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A B S T R A C T

Porous structures, including those with lattice geometries, have been shown to mimic the mechanical properties 
of the human bone. Apart from the widely known strut-based lattices, the Triply Periodic Minimal Surfaces 
(TPMS) concept has been introduced recently to create surface-based lattices and to tailor their mechanical 
behaviors. In this study, the numerical investigation of the effective elastic properties, the anisotropic behavior, 
and the local stress distributions of a broad range of topologies provide us with a complete numerical tool to 
assist bone implant design. The comparison database of the lattices includes TPMS-based lattices, both sheet, and 
skeletal, as well as strut-based lattices. The lattices are subjected to periodic boundary conditions and also, a 
homogenization method is deployed to simulate the response of the lattice unit cells determining their apparent 
equivalent stiffness. A correlation among the lattice topologies, their effective mechanical properties, and the 
local Von Mises stress concentrations in them is observed. The stress distribution of various topologies with the 
same elastic modulus is examined to combine all the investigations. Finally, a large variety of numerical results 
are presented to allow the comparison of the lattice structures and the selection of the optimal configuration that 
mimics the elastic properties of the bone.   

1. Introduction

Over the past decades, the number of orthopedic implant operations
has increased (Yang et al., 2019). This increase is accompanied by the 
improvement of the patients’ postoperative life conditions by solving the 
biomechanical problems that occur between the implant and the bone 
and by enhancing the mechanical biocompatibility and durability. 
Indeed, since the patients are young, they are in demand of orthopedic 
implants that allow them to continue to practice physical activities 
(Learmonth et al., 2007). A commonly observed undesirable phenome
non after an orthopedic implant operation is bone resorption and bone 
mass reduction (Bono et al., 1999; Fischer, 2017; Huiskes et al., 1992) 
which is caused by stress shielding, described by Wolff’s law (Wolff, 
1986). It is mainly induced by the significant stiffness mismatch be
tween the implant and the neighboring bone (Wolff, 1986). In more 
detail, the bone, which has low stiffness that varies in the range from 
0.02 (trabecular bone) to 30 GPa (cortical bone), is subjected to a 

complex dynamic load (Al-Tamimi et al., 2017). With the presence of a 
more rigid implant, the load distribution is perturbated: the implant 
bears a significant part of the load, contrary to the peri-implant bone 
which is relieved. Stress shielding occurs in this case, impacting the 
implant-bone interface durability (Al-Tamimi et al., 2017). The bone 
resorption and mass reduction affects hence the long-term performance 
of the implants, their stability and induces a pain feeling to the patients 
(Yamako et al., 2017). 

The orthopedic implants are made of various biocompatible metals 
and alloys; such as titanium alloys, stainless steel, and cobalt alloys 
(Al-Tamimi et al., 2017; Schuh et al., 2007; Wang et al., 2016). Among 
all these materials, titanium and its alloys are mostly utilized because 
they combine great biocompatibility, high corrosion and fatigue resis
tance, and very good mechanical properties (Didier et al., 2017; Wang 
et al., 2016; Yan et al., 2015). However, titanium alloys-based implants 
are significantly stiffer than the surrounding host bone, and conse
quently, the stress shielding phenomenon takes place (Wang et al., 2016; 
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Yamako et al., 2017). As a result, the reduction of the stress shielding 
effect is of high importance and it can be achieved in two ways (Elmay 
et al., 2011; Laheurte et al., 2010). The first way is the choice of bulk 
material for the implant, with an apparent elastic modulus as close as 
possible to the Young’s modulus of the natural bone (Didier et al., 2017; 
Mahmoud and Elbestawi, 2017; Schuh et al., 2007), making use of 
solid-solid reversible phase transformations. However, there is a limi
tation regarding the mechanical properties of these low apparent elastic 
modulus alloys. Although they are subjected to thermomechanical 
treatment to reduce their stiffness, the Young’s modulus cannot be less 
than 50 GPa, a value still higher than the stiffness of the natural bone 
(Didier et al., 2017). Furthermore, the second solution consists of the 
design of a porous structure for the implant instead of a continuum bulk 
material, and thus the aforementioned material-dependent limitation 
could be overcome. It has been shown that porous structures, specif
ically lattice structures, could be tailored to mimic the mechanical 
properties of the bones and also allow higher tissue regeneration and 
osseointegration (Schuh et al., 2007; Wang et al., 2016; Yan et al., 
2015). 

Porous materials, and particularly lattice structures, present 
considerably complex geometries at two-scales (the lattice and the 
implant shape). However, thanks to the recent improvements in additive 
manufacturing (AM) technologies, the fabrication of complex geome
tries, such as lattices, is nowadays easily achievable (Van Bael et al., 
2012). They can be fabricated by combining both optimized topological 
design and the right additive manufacturing process concerning the 
application (Wang et al., 2016). For example, additively manufactured 
lattices and porous structures have been studied for various medical 
applications, such as tissue engineering (Hollister, 2005; Valainis et al., 
2019), implants (Ataee et al., 2018b), human phantoms in radiotherapy 
(Okkalidis et al., 2018). 

The first step in designing a lattice structure is the particular 
emphasis on the topological aspect of its architecture. It is important to 
notice that the topology of a lattice greatly impacts its mechanical 
properties. This can be viewed as an opportunity to tune these me
chanical properties locally to retrieve the mechanical response of the 
bone to be replaced (Wang et al., 2016; Xu et al., 2016). Additionally, 
the relative density or the volume fraction of the lattices plays an 
important role in the control of their effective properties (Al-Ketan et al., 
2020). However, stress concentrations may be observed in various areas 
of the lattice structures, due to the nature of their topology (Lohmuller 
et al., 2018). Hence, it is also essential to minimize the stress concen
tration on the lattices to improve mechanical performances such as fa
tigue response. The stress concentration observed in several patterns 
(Al-Ketan et al., 2020) should be avoided to maximize the durability 
properties of the implant (Soro et al., 2020). 

