
HAL Id: hal-03522430
https://hal.science/hal-03522430

Submitted on 12 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Autonomous vehicle navigation based in a hybrid
methodology: model based and machine learning based

Marcone Ferreira Santos, Alessandro Corrêa Victorino

To cite this version:
Marcone Ferreira Santos, Alessandro Corrêa Victorino. Autonomous vehicle navigation based in a
hybrid methodology: model based and machine learning based. IEEE International Conference on
Mechatronics (ICM 2021), Mar 2021, Kashiwa, Japan. pp.1-6, �10.1109/ICM46511.2021.9385629�.
�hal-03522430�

https://hal.science/hal-03522430
https://hal.archives-ouvertes.fr

Autonomous vehicle navigation based in a hybrid
methodology: model based and machine learning

based
Marcone Ferreira Santos

Mechanical Engineering Department
Federal University of Minas Gerais (UFMG)

Belo Horizonte, Brazil
marconefs@ufmg.br

Alessandro Corrêa Victorino
Computer Engineering Department

Sorbonne Universités - Université de Technologie de Compiègne (UTC)
HEUDIASYC UMR CNRS 7253

Compiégne, France
acorreav@hds.utc.fr

Abstract—For decades researchers have attempted to make
the car drives autonomously. One of the challenges of devel-
oping this kind of system is the environment detection and
understanding where the car is supposed to drive, and control
the vehicle on a safe way, based upon on the perception of
the environment, provided by on-boarded sensors (cameras,
LIDAR). The existing navigation methods applied to solve this
problem can be organized in two categories : those based on
”geometrical or physical models” and those based upon on
”machine learning models”. Machine Learning based models
can have good performance when trained appropriately, how-
ever, due to its ”black-box” characteristics (lack of physical
meaning), it can return non accurate output or even wrong
values in unseen situations, leading the vehicle to collision. In
the other hand, Geometric or physical approaches are designed
under certain approximately modeling assumptions, based on
physical/geometrical parameters that are uncertain or can not
be identified, and becomes a painstaking work as it gets more
complex. This paper presents a hybrid autonomous navigation
methodology, which takes advantage of the learning capability
of Machine Learning (ML) models, and uses the safeness of the
Dynamic Window Approach geometric method. Using a single
camera and a 2D LIDAR sensor, the proposed method actuates
as a high level controller, finding optimal vehicle velocities to
be applied by a low level controller. The system algorithm is
validated on CARLA Simulator environment, where a vehicle
coupled by this system proved to be capable of achieving the
following tasks: Lane keeping and obstacle avoidance.

Index Terms—Mechatronics Systems, Autonomous Vehicles,
Autonomous Cars, Machine Learning, Intelligent Vehicle Systems

I. INTRODUCTION

Since the first automobile equipped with a computer vi-
sion and automated steering mechatronics systems, called
Navlab, appeared in the 1980s at Carnegie Mellon University
[1], fully autonomous vehicles have becoming more safe,
efficient, environment responsible in our nowadays society.
Advanced mechatronics embedded systems make possible new
autonomous navigation methodologies [2], with impressive
results like in [3] where an autonomous vehicle have driven
more than 16 million kilometers autonomously.

1This project was partially founded by Labex MS2T and by the Owheel
project, Europe H2020 grant agreement No 872907.

Some tasks are necessary when developing an autonomous
vehicle system, and usually is summarized as environment per-
ception, mapping and localization, motion planning, decision
and control. The perception task basically means understand
the environment where the car is driving, and can be tackled by
using cameras, LIDARs and/or other sensors. Object detection
[4], lane signs identification, road segmentation [5], and even
data fusion for better accuracy [6] are some of work done
in perception step. These robotic functionalities are specific
mechatronics modules embedded in the vehicle, which are
constructed applying scientific methodologies based upon on
”model based” or upon on ”machine learning” control meth-
ods.

