceptron 0.94|0.26 0.94|1.00 0.93|0.96
Random Forest 0.92|0.00 0.93|0.99 0.91|0.92

we could get ResNet50 to overfit. Consequently, both Utility
and Privacy are good.

In an effort to still improve Privacy, we used Unsu-
pervised Domain Adaptation (UDA). To that end, we use
as source domains a synthetic dataset, called Large-Fake-
MNIST (Sun, Tu, and Guyon 2021), which are similar to
MNIST. Large-Fake-MNIST has 50000 white-on-black im-
ages for each digit, which results in 500000 images in total.
The target domain is the Defender set of QMNIST. The cho-
sen UDA method is DSAN (Zhu et al. 2021; Wang and Hou
2017), which optimizes the neural network with the sum of
a cross-entropy loss (classification loss) and a local MMD
loss (transfer loss) (Zhu et al. 2021). We tried 3 variants of
attacks of this UDA model. The simplest is the most effec-
tive: attack the model as if it were trained with supervised
learning. Unfortunately, UDA did not yield improved per-
formance. We attribute that to the fact that the supervised
model under attack performs well on this dataset and already
has a very good level of privacy.

https://github.com/JiangnanH/ppml-workshop/blob/master/generate_table_v1.py
https://github.com/JiangnanH/ppml-workshop/blob/master/generate_table_v1.py
https://github.com/JiangnanH/ppml-workshop/blob/master/generate_table_v1.py
https://github.com/JiangnanH/ppml-workshop##white-box-attacker
https://github.com/JiangnanH/ppml-workshop##white-box-attacker
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html


Table 2: Utility and Privacy of DNN ResNet50 Defender mod-
els trained on QMNIST.
Defender model Utility Privacy
Supervised 1.00± 0.00 0.97± 0.03
Unsupervised Domain Adaptation 0.99± 0.00 0.94± 0.03

Discussion and further work
Although a LTU Attacker is all knowledgeable, it must make
efficient use of available information to be powerful. We
proposed a taxonomy based on information available or used
(Figure 2). The most powerful Attackers use both the trained
Defender model MD and its trainer TD.

When the Defender trainer TD is a black box, like in our
first set of experiments on scikit-learn algorithms, we see
clear limitations of the LTU Attacker which include the fact
that it is not possible to diagnose whether the algorithm is
example-based.

Unfortunately, white-box attacks cannot be conducted in
a generic way, but must be tailored to the trainer (e.g., gra-
dient descent algorithms for MLP). In contrast, black-box
methods can attack TD (and MD) regardless of mechanism.
Still, we get necessary conditions for privacy protection by
analyzing black-box methods. Both theoretical and empir-
ical results using black-box attackers (on a broad range of
algorithms of the scikit-learn library on the QMNIST and
CIFAR-10 data), indicate that Defender algorithms are vul-
nerable to a LTU Attacker if it overfits the training De-
fender data or if it is deterministic. Additionally, the degree
of stochasticity of the algorithm must be sufficient to obtain
a desired level of privacy.

We explored white-box attacks neural networks trained
with gradient descent. In our experiments on the large QM-
NIST dataset (200000 training examples), Deep CNNs such
as ResNet seem to exhibit both good Utility and Privacy in
their “native form”, according to our white-box attacker. We
were pleasantly surprised of our white box attack results,
but, in light of the fact that other authors found similar net-
works vulnerable to attack (Nasr, Shokri, and Houmansadr
2019), we conducted the following sanity check. We per-
formed the same supervised learning experiment by modi-
fying 20% of the class labels (to another class label chosen
randomly), in both the Defender set and Reserved set. Then
we incited the neural network to overfit the Defender set.
Although the training accuracy (on Defender data) was still
nearly perfect, we obtained a loss of test accuracy (on Re-
served data): 78%. According Theorem 2, this should result
in a loss of privacy. This allowed us to verify that our white-
box attacker correctly detected a loss of privacy. Indeed, we
obtained a privacy of 0.55.