More specifically, the lattices or the architectured materials are a 
category of porous materials that possess a defined and controlled to
pology. There are two distinct lattice topology families, the strut-based 
and the surface-based topologies (Al-Ketan et al., 2018). The first family 
includes periodic topologies based on cylindrical beams/struts, for 
instance, octet-truss (Deshpande et al., 2001), BCC (Maskery et al., 
2017), the cubic Bravais lattices, and some more complex combinations 
of the beams (Favre et al., 2018; Lohmuller et al., 2018). The second 
family includes topologies based on the Triply Periodic Minimal Sur
faces (TPMS) concept whose lattices exhibit smoother connections. 
Some TPMS-based lattices are the Schoen’s Gyroid, Schoen’s IWP, 
Schwartz’s Primitive, and Neovius (Schoen, 1970). Furthermore, the 
TPMS-based lattices can be divided into two subfamilies, the sheet and 
the skeletal, based on their geometry (Al-Ketan et al., 2018; Li et al., 
2019). The difference between the sheet and skeletal types is explained 

in detail in the materials and numerical methods section. 
Currently, the investigation of the mechanical properties of the lat

tices, and especially the TPMS-based lattices, is a topic of high interest in 
the whole scientific community and not only in biomechanical appli
cations. For example, Maskery et al. (2018) have numerically investi
gated skeletal TPMS-based lattices with a constant volume fraction as 
part of their work. Moreover, Li et al. (2019) have implemented a ho
mogenization method to study the mechanical properties of both sheet 
and skeletal Gyroid lattices and also investigated their anisotropic 
behavior. Furthermore, Lu et al. (2019) have studied the mechanical 
behavior and the anisotropy of five skeletal TPMS-based lattices using a 
homogenization method and periodic boundary conditions in a FE 
software for a biomedical application. Chen et al. (2019) have investi
gated the effective elastic properties of four sheet TPMS lattices using a 
Fast-Fourier Transform (FFT) full-field simulation method adapted for 
such periodic cells. They have also combined two different types of 
TPMS to create a hybrid structure and to improve their mechanical 
properties. 

Also, Al-Ketan et al. (2018) have fabricated steel lattices with 
strut-based, sheet TPMS-based, and skeletal TPMS-based topologies and 
have compared their mechanical properties experimentally while Ataee 
et al. (Ataee et al., 2018a, p.) have fabricated skeletal Gyroid scaffolds 
with commercially pure titanium employing a Selective Laser Melting 
(SLM) machine to determine their mechanical properties, which 
demonstrated promising results in terms of biomechanical applications. 
Yan et al. (2015) have fabricated skeletal Gyroid and Diamond lattices, 
using Ti–6Al–4V, to mimic the porosity and the stiffness of the natural 
bone. Several numerical studies in this field are summerized in Table 1 
for comparison. 

To the best of our knowledge, no previous study has investigated and 
compared both the effective mechanical properties and local stress dis
tribution at the same time of a large range of sheet, skeletal TPMS-based, 
and strut-based lattice structures. This enables the comparison of iso- 
elasticity lattice structures leading to an optimal one according to a 
specific application. 

The present study proposes an integrated approach aimed at sys
tematically investigating and comparing various TPMS-based and strut- 
based lattices with respect to elastic properties, stiffness anisotropy, and 
local stress distribution for biomedical implants. The numerical simu
lation procedure consists of various steps that include the geometrical 
design and FE-adapted mesh generation procedures of the lattices, the 
application of periodic boundary conditions, and implementation of a 
homogenization method towards the computation of their effective 
mechanical properties. The second section presents all the aforemen
tioned steps of the methodology. The following section starts with the 
numerical simulation and comparison of the effective mechanical 

Table 1 
Summary of several numerical studies of TPMS-based lattices.  

Authors, Year of 
publication 

Investigated lattices Aim of the study 

Lu et al. (2019) 5 skeletal TPMS- 
based topologies 

Numerical investigation of the elastic 
anisotropy by using a homogenization 
method 

Li et al. (2019) Skeletal and sheet 
Gyroid 

Anisotropy, effective elastic modulus 
by using a homogenization method 

Al-Ketan et al. 
(2018a) 

IWP sheet, skeletal 
internal and Diagonal 

Effect of topology on the effective 
elastic modulus 

Abueidda et al. 
(2016) 

6 sheet TPMS-based 
topologies 

Elastic properties and anisotropy 

Maskery et al. 
(2018) 

6 skeletal TPMS- 
based topologies 

Effect of orientation, volume fraction, 
and topology on the elastic modulus  



properties of the lattices based on the topology and the volume fraction. 
Next, the investigation of stiffness anisotropy is performed and finally, 
the equivalent Von Mises stresses distribution is analyzed for several 
TPMS-based and strut-based lattices. The obtained numerical results are 
discussed in detail in the relevant section and subsequently, they are 
specifically detailed in two cases demonstrating the capabilities of the 
developed approach. The paper ends with some concluding remarks that 
summarize the main outcomes of the work. 

2. Materials and numerical methods

2.1. Lattice structures; design and generation 

A lattice structure is defined by a periodic unit cell considering Vsolid 
as the volume of the solid part and Vtotal as the total volume of the 
bounding box such that: 

Volume ​ fraction=
Vsolid

Vtotal
(1) 

The geometry of the lattices necessarily controls their volume 
fraction. 