The model-based navigation control techniques aim to con-
trol the displacements of the vehicle in order to safely navigate
in a previewed path, while avoiding eventual obstacles. The
desired motion is generated by motion planning methods,
which propose geometric kinodynamic candidate trajectories
and select the best collision-free one, as used for some DARPA
Urban Challenge teams [7]. Random search, optimal control
and Artificial potential field are some advanced methods
for path planing with obstacle avoidance [8]. The Stanley
method is one of the popular steering controller that was
first introduced in the DARPA Grand Challenge with Stanford
University’s entry [9]. Model predictive control (MPC), Fuzzy
control and preview control are some techniques still in re-
search [10]. All these techniques are based on the geometrical
modeling of the environment around the vehicle, requiring, for
some ones, a complete localization and mapping solution of
the navigation system. On the other hand, advanced methods as
machine learning based controller have been in active research
area. In [11] an end to end control learning is designed, where
the vehicle is totally driven by a Deep Learning model.

Machine Learning based navigation systems can presents
good performance when trained appropriately, however non
accurate or even wrong output values can be returned in unseen
situations, leading to a collision. Geometric based navigation
systems are designed under certain assumptions, and becomes
more computational expensive and a painstaking work as it

1

gets more complex. For this reason, this project aims to
develop a hybrid system, combining Machine learning and
geometric based models in order to take advantage of both
methods, using a single camera and 2D LIDAR.

The proposed methodology is based on local navigation
with reactive strategy requiring only the environment percep-
tion for control objectives achieving. The method is inspired in
IDWA controller [12], where in our approach vehicle velocities
are learned by supervised learning through the visual features,
and a new objective function (IRDWA) for the reactive control
is proposed. Lane lines segmentation model benchmark pro-
posed by [13] is integrated in the system in order to extract
the visual features.

This paper is structured as follows. Section 2 presents the
proposed methodology, explaining each block that composes
the general system: High level control (perception task and
velocities generation) and low level control (Steering, accel-
eration and brake control). Each aspect involved in the High
control block design are presented with more detail in section
3. The low level control block is deeper explained In section
4. Finally, section 5 shows the results obtained with the final
algorithm implemented in a simulation environment, including
Lane following task and obstacle avoidance task.

II. MODELING ASPECTS: GENERAL OVERVIEW OF THE
SYSTEM

A schematic of the vehicle with its sensors is shown in
figure 1, the camera is attached on the car roof and the LIDAR
on the front side. The LIDAR position is considered to be the
World frame (reference frame used when distance to collision
are estimated).

Fig. 1: Camera frame (Xc, Y c and Zc) and World frames
(Xw, Y w and Zw), angle of rotation φ (rotation in Xc axis)
and the relative distance ty and tz between base frames origin.

Figure 2 shows the general systems in 3 main blocks.
LIDAR sensor and a single camera compound the sensory
system attached on the vehicle. The vehicle block sends some
information to the high control, where Vt is the current vehicle
longitudinal velocity and Wt the current yaw rate. Image and
obstacle points are provided by the camera and LIDAR.

Then, the High control block process all the given data, as
a way to find the next longitudinal Vt+1 and yaw rate Wt+1

to be applied on the vehicle through the low control block.

Fig. 2: Example of a figure caption.

As the dynamics is not considered in this work, the kine-
matic bicycle model is used to estimate the vehicle behavior
[14]. Therefore, the vehicle is evaluated in low speed (3 m/s).

III. HIGH CONTROL: ENVIRONMENT PERCEPTION AND
VELOCITIES ESTIMATION

The process to find Vt+1 and Wt+1 is summarized in Figure
3. Firstly, existing lane lines are extracted from the image.
Then these extracted lines are processed in the control param-
eters estimation block. The Yaw Rate Finding block estimates
the velocity Wt+1, using Vt and the visual parameters found
in the previous block. The Vt+1 value is predefined according
to a desired longitudinal velocity based on traffic rules. Then
these pair of velocities (Vt+1 and Wt+1) are checked if leads
the vehicle to collision, if so new values are find taking into
consideration the Yaw Rate Finding output, the current vehicle
state and the visual features.

Fig. 3: High control diagram

Each block of the High control diagram, presented in Figure
3, are described in the following sections.

A. Lane lines detection and tracking

For the lane lines detection and tracking the proposed steps
are shown in figure 4. For each image captured by the camera,
lane lines segmentation is done with a trained convolution
neural network model [13].

