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ABSTRACT

Tau proteins in the gray matter are widely known to be a part of Alzheimer’s disease symptoms. They can
aggregate in three different structures within the brain: neurites, tangles, and neuritic plaques. The morphology
and the spatial disposition of these three aggregates are hypothesised to be correlated to the advancement of the
disease. In order to establish a behavioural disease model related to the Tau proteins aggregates, it is necessary to
develop algorithms to detect and segment them automatically. We present a 5-folded pipeline aiming to perform
with clinically operational results. This pipeline is composed of a non-linear colour normalisation, a CNN-based
image classifier, an Unet-based image segmentation stage, and a morphological analysis of the segmented objects.
The tangle detection and segmentation algorithms improve state-of-the-art performances (75.8% and 91.1% F1-
score, respectively), and create a reference for neuritic plaques detection and segmentation (81.3% and 78.2%
F1-score, respectively). These results constitute an initial baseline in an area where no prior results exist, as far as
we know. The pipeline is complete and based on a promising state-of-the-art architecture. Therefore, we consider
this study a handy baseline of an impactful extension to support new advances in Alzheimer’s disease. Moreover,
building a fully operational pipeline will be crucial to create a 3D histology map for a deeper understanding of
clinico-pathological associations in Alzheimer’s disease and the histology-based evidence of disease stratification
among different sub-types.

Keywords: Alzheimer’s Disease, Tau Proteins, Tangles, Neuritic Plaques, Deep Learning, Computational
Pathology, Whole Slide Images, Detection, Segmentation.

1. INTRODUCTION

Tau proteins are essential markers of Alzheimer’s Disease (AD) and probably present the best histopathological
correlation with clinical symptoms.1 However, it is yet unclear how these markers affect AD, qualitatively. Tau
protein aggregates can be found in the gray matter within three types of structures: neurites, randomly and
sparsely distributed proteins in neuronal processes; tangles, tau accumulations within the neuronal cell body;
and neuritic plaques, spherical structures with tau positive dystrophic neurites surrounding Aβ positive core.
We can find examples of these three different shapes in Figure 1.

The state-of-the-art technology used to assess tau proteins is based on histological whole slide image (WSI)
analysis. WSI consists of a slice of the (post-mortem) gray matter of an AD patient that is stained, observed
under a microscope, and digitized with several magnification levels (e.g. x20, and x40). A study presented
by Signaevsky M. et al.2 focused on neurofibrillary tangle segmentation in WSI. The authors reported a test
F1-score of 0.81 using a fully convolutional neural network (SegNet) trained on the histopathological material
from 22 brain autopsies with tauopathies. Wurts, A., et al., extended this initial study by comparing three
deep learning models used to segment neurofibrillary tangles (NFT) and dystrophic neurites (DN). The authors
combined color-based and manual annotations in a smaller dataset, and reported comparable performances of
SegNet and FCN deep learning networks (0.611 best IoU for SegNet and tau segmentation, and 0.542 best IoU
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(a) Example of tangle object
(surrounded in red): the other
brown stained small objects are
neurites.

(b) Plaque object: brown stained
little objects form the plaque
neuritic crown surrounding the
optically empty plaque core.

(c) Region only displaying tau-
positive neurites (dark brown).
Clearer objects form the back-
ground.

Figure 1: Examples of the 3 types of Tau proteins objects that can be found in the gray matter.

for FCN and nuclei segmentation). They finally suggested using a pre-trained UNet to increase its performance,
as well as a more comprehensive labeling process.3

In this article, we present a novel end-to-end approach to process brain whole slide images based on con-
volutional neural network architectures and an Unet-based segmentation pipeline. In our study, the pipeline
presented addresses not only the generation of an operational dataset suitable for a deep learning framework,
but also the models deployed to perform detection and segmentation of the different tau protein aggregates.