In this work, the surface-based lattices that have been investigated 
are the Schoen’s Gyroid, Schwartz’s Primitive, Neovius, and IWP to
pologies, while the strut-based lattices are the Octet-truss and Diagonal 
topologies. The Diagonal topology may also be referred to as body- 
centered-cubic (BCC) topology. The term Diagonal is used in this 
paper. The numerical study of a single unit cell is sufficient for the study 
of the mechanical properties of various lattice topologies in the elastic 
regime. The implemented method for FE analysis is described in 2.2. and 
2.3. sections. 

The design and the generation of the strut-based lattices are per
formed using the computational environment of the software Abaqus/ 
CAE 2018. A Python script is developed to enable and automate the 
design procedure of the strut-based lattices. The strut-based lattices 
consist of symmetric and periodic struts. The imported data to the script 
are the parametric shape and the number of the basic solids that 
constitute the unit cell, their orientation, and their geometric charac
teristics, such as the length and the radius. Then, the appropriate 

periodic boundary conditions are applied to the lattice structure through 
a homogenization method, which is described in detail in the Numerical 
Periodic Homogenization section. 

In Fig. 1 the two strut-based unit cells that are among the investi
gated lattice types in this study, i.e. Diagonal and Octet-truss unit cells, 
are presented. 

The lattice structures based on the TPMS are designed with a 
different approach. The TPMS are periodic surfaces in all three di
rections that have a zero mean curvature at every point and each one 
divides the 3D space into two non-interconnected sub-spaces. The 
mathematical equations used for their definition offer a pretty accurate 
approximation of the surfaces (Yan et al., 2015). The sinusoid level-set 
equations have the form of f (x, y, z) = t , where t is a constant value 
(Maskery et al., 2018). The value of the t parameter controls the offset of 
the minimal surfaces and thus the volume ratio between the two 
sub-spaces. In the case of t = 0 each volume fraction of the sub-spaces is 
50%. When the parameter t has a positive or negative value, the volume 
ratio between the two sub-spaces changes. Therefore, the volume frac
tion of the obtained lattice structures depends on the value of the design 
parameter t. 

The investigated TPMS and their corresponding mathematical 
t-parametrized equations are presented in what follows:  

(a) Schoen’s Gyroid: 

cos(x)∗sin(y) + cos(y)∗sin(z) + cos(z)∗sin(x) = t (2)    

(b) Schwartz’s Primitive: 

cos(x)+ cos(y) + cos(z) = t (3)    

(c) Schoen’s IWP: 

cos(x)*cos(y) + cos(y)*cos(z) + cos(z)*cos(x) = t (4)    

(d) Neovius: 

3 * (cos(x)+ cos(z)+ cos(y))+ 4 * cos(x) * cos(z) * cos(y)= t (5) 

Fig. 1. A Diagonal unit cell (left) and an Octet-truss unit cell (right).  



Furthermore, there are two different types of TPMS-based lattices, 
the skeletal, and the sheet. The skeletal type can be obtained when one 
of the two sub-spaces is the solid part, while the other is the void, i.e., 
f (x, y, z) ≥ t or f (x, y, z) < t. The sheet type can be obtained when a 
prescribed thickness is given to the surface generated by an equation 
with t = 0, or mathematically, it can be obtained when the generated 
solid part satisfies the double inequality − t ≤ f(x, y, z) ≤ t (Al-Ketan 
et al., 2020). There is a relation between the design parameter t and the 
volume fraction of the unit cells. 

The methodology adopted to generate TPMS-based unit cells is the 
design of the two opposite surfaces with the offset of –t and t, respec
tively. The simultaneous design of a sheet and two skeletal unit cells 
within a bounding box is obtained. The summation of the three volume 
fractions is equal to the volume fraction of the bounding box, i.e. 100%, 
because their volumes are complementary. The relative density of each 
skeletal cell is less or equal to the value of 50%. 

Moreover, the nature of particular TPMS limits the volume fraction 
of the generated unit cells. The t parameter must be ranging in an 
allowable interval to avoid a lack of surface connectivity that generates 
several disconnected surfaces. Indeed, when the values of the t param

eter exceed an allowable value, the surface presents discontinuities, such 
that a structure cannot be fabricated. The allowable value is different for 
each topology and can be founded by a CAD analysis of the sets of closed 
domains. As a consequence, the feasible range of the effective elastic 
properties varies for the TMPS-based unit cells. For example, the Neo
vius sheet unit cell can exhibit a volume fraction in the range of 5% −

31%. Nevertheless, this limitation is not important in mechanical ap
plications since the lattice structures are usually utilized at low volume 
fractions (Lohmuller et al., 2019). 

In Fig. 2., the sheet and skeletal parts of a unit cell for Schoen’s 
Gyroid and Schwartz’s Primitive TPMS are presented. It is obvious that 
the two Gyroid skeletal parts are identical, i.e., the red and the blue 
parts, with the same volume fraction. However, it is not the case for the 
Schwartz’s Primitive, where the two skeletal parts have different shapes. 
This property depends on the type of the TPMS. The IWP and Neovius 
topologies present two non-identical skeletal parts, as well. 

Once the unit cells have been designed, a FE-adapted mesh is 
generated and application of the periodic boundary conditions is carried 
out. This step is described in section 2.2. 

Fig. 2. Cubic unit cell partitioned by the a) Gyroid and b) Schwartz’s Primitive TPMS.  

Fig. 3. Constraint driver connection with the cubic unit cell (Praud et al., 2020).  



2.2. Numerical Periodic Homogenization 

A FE-compatible periodic homogenization method (Suquet, 1987) is 
implemented on the lattice structures for accurately estimating their 
effective properties. The lattices are periodic structures and they 
represent the macroscopic scale of the problem. The unit cell is the pe
riodic part and henceforth, it is referred to as Representative Volume 
Element (RVE), which represents the microscopic scale of the problem. 