This segmentation model returns 5 images as shown in
Figure 5, where each image corresponds to a specific lane
line: the left line from the left lane, the left line from the

Fig. 4: Lane lines detection and tracking diagram

central lane, the right line from the central lane and the right
line from the right lane. Each image presents activated pixels
when the presence of the respective lane line is recognized
by the model (Figure 5), These images are 1 channel, and its
activated pixels are those with high values.

The model also returns the confidence probability for each
image to have a lane line, so images with a probability above
to 0.6 are considered that the respective lane line exists. If so,
these images are normalized and all pixels with values above
a threshold are considered to be activated points. Some values
was tested and 0.6 was choose as it performed well.

Fig. 5: Lane lines segmentation (upper images) and final
selection and tracking (lower image)

When the vehicle is in the middle of two lanes, situation
where the car is changing of lane (for overtaking an obstacle),
the segmented image tends to present more than one lane lines,
needing a selection of the correct one. To overcome this, and
for time integrating purpose, on each segmented image all
activated pixels are clustered using Agglomerative Clustering
algorithm [15]. One ore more clusters can be found, so each
cluster is treated as a line candidate, where the best one is
chosen to represent the correct line points. The best candidate
lines are selected getting the lowest error (called error1),
defined as:

error1 = ecoef + α · eint (1)

where ecoef and eint are the angular coefficient and inter-
cept differences between the previous line and the candidate
line, and a weight factor (7.0 was found to be a good weight
value). Ransac Linear regression is used as the model fitting.
Each selected lane lines (right and left lane side) is compared

with the previous frame, by calculating an error, called error2,
as follows:

error2 =
|ecoef |

emax−coef
+

|eint|
emax−inter

(2)

where emax−coef and emax−inter are the maximal admissi-
ble angular coefficient and intercept difference. In case these
lines differ to much with each other (error2 greater than 1.0)
the lane line selected in the previous frame keeps in the current
one. This time integration step ensures the desired lane lines
tracking.

1) Non existing lane invasion: When the car face an
obstacle while driving on a road, sometimes it is necessary to
get a bit away from the lane center, resulting in an other lane
invasion. To avoid the vehicle drives to a non existing lane,
the lane line to be crossed which its confidence probability
is bellow to 0.5 is considered as obstacle. To perform this
task, world coordinates points must be found from line image
pixels. Considering the road as a plane, we have:

F =

f 0 Cx

0 f Cy

0 0 f

 (3)

T =

1 0 tx
0 − sinφ ty
0 cosφ tz

 (4)

p =

uv
1

 (5)

P =

XY
1

 (6)

p = F · T · P (7)

P = (F · T)−1 · p (8)

Parameter f is the camera focus distance, Cx and Cy image
center corrections; tx, ty and tz relative distance from the
world frame to the camera frame. World frame origin is stetted
to be at the LIDAR position (in the vehicle front side). P is
the coordinates point in world frame, and p is the coordinates
in image frame. Each image lane line point that the car must
not cross, is converted to world coordinated and is counted as
an obstacle.

B. Control parameters estimation

Fig. 6: Image frame with point P in the lane line center (in
blue), at fixed distance Y and the control parameters θ and X

The visual parameters generated in control parameters esti-
mation block are shown in Figure 6. θ corresponds to the angle
of line lane center tangent at point P from the image vertical
axis. X is the image horizontal distance between image center
and point P . These parameters values are sent to the Yaw Rate
Finding block.

C. Yaw Rate Finding
This block task is done by supervised machine learning

technique. For a regression model to be trained, a dataset
is required, therefore data containing control parameters and
the current velocities are gathered in a vehicle simulation
environment, where a car is driving along a road keeping in
the lane center. Then the collected data are used as the dataset.

As the vehicle is supposed to drive with a specific longitu-
dinal velocity, according to the road limits, only the yaw rate
velocity is predicted by regression model.