2. METHODOLOGY

2.1 Data preparation

a. Raw data: comprises six post mortem human whole slide images, labeled by pathologists, with essentially
four classes: background, tangles, neuritic plaques, and other (gray matter and neurites). The background is
very fast to identify and annotate by a specialist; therefore, we focus on the automatic separation between
pixels corresponding to tangles, neuritic plaques, and gray matter/neurites. The differentiation between gray
matter and neurites is also essential, being easily performed using a simple stain classifier.

b. Sampling: to train and validate deep learning algorithms, we randomly sample fixed-size sub-images (i.e.
patches) from WSI, controlling the fraction of images with tangles/neuritic plaques on them. The dataset
generated is called Balanced Random Sampling (BRS). We computed our results with a balance of 50/50
positive/negative sub-images. Once trained, we use the deep learning algorithm to retrieve and segment every
tangle and neuritic plaque of a given WSI, by exhaustively sampling it and feeding every sample to the model.
We name this process Exhaustive Deterministic Sampling (EDS) and use it as a test dataset.

c. Stain normalisation: tau proteins’ staining process is heterogeneous, hence a stain normalisation has been
performed for the deep learning algorithm not to cope with scaling issues. We tested various normalisation
methods (i.e, histogram normalization, Macenko,4 Macenko-LS, Vahadane,5 Vahadane-LS, Reinhard,6 and
Reinhard-LS) and ultimately, we retained the best 4 approaches. A different normalisation method was
used for detecting and segmenting tangles and neuritic plaques. Additionally, we applied a pre-processing
technique to datasets used for segmentation. It consists of standardising the brightness, i.e., modifying the
luminosity channel so that 5% of pixels are fully luminous and thus white. We call this technique Luminosity
Standardization (LS).

2.2 Deep learning pipeline architecture

a. Tangles/neuritic plaques detection: Eliminating all samples showing no tangle nor neuritic plaques is crucial
to further segment these aggregates. Since this part aims to erase all samples with no tangles/neuritic plaques,



Figure 2: Whole pipeline for handling slides and their labels.

one should raise precision while keeping recall extremely high. We used a convolutional-based deep learning
architecture, 5 WSI for training and validation (80%/20% split), and 1 WSI for testing. We also implemented
5-fold cross-validation to assess the CNN generalisation to an independent dataset (see Figure 3).

b. Tangles/neuritic plaques segmentation: The segmentation algorithm is trained on 5 WSI using 5-fold cross-
validation and tested on 1 WSI. The input test dataset, called Objects Only Sampling (OOS), provides only
samples with tangles or neuritic plaque. We used an Unet-based architecture with a focal loss function. A
quantitative study combined with an F1-score measure (computed assuming an intersection between a ground-
truth segmentation and model segmentation to be a true positive) was used to evaluate the performances (see
Figure 4).

c. Merging segmented regions: During the test phase of segmentation, every region assessed by the classifier
to be positive is segmented by the UNet model. We used this per-region segmentation to compute contour
positions in meters corresponding to the slide at a global level. Furthermore, since some segmented objects
may overlap or appear in two consecutive regions, we merged them by joining their corresponding contours.
This stage allows for the reconstruction of the WSI and the computation of morphological features of the
segmented objects (see Figure 5).

3. RESULTS

Table 1 shows the first results related to the study of different normalisation techniques for the detection and
segmentation of both regions: neurofibrillary tangles and neuritic plaques. We reported the F1-score for testing
as this metric is used to select the best algorithm for the desired task. We selected the histogram and Macenko
normalisation for detection (in blue on the table), and Reinhard and Vahadane normalisation with LS for
segmentation (in red on the table). The training process for these results was performed using patches of
128× 128 pixels and a balanced dataset with 50/50 positives/negatives patches. However, for the testing phase
we used the EDS dataset describe above with a stride of 64 pixels (i.e. overlap of 64 pixels between patches).
The normalisation was applied in the trainig, validation and testing stages.



Figure 3: Overall scheme of detection of objects of interest on regions.

Figure 4: Overall scheme of segmentation of objects of interest on detected regions.