For the application of the periodic boundary conditions (PBC) the 
mesh of the RVE should be periodic which means that for every node i on 
a boundary face of the RVE, another node j exists on the opposite face 
with the same relative position. The constraint driver method is used 
and a displacement gradient is applied to every pair of opposite nodes, 
node i, and node j. This displacement gradient is connected to the 
macroscopic infinitesimal strain tensor, which is related to the 
constraint driver. This is expressed in the following kinematic equation 
(Eq. (6)) and it is presented in Fig. 3, 

u
′

i = u
′

j ⇔ ui − uj = ε *
(
xi − xj

)
∀x ∈ V (6)  

where i and j are the opposite nodes, u′

i = u′

j is the displacement 
perturbation, which is periodic for the two nodes, ui− uj is the 
displacement vector difference between the nodes, xi− xj is the position 
vector difference between the nodes, and ε is the macroscopic strain. 
More details about this method are available in (Praud et al., 2020). 

According to Hooke’s law σkl = Cklmnεmn, the Cklmn is the homoge
nized effective stiffness matrix and the σkl and εmn are the macroscopic 
effective stress tensor and strain tensor, respectively. Using the Voigt 
notation for the stress and strain tensors, as well as for the elastic stiff
ness matrix, one could write: σK = CKLεL. Six loading cases are imple
mented for every RVE. For every loading case, a component of the strain 
vector had the value 1, while the remaining five are equal to 0, ac
cording to the Еq. 7. The values of the stress vector are calculated from 
the reaction forces (RF) of each face in Abaqus and thus, the connection 
between the stiffness matrix and the stress tensor is obtained. The 
outcome of each loading case is one column of the stiffness matrix CKL. 
The complete stiffness matrix is the assembly of the six computed 
columns. 
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2.3. Effective mechanical properties of the lattices 

All the unit cell topologies, strut-based and TPMS-based, that have 
been investigated, with various volume fractions, present a stiffness 
matrix with cubic symmetry. Therefore, the elastic constitutive law can 
be described by three independent parameters, C11, C12 and C44. The 
cubic stiffness matrix form is the following: 

Cij =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(8) 

Components C11 and C12 of the stiffness matrix are related to the 
tensile/compressive behavior of the materials while the C44 component 
is related to the shear behavior. The stiffness matrix components are 
related to the computation of the effective Young’s modulus, E′ , effective 
Shear modulus, G′ , and effective Poisson’s ratio, v′ , for the cubic mate
rials as follows (Lohmuller et al., 2019): 

E
′

=
C2

11 + C11C12 − 2C2
12

C11 + C12
(9)  

G
′

=C44 (10)  

Fig. 4. Meshed Gyroid sheet and Octet-truss structures with tetrahedral quadratic elements in Abaqus software.  



Fig. 5. The effective normalized a) Young’s modulus, b) Shear modulus, and c) Poisson’s ratio versus the volume fraction of the unit cells are presented for all the 
studied TPMS-based and strut-based lattices indicated in the legend. 

Fig. 6. The design parameter t directly linked to the normalized effective values of the a) Young’s modulus, b) Shear modulus, c) C*
11 and d) C*

12 elastic components.  



v′

=
C12

C11 + C12
(11) 

Considering cubic symmetry, the degree of anisotropy of the unit 
cells can be evaluated using an anisotropic ratio, the Zener ratio, Z (Li 
et al., 2019; Lohmuller et al., 2019), related to C11, C12 and C44 with: 

Z =
2C44

C11 − C12
(12) 

A value Z = 1 corresponds to isotropic behavior, while Z > 1 means 

that the predominant contribution of the C44 component leads the 
structure to be suitable for shear. Conversely, Z < 1 means that the 
structure possesses a predominant tensile/compression behavior (Abu 
Al-Rub et al., 2020; Lohmuller et al., 2019). 

All the aforementioned effective mechanical properties, the Zener 
ratio, and local stress distribution are computed for all the investigated 
topologies and volume fractions. The results are presented in detail in 
the Results section. 

Fig. 7. An Ashby chart with the Young’s modulus and density of the studied topologies by applying the mechanical properties of Ti–6Al–4V (pink color) and the 
target are; the cortical bone (yellow color). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 8. Evolution of the Zener’s ratio for all the investigated types of unit cells with several volume fractions.  



2.4. Meshing the unit cell for finite elements analysis 

In both cases of the TPMS-based and the strut-based lattices, the 
mesh of the unit cells is generated in Abaqus. Three-dimensional tetra
hedral quadratic elements C3D10 are systematically adopted for the 

sake of comparing the final numerical results for the different types of 
studied unit cells. Fig. 4 shows two meshed unit cells in Abaqus, namely 
Gyroid sheet and Octet-truss unit cells. 

A mesh size investigation is carried out for all the lattice types to 
ensure the numerical convergence results, their reliability, and mesh- 

Fig. 9. Normalized local stress distribution of various unit cells at the same volume fraction of 30%. The results are split into two separate graphs for 
easier comparison. 



independence. Particularly, a mesh size convergence of all the effective 
elastic constants of the stiffness matrix and the computed mechanical 
properties of the unit cells is reached, i.e. C11, C12, C44, E′ , G′ , and ν′ . 
Moreover, a mesh sensitivity analysis is carried out for the local stress 
distribution of the studied topologies and the convergence is reached. 
The mesh size does not influence on the elastic constants even though 
the stress values vary slightly. However, the local stress distributions 
present the same shape when the mesh size changes, and this is what 
matters in this study. 