We are in the process of conducting comparison exper-
iments between our white-box attacker and that of (Nasr,
Shokri, and Houmansadr 2019). However, their method does
not easily lend itself to be used with the LTU framework,
because it requires training a neural network for each LTU
round (i.e., on each DA = DD − {membership(d)} ∪
DR − {membership(r)}). We are considering doing
only one data split to evaluate privacy, with DA =
50%DD ∪ 50%DR and using the rest of the data for privacy

evaluation. However, we can still use the pairwise testing of
the LTU methodology, i.e., the evaluator queries the attacker
with pairs of samples, one from the Defender data and the
other from the Reserved data. In Appendix C, we show on
an example that this results in an increased accuracy of the
attacker.

In Appendix C, we use the same example to illustrate how
we can visualize the privacy protection of individuals. Fur-
ther work includes comparing this approach with (Song and
Mittal 2021).

Further work also includes testing LTU Attacker on a
wider variety of datasets and algorithms, varying the num-
ber of training examples, training new white-box attack vari-
ants to possibly increase the power of the attacker, and test-
ing various means of improving the robustness of algorithms
against attacks by LTU Attacker . We are also in the process
of designing a competition of membership inference attacks.

Conclusion
In summary, we presented an apparatus for evaluating the
robustness of machine learning models (Defenders) against
membership inference attack, involving an “all knowledge-
able” LTU Attacker . This attacker has access to the trained
model of the Defender, its learning algorithm (trainer), all
the Defender data used for training, minus the label of one
sample, and all the similarly distributed non-training Re-
served data (used for evaluation), minus the label of one
sample. The Evaluator repeats this Leave-Two-Unlabeled
(LTU) procedure for many sample pairs, to compute the ef-
ficacy of the Attacker, whose charter is to predict the mem-
bership of the unlabeled samples (training or non-training
data). We call such LTU Attacker the LTU-attacker for short.
The LTU framework helped us analyse privacy vulnerabili-
ties both theoretically and experimentally.

The main conclusions of this paper are that a number of
conditions are necessary for a Defender to protect privacy:
• Avoid storing examples (a weakness of example-based

method, such as Nearest Neighbors).
• Ensure that pR = pD for all f , following Theorem 1 (pR

is the probability that discriminant function f “favors”
Reserved data while pD is the probability with which it
favors the Defender data).

• Ensure that eR = eD, following Theorem 2 (eR is the
expected value of the loss on Reserved data and eD on
Defender data).

• Include some randomness in the Defender trainer algo-
rithm, after Theorem 3.

Acknowledgements
We are grateful our colleagues Kristin Bennett and Jennifer
He for stimulating discussion. This work fundend in part
by the ANR (Agence Nationale de la Recherche, National
Agency for Research) under AI chair of excellence HUMA-
NIA, grant number ANR-19-CHIA-00222.



References
[Abadi et al. 2016] Abadi, M.; Chu, A.; Goodfellow, I.;
McMahan, H. B.; Mironov, I.; Talwar, K.; and Zhang, L.
2016. Deep learning with differential privacy. In Proceed-
ings of the 2016 ACM SIGSAC conference on computer and
communications security, 308–318.

[Chen et al. 2020] Chen, D.; Yu, N.; Zhang, Y.; and Fritz, M.
2020. Gan-leaks: A taxonomy of membership inference at-
tacks against generative models. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communica-
tions Security, 343–362.

[Deng et al. 2009] Deng, J.; Dong, W.; Socher, R.; Li, L.-J.;
Li, K.; and Fei-Fei, L. 2009. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE conference on com-
puter vision and pattern recognition, 248–255. Ieee.

[Dwork et al. 2006] Dwork, C.; McSherry, F.; Nissim, K.;
and Smith, A. 2006. Calibrating noise to sensitivity in pri-
vate data analysis. In Theory of cryptography conference,
265–284. Springer.