As outliers are not desired, the dataset is filtered with Z-
score (7), where µ is the mean of the time interval yaw rate
values and σ the standard deviation, such that outliers are
avoided on training step. When yaw rate difference values is
less than 0.01 rad/s for a time interval, values with Z-score
grater than a threshold (1.0) is not considered. The dataset
is then augmented by multiplying all set of values by -1 but
velocity. Then the dataset is normalized and split into training
(70%) and test (30%) dataset. Different supervised machine
learning models is trained, and the bet one is chosen according
to its score.

Z =
value− µ

σ
(9)

CARLA simulator [16] is chosen to gather the dataset and
to test the final algorithm, as it is well documented and is
available for python language code. A vehicle is driven along
lanes on map 07 (available in the simulator) while necessary
data are collected and stored.

D. Image-based Reduced Dynamic Window Approach
(IRDWA)

The predicted Wt+1 from Yaw Rate Finding block and the
desired velocity Vt+1, this pair of values is then checked. If
it drives the vehicle to a collision, new values are found by
maximizing the objective function IRDWA:

IRDWA = gainV 1 · V elocity1 + gainDist ·Dist
+ gainV 2 · V elocity2

(10)

where,

Dist =
Dcoll

Dmin

V elocity1 = 1− |Wt −Wt+1|
Wmax

V elocity2 =

Vmax − Vt
Vmax − Vt+1

, if Vt > Vt+1

Vt
Vt+1 − Vmin

, if Vt < Vt+1

Dcoll is defined as the minimum distance to collision
as proposed by [17], being calculated for polygonal robots.
Dmin is a predefined value, where Dcoll must be grater than
Dmin, otherwise it means that the vehicle drives to collision.

Gain parameters (gainV 1, gainDist and gainV 2) must be
settled according to desired behavior preferences. Increasing
gainV 1 the pair of values optimized will be nearest to the
predicted values by Yaw Rate Finding block, but if gainDist is
increased the vehicle tends to go more distant from obstacles,
and, and if gainV 2 is bigger vehicle longitudinal velocity is
preferred.

A search space must be considered while optimizing
IRDWA:

{(Vt+1,Wt+1)} ∈ Vmax ∩ Va ∩ Vs ∩Wmax ∩Ws

Va < Vt + ac · dt
Vt + ac · dt > Va > Vt − Vbr · dt

Vs <
√

2 ·Dcoll · Vbr
Ws <

√
2 ·Dcoll ·Wbr

Where Vmax and Wmax are the maximum allowed veloci-
ties, ac the maximum acceleration, Vbr and Wbr the maximum
break acceleration, dt the time between two command con-
trols. Exhaustive search optimization is the method used to find
the optimum values for Vt+1 and Wt+1, where less variation
between searched values the better results should have.

Collision checking is done for all obstacles points. To
save computational cost, as it gets more expensive with more
obstacles points, 2D occupancy grid is considered in this work.

IV. LOW LEVEL CONTROL: INPUT TO THE ACTUATORS

The Low level control has the optimum velocities generated
by the High control block as its input. And has the task of
control the actuators presented in the vehicle: Throttle, Brake
and Steering. In order to make the car drives with the desired
velocities. Two Proportional and Integrative (PI) controllers
are used for this task, one for the longitudinal velocity and
the other for yaw rate velocity.

V. VALIDATION RESULTS

The final algorithm is tested on map 04 (Figure 8) for differ-
ent tasks: Lane keeping and obstacle avoidance. A computer
with the following configuration is used on this work: i7-
6700HQ Processor and Nvidia Geforce GTX 970M graphic
card. All the results are avalueted considering a minimum
distance to collision equal to 10 m and desired velocity 3
m/s.

1) Yaw Rate Finding: The training dataset was gathered
driving a vehicle on the road of map 07 from CARLA
simulator, as showed in Figure 5. Different situations were
considered: lane keeping and returning to the goal lane from
a distance to its center. Figure 7 shows the dataset distribution,
which has 6804 collected and augmented data.

Supervised machine learning models were trained with the
dataset applying different methods, and the results are shown

Fig. 7: Yaw rate histogram

in table 1. Mean Squared Error (MSE) and Accuracy (Acc)
are the scores used for the best model selection. The Acc
corresponds to the model response rate with error less than
0.5 m/s. The scores are evaluated both on training data and
test data, preprocessing are done in the dataset (Normalization
or Standardization) and the best hyperparameters were found
by trying different settings and selecting the ones resulting on
higher test accuracy.