3. Results and comparison

This section presents and compares all the numerical results of all the
lattice types. It is organized into three parts: first, the presentation of the 
computed effective elastic properties of all the lattices at various volume 
fractions followed by the study of the anisotropic behavior of the lat
tices. Finally, the quantitative analysis of the local stress distribution on 
the unit cells is presented. The combination of the aforementioned an
alyses shall lead to the design of a suitable lattice with tailored me
chanical properties for a hip implant application. The results are 
discussed in the Discussion section. 

3.1. Mechanical variation by topology and density 

The mechanical response of various TPMS-based and strut-based 
topologies is investigated, namely Gyroid sheet, Gyroid skeletal, Prim
itive sheet, Primitive skeletal internal and external, Neovius sheet, IWP 
sheet, IWP skeletal internal, Diagonal, and Octet-truss. Fig. 5 illustrates 
the relationship between the normalized mechanical properties and the 
volume fraction of the studied unit cells. The elastic properties of the 
unit cells have been normalized to focus only on the influence of the 
geometry, regardless of the material properties. Some numerical results 
taken from the literature are also added to Fig. 5 a) to compare to and 
validate our results. 

The direct effect of the TPMS design parameter t on all the elastic 
properties of the unit cells is shown in Fig. 6. This way of presenting the 
results accelerates the design procedure. The design parameter t is also 
directly linked to the C11 and C12 elastic components of the stiffness 
matrix and the effective values of the Young’s modulus and shear 
modulus. The C44 component is equal to G′ as determined by Eq. (10) 
and its relation to the volume fraction of the unit cells is presented in 
Fig. 6 b). 

By using the results above and by applying the mechanical properties 
of Ti–6Al–4V to the normalized values, we compute the apparent elastic 
modulus and the density of the unit cells (Favre et al., 2018). The 
computed values are placed on an Ashby with reference to other ma
terials. In Fig. 7 the Ashby chart with the titanium-based lattices is 
presented. 

3.2. Comparison of the anisotropy of the lattices 

Topology-induced anisotropy is an important feature in the effort of 
designing mechanically compatible implants. The Zener ratio for all the 
investigated structures is computed and compared to highlight the 
impact of one topology selection on the anisotropic response. Fig. 8 
shows the Zener ratio evolution for all the investigated types of unit cells 
with various volume fractions. 

3.3. Local stress distributions of the lattices 

The local stress distribution is another important feature to take into 
consideration when designing architectured implants, which are 
required to present good high cycle fatigue. The local stress distribution 
in the elastic region of all the investigated unit cells is computed and 
compared statistically to identify the most homogenized and suitable 
one. 

Fig. 9 shows the local stress distributions of the studied unit cells at 
the same volume fraction of 30%. The stress at every material point is 
computed for the unit cells topologies and the stress values are distrib
uted over the range 0 − 1. Axis y denotes the number of the elements 
that are subjected to particular stress values over the population of el
ements for each model (Nstress/Ntotal). The local stress distribution is 
computed for all the implemented loading cases. The unit cells are triply 
periodic, consequently, the stress distributions are identical for the 
tensile loads. The curves for the shear loading cases are identical as well. 
Fig. 9 shows the results for a tensile loading case. 

For the sake of clarity, the results are split and presented in two 
separate graphs, i.e. Fig. 9a) and b). The Gyroid skeletal structure is set 
as the reference lattice type and it is presented on both graphs to 
compare all the unit cells among them. Then, a statistical analysis of the 
results is carried out to highlight the suitable topologies by using the 
weighted arithmetic mean and weighted standard deviation of the 
sample. 

Table 2 presents the weighted arithmetic mean and weighted stan
dard deviation of the investigated normalized local stress distributions 
to identify the optimal structure with the most homogenized distribu
tion. The weighted arithmetic mean is an indicator of the apparent 
elastic modulus of the unit cells; the higher the arithmetic mean value 
the higher the elastic modulus of the unit cell. Moreover, the standard 
deviation is an indicator of the apparent σmax of the unit cells; taking into 
consideration that the bulk material is the same for all the topologies, 
some elements of the unit cells with a higher standard deviation are 
subjected to higher stress values compared to those of the unit cells with 
a low standard deviation. This means that their σmax is closer to their 
σyield. 

Fig. 10 shows the local stress distribution for both loading cases, i.e. 
tensile and shear loads, on several unit cell types. The stress distributions 
are different for the two loading cases per topology. Fig. 10 a), c), e) and 
g) present the distributions for a tensile load, while Fig. 10 b), d), f) and
h) present the distributions for a shear load.

While the topologies presented in Fig. 9 have the same volume
fraction but not the same apparent elastic modulus, a different com
parison can be adapted among the topologies, which is portrayed in 
Fig. 11. Fig. 11 presents the local stress distributions for three unit cells 
with the same effective elastic modulus, E′

= 7230 Mpa, but at different 
volume fractions, with bulk material properties the following: EBulk =

110 GPa and ν = 0.3. The topology of the unit cells induces different 
local stress distributions which play an important role in the high cycle 
fatigue of the lattices and the implants. Table 3 summarizes the 
weighted arithmetic mean and weighted standard deviation of the 
investigated local stress distributions. 

Table 2 
The table summarizes the weighted arithmetic mean and weighted standard 
deviation of the investigated normalized local stress distributions.   

Weighted arithmetic mean Weighted SD 

Gyroid sheet 0.358 0.105 
Gyroid skeletal 0.289 0.127 
Primitive sheet 0.329 0.095 
IWP sheet 0.335 0.157 
Diagonal 0.245 0.093 
Neovius sheet 0.370 0.209 
IWP skeletal Int 0.246 0.152 
Octet truss 0.260 0.154  



Fig. 10. Distribution of the normalized local stresses over the range 0 − 1 of a)-b) Gyroid skeletal, c)-d) Primitive sheet, e)-f) Neovius sheet and g)-h) IWP skeletal internal 
unit cells for both loading cases, tensile and shear loads. 



