N
N

N

HAL

open science

Cloud Query Processing with Reinforcement
Learning-based Multi-Objective Re-optimization

Chenxiao Wang, Le Gruenwald, Laurent d’Orazio, Eleazar Leal

» To cite this version:

Chenxiao Wang, Le Gruenwald, Laurent d’Orazio, Eleazar Leal. Cloud Query Processing with Re-
inforcement Learning-based Multi-Objective Re-optimization. International Conference on Model &

Data Engineering (MEDI), Jun 2021, Tallinn, Estonia. hal-03522314

HAL Id: hal-03522314
https://hal.science/hal-03522314

Submitted on 12 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03522314
https://hal.archives-ouvertes.fr

Cloud Query Processing with Reinforcement
Learning-based Multi-Objective Re-optimization

Chenxiao Wang', Le Gruenwald!, Laurent d’Orazio?, and Eleazar Leal®

1 University of Oklahoma, Norman, Oklahoma, USA
{chenxiao, ggruenwald}@ou.edu
2 CNRS IRISA, Rennes 1, University, Lannion, France
laurent.dorazio@univ-rennesl.fr
3 University of Minnesota Duluth, Duluth, Minnesota, USA
eleal@d.umn.edu

Abstract. Query processing on cloud database systems is a challeng-
ing problem due to the dynamic cloud environment. The configura-
tion and utilization of the distributed hardware used to process queries
change continuously. A query optimizer aims to generate query execu-
tion plans (QEPs) that are optimal meet user requirements. In order
to achieve such QEPs under dynamic environments, performing query
re-optimizations during query execution has been proposed in the litera-
ture. In cloud database systems, besides query execution time, users also
consider the monetary cost to be paid to the cloud provider for executing
queries. Thus, such query re-optimizations are multi-objective optimiza-
tions which take both time and monetary costs into consideration. How-
ever, traditional re-optimization requires accurate cost estimations, and
obtaining these estimations adds overhead to the system, and thus causes
negative impacts on query performance. To fill this gap, in this paper,
we introduce ReOptRL, a novel query processing algorithm based on
deep reinforcement learning. It bootstraps a QEP generated by an exist-
ing query optimizer and dynamically changes the QEP during the query
execution. It also keeps learning from incoming queries to build a more
accurate optimization model. In this algorithm, the QEP of a query is
adjusted based on the recent performance of the same query so that the
algorithm does not rely on cost estimations. Our experiments show that
the proposed algorithm performs better than existing query optimiza-
tion algorithms in terms of query execution time and query execution
monetary costs..

Keywords: Query Optimization- Cloud Databases - Reinforcement Learn-

ing - Query Re-optimization.

1 Introduction

In a traditional database management system (DBMS), finding the query ex-
ecution plan (QEP) with the best query execution time among those QEPs
generated by a query optimizer is the key to the performance of a query. In a

cloud database system, minimizing query response time is not the only goal of
query optimization. As hardware usages are charged on-demand and scalability
is available to users, monetary cost also needs to be considered as one of the
objectives for optimizing QEPs in addition to query response time. In order to
do that, the query optimizer evaluates the time and monetary costs of different
QEPs in order to derive the best QEP for a query. These time and monetary
costs are estimated based on the data statistics available to the query optimizer
at the moment when the query optimization is performed. These statistics are
often approximate, which may result in inaccurate estimates for the time and
monetary costs needed to execute the query. Thus, the QEP generated before
query execution may not be the best one.

To solve the problem, researchers have developed learning-based algorithms
to adjust the data statistics to get more accurate cost estimations [4,13]. These
methods are heuristic-based and the adjustment of QEP is not adaptable to the
dynamic environment. More recently, machine learning-based algorithms are in-
troduced [9,20]. More accurate cost estimations are made by the data statistics
estimated by the machine learning models. The optimizer uses these cost estima-
tions to adjust the QEP. Again, even those methods improved the accuracy of
data statistics estimation such as cardinalities, the overall performance is not im-
proved much. This is usually because updating data statistics for the optimizer
to use is a very expensive operation by itself. This becomes the main source of
negative impacts on the overall performance. To eliminate this problem, in this
paper we propose an algorithm, called Re-OptRL, for query re-optimization that
makes use of reinforcement learning (RL) to find the best QEP without relying
on data statistics.