TABLE I: ML scores
Method Preproc. Parameters Train score Test score

MSE Acc MSE Acc
SVR Norm. C=100, degree=0.5, kernel=rbf 0.011 0.878 0.011 0.880
Ridge Norm. alpha=1 0.021 0.776 0.021 0.779

K Neighbors Stand. Leaf size=3, neighbors=8 0.008 0.900 0.011 0.892
Random Forest Norm. Max. depth=13, estimators=300 0.002 0.965 0.010 0.884

Elastic Net Stand. Alpha=0.1, l1 ratio=0.5 0.262 0.744 0.272 0.751

Neural Network Stand.
activation=tanh, batch size=64,
learning rate=0.01, solver=sgd,

hidden layersizes = (500, 400, 200, 50)
0.119 0.893 0.118 0.886

Higher scores on test data means a better generalization,
and as K Neighbors, Random Forest and Neural Network
Regression models presented good scores compared to the
other methods it is chosen to be tested in the vehicle High
controller. The results are shown in the following sections.

A. Lane keeping

With both machine learning trained models (K Neighbors,
Random Forest and Neural Network) the vehicle was capable
to drive keeping itself on the same lane in the map as shown
in Figure 8. The vehicle mean offset and the maximum offset
to the lane center for each tested method are shown in table
2.

TABLE II: Lane keeping results

Method Maximum offset Offset mean
K Neighbors 1.275 0.139
Random Forest 1.097 0.235
Neural Network 0.960 0.240

During the each simulation the vehicle runned on a 2800,00
meters long road, and was capable to keep on the same lane
during the whole trajectory with a maximum offset as shown
in the table above. The method which presented the lowest
maximum offset was Neural Network, for this reason was
chosen to be used in the High control during the obstacle
avoidance test (Section 5.3).

Figure 10 shows the vehicle trajectory and its respective
lane center offset in meters using Neural Network model.

Fig. 8: Trajectory

The trajectory color presented in Figure 8 represents the
lane center offset, and its values are according to the side bar
scale. The points where the car is more distant to the lane
center is colored by yellow, and the points where the car is
centered in the lane are in purple. Visual parameters (X and
Θ) and the output from the high control (Yaw rate) collected
in the trajectory segment with the maximum offset point are
shown in Figure 9, which presents the graph for each of these
values by the current frames.

Fig. 9: Maximum offset trajectory segment

B. Obstacle avoidance

Three different cases are proposed for obstacle avoidance
task analysis. The former consider 1 obstacle on the lane
center (case 1), the second one has 2 obstacles and a narrow
way between them (case 2), and the third case is set to have
obstacles totally obstructing the road (case 3). The results for
each of these cases are shown bellow. Figure 10 presents the
trajectory made by the vehicle for each situation, with their
position marked by their corresponding image frame (Figure
11), obstacles are painted in red color. Lidar output can be
seen in Figure 12, where obstacles are painted in yellow color.
Finally, visual features X and Θ, the vehicle velocities and the
high control outputs (Yaw rate values) are presented in figure
13. The DWA weights were manually found with an empirical
procedure.

(a) Single obstacle (b) Two obstacles (c) Obstructed road

Fig. 10: Trajectory

(a) Frame: 0 (b) Frame: 25

(c) Frame: 50 (d) Frame: 75

(e) Frame: 100 (f) Frame: 125

Fig. 11: Single obstacle: Camera images

(a) Frame: 0 (b) Frame: 25 (c) Frame: 50

(d) Frame: 75 (e) Frame: 100 (f) Frame: 125

Fig. 12: Single obstacle: LIDAR points

Fig. 13: Single obstacle: Collected data

VI. CONCLUSION

The results showed that the vehicle was capable not to only
drive keeping on same lane, but when facing an obstacle could
avoid it with no collision (Case 1 and 2), and when there was
not free space on the road to continue driving, the vehicle
could stop until a collision happen (Case 3).