3.4. Case study: application of the methodology to replace cortical bone 
according to three objectives 

Fig. 12 presents the range of the elastic modulus of the cortical bone 
and its density as they are reported in (Grimal and Laugier, 2019). The 
target range of the normalized elastic modulus is portrayed by the 
horizontal area and the target of density is portrayed by the vertical 
highlighted area to limit the topologies that satisfy these two 
requirements. 

Then, by applying the material properties of the biocompatible 
Ti–6Al–4V alloy, which are EBulk = 110 GPa and ν = 0.3, to the selected 
topologies and by setting the effective elastic modulus target as E′

=

18500 MPa, we can study their local stress distribution. The local stress 
distributions of several unit cells with the same effective modulus are 
presented in Fig. 13. Table 4 summarizes the weighted arithmetic mean 
and weighted standard deviation of the investigated local stress 
distributions. 

4. Discussion and analysis

A unit cell specific to medical applications should be generated by
taking into consideration several parameters, namely the topology type, 
the volume fraction, and the material properties. The problem is gov
erned by the aforementioned parameters that can be optimized. These 
parameters induce different effective elastic properties, anisotropic 
response, and local stress distributions for every unit cell topology and 
consequently for the implants. The following chart (Fig. 14) presents the 
collected constraints and objectives of the present problem. The study is 
carried out in the elastic regime and the parameters taken into consid
eration are those in the boxes with the bold outline. 

4.1. Effective mechanical properties related to topology, volume fraction, 
and design parameter t 

In section 3.1, the normalized effective elastic properties of various 
unit cell topologies are presented either versus the volume fraction of 
the unit cells as shown in Fig. 5 or versus the design parameter t as 
shown in Fig. 6. In Fig. 5, one can observe the relation between the 
topologies, both strut-based and TPMS-based, and the volume fraction of 
the unit cells. The evolution of the effective Young’s modulus in Fig. 5 a) 
and shear modulus in Fig. 5 b) is different for each type of topology. The 
slopes of the curves for E* (Fig. 5 a)) and G* (Fig. 5 b)) do not however 
exhibit large differences. The ones for E* present slightly higher differ
ence than those for G*; Gyroid skeletal curve in Fig. 5 a) exhibits a 
steeper slope of the E* compared to Octet-truss. Moreover, the G*-values 
gap is narrower compared to the E*-values gap. The maximum G*-values 
gap is 0.12 approximately, while the maximum E*-value gap is 0.17, 
which means that a larger range of elastic modulus can be satisfied by a 
particular volume fraction of various topologies compared to the range 
of the shear modulus. Fig. 5 c) shows the computed Poisson’s ratio of the 
unit cells and how is it affected by the topology. Some topologies, such 
as Gyroid skeletal and Primitive sheet, are highly sensitive to the 

Fig. 11. Normalized local stress distribution of Diagonal, IWP skeletal internal, and Octet-truss unit cells over the range 0 − 1 at the same effective Young’s modulus, 
7230 MPa. (Iso-effective elastic modulus comparison). 

Table 3 
The table summarizes the weighted arithmetic mean and weighted standard 
deviation of the investigated normalized local stress distributions.   

Weighted arithmetic mean Weighted SD 

IWP skeletal internal 0.255 0.157 
Octet truss 0.212 0.160 
Diagonal 0.262 0.111  



changes of the volume fraction. On the contrary, Neovius sheet and IWP 
sheet topologies exhibit a quasi-constant Poisson’s ratio. 

In Fig. 6, the normalized effective values for the effective Young’s 
modulus, shear modulus, C11, and C12 components are directly related to 

the design parameter t, without the computation of the volume fraction. 
These graphs can be helpful to design the suitable lattice unit cells ac
cording to effective mechanical requirements when their volume frac
tion is not required to be known. The design parameter t determines the 

Fig. 12. Mechanical requirements to be satisfied by the topologies to replace cortical bone successfully.  

Fig. 13. Normalized local stress distribution of Gyroid sheet, Gyroid skeletal, Primitive skeletal internal, Primitive skeletal external, and IWP sheet unit cells over the 
range 0 − 1 at the same effective Young’s modulus, E′

= 18500 MPa. (Iso-effective elastic modulus comparison). 



thickness of the sheet TPMS-based topologies and the diameter of the 
skeletal TPMS-based topologies and thus it is limited by the fabrication 
process. 

4.2. The anisotropic ratio of the unit cells 

In section 3.2, the anisotropic behavior is computed and presented. 
Lattice structures present anisotropic behavior unlike the structures 
with a continuous distribution of material (Bono et al., 1999). From the 
evaluation of the stiffness matrix, the cubic symmetry of all the meso
structures numerically simulated is verified and the three independent 
elastic parameters extracted. The cubic anisotropy is further investi
gated using the Zener ratio and the results are illustrated in Fig. 8. 

Firstly, the Zener ratio for the majority of the topologies tends to 
unity with the increase in the volume fraction of the unit cells. Indeed, 
the lattices tend to be bulk cubes when their volume fraction increases 
and so their behavior is getting closer to isotropy. Secondly, the Gyroid 
sheet and IWP sheet structures hardly present any anisotropic behavior. 
Their Zener ratio values are almost constant and close to one. Therefore, 
these two structures can be used in an application that requires isotropic 
behavior. 

A third observation has to do with the most anisotropic unit cell type, 
which is the Diagonal structure. Fig. 8 demonstrates that the anisotropy 
of the Diagonal unit cell is highly dependent on its volume fraction. At 
low volume fractions, the anisotropy of the unit cell is considerably 
larger than at high volume fractions. A fourth observation is a high 
difference between the levels of anisotropy for the Diagonal and IWP 
skeletal internal structures, even if the two structures possess the same 
BCC configuration. Their topologies are similar but the IWP skeletal 
internal structure has smoother connections than the Diagonal one. 