[Dwork et al. 2017] Dwork, C.; McSherry, F.; Nissim, K.;
and Smith, A. 2017. Calibrating noise to sensitivity in pri-
vate data analysis. 7:17–51.

[Ganin et al. 2016] Ganin, Y.; Ustinova, E.; Ajakan, H.; Ger-
main, P.; Larochelle, H.; Laviolette, F.; Marchand, M.; and
Lempitsky, V. 2016. Domain-adversarial training of neu-
ral networks. The journal of machine learning research
17(1):2096–2030.

[Guyon et al. 1998] Guyon, I.; Makhoul, J.; Schwartz, R.;
and Vapnik, V. 1998. What size test set gives good error
rate estimates? IEEE Transactions on Pattern Analysis and
Machine Intelligence 20(1):52–64.

[Hayes et al. 2018] Hayes, J.; Melis, L.; Danezis, G.; and
Cristofaro, E. D. 2018. Logan: Membership inference at-
tacks against generative models.

[He et al. 2016] He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 770–778.

[Hilprecht, Härterich, and Bernau 2019] Hilprecht, B.;
Härterich, M.; and Bernau, D. 2019. Reconstruction and
membership inference attacks against generative models.

[Huang et al. 2021] Huang, H.; Luo, W.; Zeng, G.; Weng, J.;
Zhang, Y.; and Yang, A. 2021. Damia: Leveraging domain
adaptation as a defense against membership inference at-
tacks. IEEE Transactions on Dependable and Secure Com-
puting.

[Jayaraman et al. 2020] Jayaraman, B.; Wang, L.; Knip-
meyer, K.; Gu, Q.; and Evans, D. 2020. Revisiting member-
ship inference under realistic assumptions. arXiv preprint
arXiv:2005.10881.

[Krizhevsky, Hinton, and others 2009] Krizhevsky, A.; Hin-
ton, G.; et al. 2009. Learning multiple layers of features
from tiny images.

[LeCun et al. 1998] LeCun, Y.; Bottou, L.; Bengio, Y.; and
Haffner, P. 1998. Gradient-based learning applied to doc-

ument recognition. Proceedings of the IEEE 86(11):2278–
2324.

[Li et al. 2013] Li, N.; Qardaji, W.; Su, D.; Wu, Y.; and Yang,
W. 2013. Membership privacy: a unifying framework
for privacy definitions. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications secu-
rity, 889–900.

[Liu et al. 2020] Liu, X.; Xu, Y.; Tople, S.; Mukherjee, S.;
and Ferres, J. L. 2020. Mace: A flexible framework for
membership privacy estimation in generative models. arXiv
preprint arXiv:2009.05683.

[Long, Bindschaedler, and Gunter 2017] Long, Y.; Bind-
schaedler, V.; and Gunter, C. A. 2017. Towards measuring
membership privacy. arXiv preprint arXiv:1712.09136.

[Nasr, Shokri, and Houmansadr 2018] Nasr, M.; Shokri, R.;
and Houmansadr, A. 2018. Machine learning with member-
ship privacy using adversarial regularization. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, 634–646.

[Nasr, Shokri, and Houmansadr 2019] Nasr, M.; Shokri, R.;
and Houmansadr, A. 2019. Comprehensive privacy anal-
ysis of deep learning: Passive and active white-box infer-
ence attacks against centralized and federated learning. In
2019 IEEE symposium on security and privacy (SP), 739–
753. IEEE.

[Rahman et al. 2018] Rahman, M. A.; Rahman, T.; La-
ganière, R.; Mohammed, N.; and Wang, Y. 2018. Mem-
bership inference attack against differentially private deep
learning model. Trans. Data Priv. 11(1):61–79.

[Sablayrolles et al. 2019] Sablayrolles, A.; Douze, M.;
Schmid, C.; Ollivier, Y.; and Jégou, H. 2019. White-box vs
black-box: Bayes optimal strategies for membership infer-
ence. In International Conference on Machine Learning,
5558–5567. PMLR.