REFERENCES

[1] Pomerleau, D., & Jochem, T. (1996). Rapidly adapting machine vision
for automated vehicle steering. IEEE Expert, 11(2), 19–27.

[2] Fagnant, D. J., & Kockelman, K. (2015). Preparing a nation for au-
tonomous vehicles: Opportunities, barriers and policy recommendations.
Transportation Research Part A: Policy and Practice, 77, 167–181.

[3] Building the World‘s Most Experienced Drive. 2019. Available in:
rhttps://waymo.com/safety/. Accessed in October 2019.

[4] Li, Y., & Ibanez-Guzman, J. (2020). Lidar for Autonomous Driving: The
principles, challenges, and trends for automotive lidar and perception
systems. Retrieved from http://arxiv.org/abs/2004.08467

[5] Van Brummelen, J., O’Brien, M., Gruyer, D., & Najjaran, H. (2018).
Autonomous vehicle perception: The technology of today and tomorrow.
Transportation Research Part C: Emerging Technologies, 89(July 2017),
384–406. https://doi.org/10.1016/j.trc.2018.02.012

[6] Zhao, G., Xiao, X., Yuan, J., & Ng, G. W. (2014). Fusion of
3D-LIDAR and camera data for scene parsing. Journal of Vi-
sual Communication and Image Representation, 25(1), 165–183.
https://doi.org/10.1016/j.jvcir.2013.06.008

[7] Urmson, C.; Anhalt, J.; Bagnell, D.; Baker, C.; Bittner, R.; Clark, M.N.;
Dolan, J.; Duggins, D.; Galatali, T.; Geyer, C.; et al. Autonomous driving
in urban environments: Boss and the Urban Challenge. J. Field Robot.
2008, 25, 425–466

[8] Rasekhipour, Y., Khajepour, A., Chen, S., & Litkouhi, B. (2017). A
Potential Field-Based Model Predictive Path-Planning Controller for
Autonomous Road Vehicles. 18(5), 1255–1267.

[9] Thrun, S.; Montemerlo, M.; Dahlkamp, H.; Stavens, D.; Aron, A.;
Diebel, J.; Fong, P.; Gale, J.; Halpenny, M.; Hoffmann, G.; et al. Stanley:
The robot that won the DARPA Grand Challenge. J. Field Robot. 2006,
23, 661–692.

[10] Amer, N. H., Zamzuri, H., Hudha, K., & Kadir, Z. A. (2017). Modelling
and Control Strategies in Path Tracking Control for Autonomous Ground
Vehicles: A Review of State of the Art and Challenges. Journal of Intel-
ligent and Robotic Systems: Theory and Applications, 86(2), 225–254.
https://doi.org/10.1007/s10846-016-0442-0

[11] Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B.,
Goyal, P., . . . Zieba, K. (2016). End to End Learning for Self-Driving
Cars. 1–9. Retrieved from http://arxiv.org/abs/1604.07316

[12] De Lima, D. A., & Victorino, A. C. (2014). A Visual Servoing approach
for road lane following with obstacle avoidance. 2014 17th IEEE
International Conference on Intelligent Transportation Systems, ITSC
2014, 412–417. https://doi.org/10.1109/ITSC.2014.6957725

[13] Hou, Y., Ma, Z., Liu, C., & Loy, C. C. (2019). Learning Lightweight
Lane Detection CNNs by Self Attention Distillation. Retrieved from
http://arxiv.org/abs/1908.00821

[14] Francis, B. A., & Maggiore, M. (2016). Models of Mobile Robots in
the Plane. 7–23. https://doi.org/10.1007/978-3-319-24729-8

[15] Müllner, D. (1984). Modern hierarchical, agglomerative clustering algo-
rithms. (1973), 1–29.

[16] Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., & Koltun, V. (2017).
CARLA: An Open Urban Driving Simulator. (CoRL), 1–16. Retrieved
from http://arxiv.org/abs/1711.03938

[17] Arras, K.,Persson,J.,Tomatis,N.,andSiegwart,R.(2002).Real time obsta-
cle avoidance for polygonal robots with a reduced dynamic window.
In Proceedings of the IEEE International Conference on Robotics and
Automation, volume 3, pages 3050 – 3055.