In addition to the cross-validation process implemented to evaluate the performance of the networks, we
also applied a cross-testing/cross-validation scheme as shown in Table 2. Therefore, we report the mean perfor-
mance of the networks after having tested the models with different WSI. As shown in Table 3, the detection
task performs effectively for tangle aggregates but needs improvements to achieve clinically operational results.
However, as shown in Table 4, the tangle segmentation task provides - according to our knowledge - important
state-of-the-art results. On the other hand, the results shown represent an essential baseline for neuritic plaques
detection and segmentation as no such study has been reported yet. Neuritic plaques are very diffuse objects,
and a pure segmentation may be hard to grasp for a model. Despite these difficulties (see Figure 6b ), the
segmentation results seem very encouraging.



Figure 5: Illustration of merging of labels from different regions.

Table 1: Results for the object detection and segmentation pipeline using different normalization approaches.

Region
Patch size
(pixels)

Normalization
Detection F1-score

(testing)
Segmentation F1-score

(testing)
Histogram 82.7% 92.9%
Macenko 78.2% 92.2%

Macenko (LS) 78.5% 88.7%
Vahadane 76.0% 93.7%

Vahadane (LS) 79.0% 91.4%
Reinhard 75.7% 91.6%

Neurofibrillary tangle

Reinhard (LS) 80.6% 95.1%
Histogram 79.8% 40.2%
Macenko 97.9% 55.8%

Macenko (LS) 81.6% 68.5%
Vahadane 91.2% 41.9%

Vahadane (LS) 86.0% 70.8%
Reinhard 85.1% 54.6%

Neuritic plaques

128× 128

Reinhard (LS) 83.0% 60.9%

Table 2: Cross validation and cross testing procedure for segmentation and detection.
Trainig Validation Test

· · ·

Trainig Validation Test
WSI1, WSI2, WSI3, WSI4 WSI5

WSI6

WSI2, WSI3, WSI4, WSI5 WSI6

WSI1

WSI1, WSI2, WSI3, WSI5 WSI4 WSI2, WSI3, WSI4, WSI6 WSI5
WSI1, WSI2, WSI4, WSI5 WSI3 WSI2, WSI3, WSI5, WSI6 WSI4
WSI1, WSI3, WSI4, WSI5 WSI2 WSI2, WSI4, WSI5, WSI6 WSI3
WSI2, WSI3, WSI4, WSI5 WSI1 WSI3, WSI4, WSI5, WSI6 WSI2

Table 3: Results for detection of tangles and plaques using cross-validation and cross-testing.

Region
Patch size
(pixels)

Normalization
F1-score

(cross-validation)
F1-score

(cross-testing)
Neurofibrillary tangle 128× 128 Histogram 99.6% 75.8%

Neuritic plaques 128× 128 Macenko 99.8% 81.3%



Table 4: Results for segmentation of tangles and plaques using cross-validation and cross-testing.

Region
Patch size
(pixels)

Normalization
F1-score

(cross-validation)
F1-score

(cross-testing)
Neurofibrillary tangle 128× 128 Reinhard (LS) 83.8% 91.1%

Neuritic plaques 128× 128 Vahadane (LS) 81.5% 78.2%

(a) Examples of tangle segmentation. (b) Examples of neuritic plaques segmentation.

Figure 6: Examples of the 3 types of tau proteins objects that can be found in the gray matter.

4. DICUSSION AND CONCLUSION

This study has proven that we can generate clinically operational results for tau aggregates detection and seg-
mentation by providing adequate WSI sampling and the proper normalization method. Future research will focus
on bridging the gap between these promising results and real use cases to reduce the number of false negatives
samples driven by hyper-parameter tuning. In particular, an extension to this dataset with additional slides
from different patients, as well as different staining/scanning procedures, might help robustifying the pipelines
presented in this work. Furthermore, from the segmented tau aggregates studied, a morphological analysis could
also be implemented to deeper studying Alzheimers’ patients stratification and to better understanding this
critical brain disorder.

Finally, the pipelines presented in this study could also be the core backend of a semi-supervised WSI
annotator. This will be definetly likely to reduce the time spent by pathologists for WSI annotation and improve
the quality of this annotations, enabling the elaboration of a more reliable, effective and efficient AI tools.
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