
HAL Id: hal-03522378
https://hal.science/hal-03522378v1

Submitted on 12 Jan 2022 (v1), last revised 31 Jan 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tau Protein Discrete Aggregates in Alzheimer’s Disease:
Neuritic Plaques and Tangles Detection and

Segmentation using Computational Histopathology
K Maňoušková, V Abadie, M Ounissi, G Jimenez, L Stimmer, B Delatour, S

Durrleman, Daniel Racoceanu

To cite this version:
K Maňoušková, V Abadie, M Ounissi, G Jimenez, L Stimmer, et al.. Tau Protein Discrete Ag-
gregates in Alzheimer’s Disease: Neuritic Plaques and Tangles Detection and Segmentation using
Computational Histopathology. SPIE Medical Imaging 2022, Feb 2022, San Diego, United States.
�hal-03522378v1�

https://hal.science/hal-03522378v1
https://hal.archives-ouvertes.fr


Tau Protein Discrete Aggregates in Alzheimer’s Disease:
Neuritic Plaques and Tangles Detection and Segmentation

using Computational Histopathology
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Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS,
APHP, Hopital de la Pitié Salpêtrière, Paris, Fr

ABSTRACT

Tau proteins in the gray matter are widely known to be a part of Alzheimer’s disease symptoms. They can
aggregate in three different structures within the brain: neurites, tangles, and neuritic plaques. The morphology
and spatial disposition of these three aggregates are hypothesised to be correlated to the advancement of the
disease. In order to establish a behavioural disease model related to the Tau proteins aggregates, it is necessary
to develop algorithms to detect and segment them automatically. We present a 4-folded pipeline aiming to
perform with clinically operational results. This pipeline is composed of a non-linear colour normalisation,
a CNN-based image classifier, an Unet-based image segmentation stage, and a morphological analysis of the
segmented objects. The tangle detection and segmentation algorithms improve state-of-the-art performances
(75.8% and 91.1% F1-score, respectively), as well as for neuritic plaques detection and segmentation (81.3% and
78.2% F1-score, respectively). These results constitute an initial baseline in an area where no prior results exist,
as far as we know. Even if overall, the results need to be robustified to fully meet biologists’ expectations, the
pipeline is complete and based on a promising state-of-the-art architecture. Therefore, we consider this study a
handy baseline of an impactful extension to support new advances in Alzheimer’s disease. Moreover, building
a fully operational pipeline will be crucial to create a 3D histology map for a deeper understanding of clinico-
pathological associations in Alzheimer’s disease and the histology-based evidence of disease stratification among
different sub-types.
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1. INTRODUCTION

Tau proteins are essential markers of Alzheimer’s Disease (AD) and probably present the best histopathological
correlation with clinical symptoms.1 However, it is yet unclear how these markers affect AD, qualitatively. Tau
protein aggregates can be found in the gray matter within three types of structures: neurites, randomly and
sparsely distributed proteins in neuronal processes; tangles, tau accumulations within the neuronal cell body;
and neuritic plaques, spherical structures with tau positive dystrophic neurites surrounding Abeta positive core.
We can find examples of these three different shapes in Figure 1.

In order to grasp their underlying behavior, we try to correlate the morphological variables associated with these
protein aggregates and their spatial distribution in the brain with the advancement of the disease.
The state-of-the-art technology used to assess tau proteins is based on histological whole slide image (WSI)
analysis. WSI consists of a slice of the (post-mortem) gray matter of an AD patient that is stained, observed
with a microscope, and digitized with several magnification levels. Such WSI has a high magnification (x20, x40).
A baseline for our work is the study presented by Signaevsky M., et al.,2 where they focused on the neurofibrillary
tangle segmentation in WSI. The authors reported an F1-score of 0.81 using a fully convolutional neural network
(SegNet). In addition, Wurts, A., et al.,3 study three deep learning models to segment neurofibrillary tangles
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(a) Example of tangle object
(surrounded in red): the other
brown stained little objects are
neurites.