[Shokri et al. 2017] Shokri, R.; Stronati, M.; Song, C.; and
Shmatikov, V. 2017. Membership inference attacks against
machine learning models. In 2017 IEEE Symposium on Se-
curity and Privacy (SP), 3–18. IEEE.

[Simonyan and Zisserman 2014] Simonyan, K., and Zisser-
man, A. 2014. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556.

[Song and Mittal 2021] Song, L., and Mittal, P. 2021. Sys-
tematic evaluation of privacy risks of machine learning mod-
els. In 30th {USENIX} Security Symposium ({USENIX} Se-
curity 21).

[Sun, Tu, and Guyon 2021] Sun, H.; Tu, W.-W.; and Guyon,
I. M. 2021. Omniprint: A configurable printed character
synthesizer.

[Tan and Le 2021] Tan, M., and Le, Q. V. 2021. Efficient-
netv2: Smaller models and faster training. arXiv preprint
arXiv:2104.00298.

[Truex et al. 2019] Truex, S.; Liu, L.; Gursoy, M. E.; Yu, L.;
and Wei, W. 2019. Demystifying membership inference
attacks in machine learning as a service. IEEE Transactions
on Services Computing.



[Wang and Hou 2017] Wang, J., and Hou, W. 2017. Deepda:
Deep domain adaptation toolkit. https://github.
com/jindongwang/transferlearning/tree/
master/code/DeepDA.

[Xie et al. 2018] Xie, L.; Lin, K.; Wang, S.; Wang, F.; and
Zhou, J. 2018. Differentially private generative adversarial
network. arXiv preprint arXiv:1802.06739.

[Yadav and Bottou 2019] Yadav, C., and Bottou, L. 2019.
Cold case: The lost mnist digits. In Advances in Neural In-
formation Processing Systems 32. Curran Associates, Inc.

[Yeom et al. 2018] Yeom, S.; Giacomelli, I.; Fredrikson, M.;
and Jha, S. 2018. Privacy risk in machine learning: An-
alyzing the connection to overfitting. In 2018 IEEE 31st
Computer Security Foundations Symposium (CSF), 268–
282. IEEE.

[Zhu et al. 2021] Zhu, Y.; Zhuang, F.; Wang, J.; Ke, G.;
Chen, J.; Bian, J.; Xiong, H.; and He, Q. 2021. Deep
Subdomain Adaptation Network for Image Classification.
IEEE Transactions on Neural Networks and Learning Sys-
tems 32(4):1713–1722.

Supplemental material

A. Derivation of the proof of Theorem 2

If the loss function ℓ(x) used to train the Defender model is
bounded for all x, without loss of generality 0 ≤ ℓ(x) ≤ 1
(since loss functions can always be re-scaled), and if eR, the
expected value of the loss function on the Reserved data, is
larger than eD, the expected value of the loss function on the
Defender data, then a lower bound on the expected accuracy
of the LTU Attacker is given by the following function of
the generalization error eR − eD:

Altu ≥ 1

2
+

1

2
(eR − eD) (8)

Proof. If the order of the pair (u1, u2) is random and the loss
function ℓ(x) is bounded by 0 ≤ ℓ(x) ≤ 1, then the LTU
Attacker could predict u1 ∈ DR with probability ℓ(u1), by
drawing z ∼ U(0, 1) and predicting u1 ∈ DR if z < ℓ(u1),
and u1 ∈ DD otherwise. This gives the desired lower bound
on the expected accuracy, derived as follows:

Altu =
1

2
Pr

u1∼DR

[z < ℓ(u1)] +
1

2

(
1− Pr

u1∼DD

[z < ℓ(u1)]

)
When u1 is drawn uniformly from DR, then:

Pr
u1∼DR

[z < ℓ(u1)] =
1

|DR|
∑

u1∈DR

Pr[z < ℓ(u1)]

=
1

|DR|
∑

u1∈DR

ℓ(u1)

= E
u1∼DR

[ℓ(u1)] (9)