4.3. Local stress distribution: comparison of topologies under two loading 
cases (tensile and shear) and with various volume fractions 

Furthermore, since fatigue resistance and the related durability are 
necessary for medical implants to avoid a postoperative failure, espe
cially for young patients (Bono et al., 1999), the impact of stress con
centrations is investigated in the lattices. This is investigated with the 
aid of the local stress distribution of the unit cells. The stress values 
could be compared with the yield stress of the unit cells and thus, they 
are related to the fatigue life. All the results have been normalized to be 
adapted to all material types allowing the comparison of several 
topologies. 

The local stress distributions of various unit cells, volume fractions, 
and loading cases are investigated and compared. As the distributions 
are topology-dependent, they are different for each topology. First, in
vestigations to check any volume-fraction- and loading-case- 
dependency have been carried out. Then, a comparison of several to
pologies has been carried out to investigate which topologies present the 
narrowest/most homogenized distributions. The narrowness of the dis
tributions indicates that there are neither unstressed parts of the unit 
cells nor overstressed ones. The unstressed parts point out that a unit cell 
with a lower volume fractions could be used and the overstressed parts 
point out stress concentrations and low fatigue resistance. Both are 
undesirable results. 

First, Fig. 10 shows the local stress distribution for two loading cases, 
tensile and shear loads, for several studied unit cells. Fig. 10 a), c), e), g) 
exhibit the distribution for tensile load per topology with various vol
ume fractions, while Fig. 10 b), d), f) and h) exhibit the distributions for 
a shear load. The most suitable structure would be the one that exhibits a 
homogenized local stress distribution on all the elements. The results 
would be all the elements to be subjected to a single stress value in both 
tensile and shear loading cases with SD = 0. We observe that each to
pology presents a different stress distribution for each loading case. 
Moreover, the majority of the distributions of each topology are not 
sensitive to the changes in the volume fraction. Primitive sheet topology 
is slightly sensitive to volume fraction changes for the tensile loading 
case and Neovius sheet topology for the shear load as it is shown in 
Fig. 10 c) and f) respectively. Moreover, the majority of the local stress 
distribution exhibit approximately a normal distribution, apart from 
Neovius unit cell for the tensile load, Fig. 10 e), and IWP skeletal internal 
unit cell for the tensile load as well in Fig. 10 g). The latter means that in 
the last two cases many elements are subjected to two particular ranges 
of stresses. 

Table 4 
The table summarizes the weighted arithmetic mean and weighted standard 
deviation of the investigated normalized local stress distributions.   

Weighted arithmetic mean Weighted SD 

Gyroid sheet 0.368 0.111 
Gyroid skeletal 0.322 0.150 
Primitive skeletal Int 0.305 0.190 
Primitive skeletal Ext 0.306 0.190 
IWP sheet 0.347 0.160  

Fig. 14. Constraints, in orange, and objectives, in blue color, of the problem to be addressed. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 



4.4. Local stress distribution: comparison at the same volume fraction 

Since there is no significant difference in the local stress distributions 
at various volume fractions, only one volume fraction is selected to study 
the distribution of different topologies at the same time. In Fig. 9 the 
investigated volume fraction is set as 30% for a tensile loading case. The 
Octet-truss curve exhibits a peak at very low-stress values, which means 
that a great number of elements are subjected to very low stresses, with 
values close to zero. Therefore, a large amount of material in this unit 
cell could be removed by performing topology optimization without 
modifying significantly its apparent mechanical properties by achieving 
a lower specific apparent elastic modulus. Neovius sheet and IWP skel
etal internal unit cells exhibit a similar distribution but their elements 
are subjected to slightly higher stresses. 

The computed weighted arithmetic mean and weighted standard 
deviation of the stresses are presented and compared in Table 2. The 
weighted arithmetic mean indicates the apparent elastic modulus of the 
unit cells while the weighted SD indicates the apparent σyield of the to
pologies. Indeed, the topologies with high SD present a broad stress 
distribution with a great number of elements subjected to higher stress 
values than the mean stress. For the same applied mechanical load on 
two different topologies, some elements of the topology with the highest 
SD are subjected to high stresses that may be close or higher than the 
σyield (critical areas). It is important the σmax always to be lower than the 
σyield and thus, the most homogenized distribution is the most suitable. 

The highest weighted arithmetic mean belongs to Neovius Sheet 
topology, which means that this unit cell at a volume fraction of 30% 
presents the highest apparent elastic modulus. This can also be observed 
in Fig. 5 a). The weighted mean stress of the Diagonal structure is the 
lowest and so does its apparent elastic modulus. The sheet TPMS-based 
topologies present higher mean stress than the skeletal TPMS-based and 
strut-based topologies which means that their apparent elastic modulus 
is also higher than the elastic modulus of the skeletal TPMS-based and 
strut-based topologies. 

Neovius Sheet and Diagonal topologies present the highest and 
lowest weighted SD values, respectively. Neovius Sheet topology ex
hibits the broadest local stress distribution, while Diagonal structure 
exhibits the narrowest and the most homogenized one. This means that 
the density of Neovius Sheet could be optimized in terms of local stress 
distribution by suppressing the elements subjected to low-stress values. 
The majority of the elements of Diagonal topology are subjected to 
stresses that are closer to the weighted arithmetic mean compared to the 
other unit cells. Primitive sheet topology presents a slightly higher 
standard deviation which means that the majority of its elements are 
subjected to stresses that are very close to the weighted arithmetic mean 
as well. 