(b) Plaque object: brown stained
little objects form the plaque
neuritic crown surrounding the
optically empty plaque core.

(c) Region only displaying tau-
positive neurites (dark brown).
Clearer objects form the back-
ground.

Figure 1: Examples of the 3 types of Tau proteins objects that can be found in the gray matter.

(NFT) and dystrophic neurites (DN). The authors combined color-based and manual annotations and reported
an IoU of 0.611 using SegNet; however, they suggested the use of a pre-trained UNet to increase performance.

We present a novel end-to-end approach to process brain whole slide images based on convolutional neural
network architectures and an Unet-based segmentation pipeline. In our study, the pipeline presented addresses
not only the generation of an operational dataset suitable for a deep learning framework but also the models
deployed to perform detection and segmentation of the different tau protein aggregates.

2. METHODOLOGY

2.1 Data preparation

a. Raw data
Raw data comprises six postmortem human whole slide images, labeled by pathologists with essentially four
labels: background, tangles, neuritic plaques, and other (gray matter and neurites). The background being
very fast to identify and annotate by a specialist, we focus on automatic separation between pixels on tangles,
neuritic plaques, and gray matter/neurites. The differentiation between gray matter and neurites is also
essential but easily performed using a simple stain classifier.

b. Sampling
To train and validate deep learning algorithms, we randomly sample fixed-size sub-images from WSI, control-
ling the fraction of images with tangles/neuritic plaques on them. The dataset so generated is called Balanced
Random Sampling (BRS). We computed our results with a balance of 50/50 positive/negative sub-images.
Once trained, we use the deep learning algorithm to retrieve and segment every tangle and neuritic plaque
of a given WSI by exhaustively sampling it and feeding every sample to the model. We name it Exhaustive
Deterministic Sampling (EDS) and use it as a test dataset.

c. Stain normalisation
Tau proteins’ staining process is heterogeneous, hence a stain normalisation has been performed for the
deep learning algorithm not having to cope with scaling issues. We tested various normalisation methods
(i.e, histogram normalization, Macenko, Macenko-LS, Vahadane, Vahadane-LS, Reinhard, and Reinhard-LS)
and ultimately, we retained 4 approaches. A different normalisation method was used for detecting and
segmenting tangles and neuritic plaques. Additionally, we applied a pre-processing technique to datasets used
for segmentation. It consists of standardising the brightness, i.e., modifying the luminosity channel so that
5% of pixels are fully luminous and thus white. We call this technique Standard Brightness (SB).



Figure 2: Whole pipeline for handling slides and their labels.

2.2 Deep learning pipeline architecture

a. Tangles/neuritic plaques detection
Eliminating all samples showing no tangle nor neuritic plaques is crucial to further segmentation of these
aggregates. Since this part aims to erase all samples with no tangles/neuritic plaques, one should raise
precision while keeping recall extremely high. We used a convolutional-based deep learning architecture,
5 WSI for training and validation (80%/20% split), and 1 WSI for testing. We also implemented 5-fold
cross-validation to assess the CNN generalisation to an independent dataset. Figure 3 represents this stage.

b. Tangles/neuritic plaques segmentation
The segmentation algorithm is trained on 5 WSI using 5-fold cross-validation and tested on 1 WSI. The input
test dataset, called Objects Only Sampling (OOS), provides only samples with tangles or neuritic plaque. We
used an Unet-based architecture with a focal loss function. A quantitative study combined with an F1-score
measure (computed assuming an intersection between a ground-truth segmentation and model segmentation
to be a true positive) was used to evaluate the performances. Figure 4 represents this stage.

c. Merging segmented regions
As a recap, during the test phase of segmentation, every region assessed by the classifier to be positive is
segmented by the UNet model. We used this per-region segmentation to compute contour positions in meters
corresponding to the slide at a global level. Furthermore, since some segmented objects may overlap or appear
in two consecutive regions, we merged them by joining their corresponding contours. This stage allows for
the reconstruction of the WSI and the computation of morphological features of the segmented objects.