Similarly, when u1 is drawn uniformly from DD, then:

Pr
u1∼DD

[z < ℓ(u1)] =
1

|DD|
∑

u1∈DD

Pr[z < ℓ(u1)]

=
1

|DD|
∑

u1∈DD

ℓ(u1)

= E
u1∼DD

[ℓ(u1)] (10)

Substituting in these expected values gives:

=
1

2
E

u1∼DR

[ℓ(u1)] +
1

2
− 1

2
E

u1∼DD

[ℓ(u1)]

=
1

2
+

eR − eD
2

(11)

where eR := E
u1∼DR

[ℓ(u1)] and eD := E
u1∼DD

[ℓ(u1)]

B. Non-dominance of either strategy in Theorem 1
or Theorem 2
Here we present two simple examples to show that neither
of the strategies in Theorem 1 or Theorem 2 dominates over
the other.

For example 1, assume that for d ∼ DD the loss function
takes the two values 0 or 0.5 with equal probability, and that
for r ∼ DR the loss function takes the two values 0.3 or
0.4 with equal probability. Then pR = pD = 1/2 so that
pR − pD = 0. However, eR = 0.35 and eD = 0.25, so
eR − eD = 0.1.

For example 2, the joint probability mass function below
can be used to compute that (eR−eD) = 0.15 < (pr−pd) =
0.22.

Table 3: Example joint PMF of bounded loss function, for
r ∼ DR and d ∼ DD. The attack strategy in theorem 1
outperforms the attack strategy in theorem 2 on this data.

l(r)
0 1/2 1 row sum

l(d) = 0 0.24 0.24 0.12 0.6
l(d) = 1/2 0.12 0.12 0.06 0.3
l(d) = 1 0.04 0.04 0.02 0.1
column sum 0.4 0.4 0.2

C. LTU Global and Individual Privacy Scores
The following small example illustrates that the pairwise
prediction accuracy in the LTU methodology is not a func-
tion of the accuracy, false positive rate, or false negative rate
of predictions made on individual samples.

Let f(x) be the discriminative function trained to pre-
dict the probability that a sample is in the Reserved set (i.e.
predictions made using a threshold of 0.5), and for simplic-
ity consider Defender and Reserved sets with three samples
each, such that:

f(d1) = 0.1 f(r1) = 0.4

f(d2) = 0.3 f(r2) = 0.7

f(d3) = c f(r3) = 0.9

https://github.com/jindongwang/transferlearning/tree/master/code/DeepDA
https://github.com/jindongwang/transferlearning/tree/master/code/DeepDA
https://github.com/jindongwang/transferlearning/tree/master/code/DeepDA


If c is either 0.6, 0.8, or 0.95, then in all three cases the over-
all accuracy for individual sample predictions is 2/3, and
the false positive rate and false negative rate are both 1/3.
However, in the LTU methodology, the LTU Attacker would
get 9 different pairs to predict, and for those values of c, its
accuracy would be 8/9, 7/9, or 6/9, respectively.

We used the ML Privacy Meter python library of Shokri et
al.6 to run their attack of AlexNet, which achieved an attack
accuracy of 74.9%. Their attack model predicts the prob-
ability that each sample was in the Defender dataset. The
histograms of the predictions over the Defender dataset and
Reserved dataset follow:
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Figure 3: Histogram of Predicted Probabilities

Using their attack model predictions in the LTU method-
ology, so that the attacker is always shown pairs of points for
which exactly one was from the Defender dataset, increased
the overall attack accuracy to 81.3%.

Furthermore, by evaluating the accuracy of the attacker
on each Defender sample individually (against all Reserved
samples), we computed easy to interpret individual privacy
scores for each sample in the Defender dataset:
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Figure 4: Histogram of Individual Privacy Scores for each
sample in the Defender dataset

6https://github.com/privacytrustlab/ml_
privacy_meter.

https://github.com/privacytrustlab/ml_privacy_meter
https://github.com/privacytrustlab/ml_privacy_meter
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