Taking into consideration this first analysis with the statistical re
sults, Diagonal topology can be considered as the most suitable one 
when the objective of the application is both the minimization of the 
elastic modulus and mass, with the drawback of presenting the highest 
anisotropic ratio. A deeper investigation based on further criteria, such 
as damage criteria, is necessary to select a topology that exhibits the best 
behavior in high cycle fatigue though. 

4.5. Local stress distribution: comparison at an iso-effective elastic 
modulus 

Fig. 11 presents a case study; the comparison of the local stress dis
tributions of various unit cells with the same effective elastic properties. 
The elastic modulus objective is set as E′

= 7230 MPa, with a maximum 
error of 0.3%, for the three studied topologies, which present different 
distributions and have different volume fractions. The IWP skeletal in
ternal and Diagonal structures have the same BCC topology, but the 
Diagonal is a strut-based topology whereas IWP skeletal internal is a 
TPMS-based one with smoother surfaces. The stress distribution of both 

unit cells exhibits two peaks. The majority of their elements are sub
jected to two ranges of stresses. Their volume fractions differ signifi
cantly which are 32,8% and 40% for the IWP skeletal internal and 
Diagonal, respectively. This is validated by the different weighted mean 
stress values. Diagonal structure has the narrowest local stress distri
bution, according to the lowest SD and it could be considered as the most 
suitable one when the objective is a homogenized distribution. On the 
contrary to the former advantages of the Diagonal topology, IWP skel
etal internal presents a larger number of elements that are subjected to 
low-stress values and this fact allows volume and mass optimization. 

4.6. Case study: application of the methodology to replace cortical bone 
according to three objectives 

Cortical bone exhibits an elastic modulus in the range of 3 − 30 GPa 
(Al-Tamimi et al., 2017) and a density that varies between 1.6 and 2 g* 
cm− 3 (Grimal and Laugier, 2019). All the objectives have to be reached 
by a topology to replace it successfully. Using Fig. 5 a) and the material 
properties of Ti–6Al–4V alloy, i.e. E = 110 GPa and ν = 0.3, we define 
the range of the targets as shown in Fig. 12. The first objective is the 
architectured structure to exhibit the same apparent elastic properties as 
the cortical bone, being portrayed by the horizontal highlighted area. 
The second objective is the density of the cortical bone to be reached, 
which is portrayed by the vertical highlighted area. Six topologies satisfy 
these objectives; the IWP sheet (red), Primitive skeletal external (black), 
Primitive skeletal internal (dark green), Gyroid sheet (light green), 
Primitive sheet (light blue), and Gyroid skeletal (dark blue). 

The third objective is the selection of a lattice structure that exhibits 
the most homogenized normalized local stress distribution. The local 
stress distribution of the unit cells that satisfy the first and second ob
jectives are presented in Fig. 13. 

Indeed, in Fig. 13 a particular apparent elastic modulus value is 
chosen to compare the stress distribution of the five topologies and it is 
set as E′

= 18500 MPa. A first observation is the identical volume 
fractions and local stress distributions for the two types of Primitive 
skeletal unit cells, even though their shapes are not the same. Their 
volume fraction is the lowest among the volume fractions of all the 
studied structures. In Table 4 the weighted arithmetic mean and stan
dard deviation are presented to analyze statistically the distributions 
presented in Fig. 13. Gyroid sheet topology exhibits the lowest standard 
deviation which means that its normalized local stress distribution is the 
most homogenized among all the others. There are no elements that are 
subjected to higher normalized stress values than 0.72 as shown in the 
graph. According to this first analysis, this topology could be considered 
as the optimal one for the replacement of the cortical bone. 

5. Conclusions

In the present study, a comprehensive qualitative and quantitative
approach is performed to numerically design, analyze, and finally select 
the suitable lattice type as the internal architecture of an implant. A 
broad database of TPMS-based and two strut-based unit cells with 
various volume fractions is designed for this investigation, which is 
carried out with the aid of finite element analysis and the application of 
a periodic homogenization method in the elastic regime. 

The following conclusions have been reached:  

• The direct relation of various normalized effective mechanical
properties to the design parameter t of the TPMS equations makes
straightforward the design procedure.

• The most isotropic behavior is exhibited by Gyroid sheet and IWP
sheet topologies. Their Zener ratios are quasi-constant and insensi
tive to volume fraction variation compared to other studied
topologies.



• For all the studied topologies, the distributions of the normalized
local stresses computed for the unit cells are not sensitive to volume
fraction changes, in both tensile and shear loading cases.

• According to the statistical analysis carried out, it is shown that the
Diagonal structure exhibits a narrower stress distribution than the
IWP skeletal internal topology at the same apparent elastic modulus.

• Gyroid sheet topology satisfies several objectives of the problem
presented (cortical bone replacement), such as the effective elastic
properties and the density of the cortical bone and it exhibits a ho
mogenized local stress distribution. This topology is selected as the
most suitable one among the five topologies, based on the statistical
analysis carried out.

The same methodology can be employed by replacing the third cri
terion of local stress distribution with a criterion based on anisotropy 
and Zener ratio evolution, which is presented in Fig. 8. The reader 
should keep in mind that this analysis has been performed in the elastic 
regime. It is then necessary but not sufficient to reach the final selection 
of the most suitable topology. Further criteria, such as nonlinear 
behavior or ductile damage criteria should be taken into consideration 
in the design procedure. 
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Appendix 

Fig. 15. presents all the steps of the numerical chain to design TPMS-based unit cells and lattices. Example of the Python code for the design of a 
gyroid TPMs follows.

Fig. 15. Complete numerical chain for the design process of the TPMS-based lattices followed in this study.  

Python code for gyroid TPMS design: 





. (continued). 
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