3. RESULTS

In addition to the cross-validation process we implemented to evaluate the performance of the networks, we also
applied a cross-testing scheme as shown in Table 1. Using this, we report the mean performance of the networks
after having tested the models with different WSI. As it is shown in Table ??, the detection task performs
effectively for tangle aggregates but needs improvements to achieve clinically operational results. The tangle
segmentation task, however, provides state-of-the-art results never seen before, as far as we know. On the other



Figure 3: Overall scheme of detection of objects of interest on regions.

Figure 4: Overall scheme of segmentation of objects of interest on detected regions.

hand, the results shown represent an essential baseline for neuritic plaques detection and segmentation as no
study has been reported with such results as far as we know. Neuritic plaques are very diffuse objects, and a
pure segmentation may be hard to grasp for a model. Despite these difficulties (see Figure 6b ), the segmentation
results seem very encouraging.

4. DICUSSION AND CONCLUSION

This study has proven that we can generate clinically operational results by providing adequate WSI sampling
and the proper normalization method. Future research will focus on bridging the gap between these promising



Figure 5: Illustration of merging of labels from different regions.

Table 1: Cross validation and cross testing procedure for segmentation and detection.
Train & validation Test Train & validation Test
WSI1 · · · WSI5 WSI2 · · · WSI6

FOLD 1 FOLD 2 FOLD 3 FOLD 4 FOLD 5 FOLD 1 FOLD 2 FOLD 3 FOLD 4 FOLD 5
FOLD 1 FOLD 2 FOLD 3 FOLD 4 FOLD 5 FOLD 1 FOLD 2 FOLD 3 FOLD 4 FOLD 5
FOLD 1 FOLD 2 FOLD 3 FOLD 4 FOLD 5 FOLD 1 FOLD 2 FOLD 3 FOLD 4 FOLD 5
FOLD 1 FOLD 2 FOLD 3 FOLD 4 FOLD 5 FOLD 1 FOLD 2 FOLD 3 FOLD 4 FOLD 5
FOLD 1 FOLD 2 FOLD 3 FOLD 4 FOLD 5

WSI6
· · ·

FOLD 1 FOLD 2 FOLD 3 FOLD 4 FOLD 5

WSI1

Table 2: Results for detection of tangles and plaques.
Train/validation Test

Region
Patch size
(pixels)

Normalization F1-score
Patch size
(pixels)

Overlap
(pixels)

F1-score

Neurofibrilliary tangles 128× 128 Histogram 99.6% 128× 128 64 75.8%
Neuritic plaques 128× 128 Macenko 99.8% 128× 128 64 81.3%

Table 3: Results for segmentation of tangles and plaques.
Train/validation Test

Region
Patch size
(pixels)

Normalization F1-score
Patch size
(pixels)

Overlap
(pixels)

F1-score

Neurofibrilliary tangles 128× 128 Reinhard (LS) 83.8% 128× 128 64 91.1%
Neuritic plaques 128× 128 Vahadane (LS) 81.5% 128× 128 64 78.2%

(a) Examples of tangle segmentation. (b) Examples of neuritic plaques segmentation.

Figure 6: Examples of the 3 types of tau proteins objects that can be found in the gray matter.



results and real use cases to reduce the number of false negatives samples driven by hyper-parameter tuning.
In particular, an extension to this dataset with additional slides from different patients as well as different
staining/scanning procedures might help robustify the pipelines presented in this work. Furthermore, from the
segmented tau aggregates studied, a morphological analysis could also be implemented for Alzheimers’ patients
stratification and better understanding of this brain disorder.

Finally, the pipelines presented in this study could also be the core backend of an semi-supervised WSI
annotator. This will definetly reduce the time pathologists spend in a single WSI and improve the annotations
for the development of better AI tools.
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