RL is about taking suitable actions to maximize reward in a particular situ-
ation. The decision of choosing actions follows the trial-and-error method and is
evaluated by the reward. The learning model is adjusted with the reward after
each action has been performed. We choose RL instead of supervised learning
methods [10] because unlike supervised learning, RL does not require a labeled
dataset of past actions to be available to train the learning model in advance be-
fore it can be used to predict future actions. Query optimization in the database
system can be regarded as a series of actions and the best actions can be learned
from evaluating the historical optimizations. In the proposed algorithm ReOp-
tRL, the QEP of a query is adjusted during the query execution independently of
data statistics. The adjustment is based on the performance of historical queries
that are executed on the system recently. Evaluating these historical executions
is reasonable especially on the cloud database system. As a large number of dif-
ferent queries are executed frequently, for the same query, the time gap between
its incoming query and its historical query is short. The algorithm monitors and
keeps learning from these executions while more incoming queries are executed.
Some algorithms used reinforcement learning in adjusting their QEPs also, but
these adjustments are only focusing on the JOIN order of queries [5,8]. Our al-
gorithm extends these features to not only adjust the QEP itself but also to find
the best allocations to execute different operators in the query, i.e, to find which

machines should be used to execute which operator. In a cloud database system,
each operator can be executed on a different machine, and different machines can
have different hardware configurations with different usage prices. This means
that for the same query operator, not only different execution times but also dif-
ferent monetary costs can incur depending on which machine is used to execute
the operator. An operator executed on machine A may have a lower execution
time but may cost more money, on the other hand, the same operator executed
on machine B may have a higher execution time but may cost less money. Those
differences in execution times and monetary costs for individual operators even-
tually affect the overall performance in accumulation for the entire query. Our
goal is to fulfill both user’s execution time and monetary cost requirements of
the overall query performance. Due to this reason, optimal allocations of opera-
tor executions to appropriate machines on the cloud are as important as optimal
QEPs themselves. Our contributions in this work are the following;:

— We propose an algorithm that uses RL to perform multi-objective query
processing for an end-to-end cloud database system.

— Our algorithm employs a new reward function designed specifically for query
re-optimization.

— We present comprehensive experimental performance evaluations. The ex-
perimental results show that our algorithm improves both query execution
time and monetary costs when comparing to existing query optimization
algorithms.

The remaining of this paper is organized as follows: Section 2 discusses the re-
lated work; Section 3 presents the proposed reinforcement learning-based query
re-optimization algorithm; Section 4 discusses the experimental performance
evaluations; and finally, Section 5 presents the conclusions and discusses future
research directions.

2 Related Work

The problem of query re-optimization has been studied in the literature. In the
early days, heuristics were used to decide when to re-optimize a query or how
to do the re-optimization. Usually, these heuristics were based on cost estima-
tions which were not accurate at the time when query re-optimization takes
place. Also, sometimes, a human-in-the-loop was needed to analyze and adjust
these heuristics [5]. These add additional overheads to the overall performance
of queries. Unfortunately, these heuristic solutions can often miss good execution
plans. More importantly, traditional query optimizers rely on static strategies,
and hence do not learn from previous experiences. Traditional systems plan a
query, execute the query plan, and forget that they ever optimized this query.
Because of the lack of feedback, a query optimizer may select the same bad plan
repeatedly, never learning from its previous bad or good choices.

Machine learning techniques have been used recently in query optimizations
for different purposes. In earlier works, Leo [15] learns from the feedback of

executing past queries by adjusting its cardinality estimations over time, but
this algorithm requires human-tuned heuristics, and still, it only adjusts the
cardinality estimation model for selecting the best join order in a query. More
recently, the work in [20] presents a machine learning-based approach to learn
cardinality models from previous job executions and these models are then used
to predict the cardinalities in future jobs. In this work, only join orders, not
the entire query, are optimized. In [18], the authors examine the use of deep
learning techniques in database research. Since then, reinforcement learning is
also used. The work proposes a deep learning approach for cardinality estimation
that is specifically designed to capture join-crossing correlations. SkinnerDB [16]
is another work that uses a regret-bounded reinforcement learning algorithm to
adjust the join order during query execution. None of these machine learning-
based query optimization algorithms is designed for predicting the action that
should follow after one query operator has been executed. Recently, there have
been several exciting proposals in putting reinforcement learning (RL) inside a
query optimizer. As described in [19] and shown in Fig.1, reinforcement learning
describes the interaction between an agent and an environment. The possible
actions that the agent can take given a state Sy of the environment are denoted
as Ay ={ag, a1, . . ., a,}. The agent performs an action from the action set
A; based on the current state S; of the environment. For each action taken by
the agent, the environment gives a reward r; to the agent and the environment
turns into a new state S:11, and the new action set is A¢1. This process repeats
until the terminal state is reached. These steps form an episode. The agent tries
to maximize the reward and will adjust after each episode. This is known as the
learning process.

state reward

action
S R, A,
R (
S.. | Environment]4—
\

Fig. 1: General Procedure of Reinforcement Learning [19]

Ortiz et al. [12] apply deep RL to learn a representation of queries, which
can then be used in downstream query optimization tasks. Liu [6] and Kipf [5]
use DNNs to learn cardinality estimates. Closer to our work is Marcus et al.’s
work of a deep RL-based join optimizer, ReJOIN [8], which orders a preliminary
view of the potential for deep RL in this context. The early results reported in
[8] give a 20% improvement in the query execution time of Postgres. However,
they have evaluated only 10 out of the 113 JOB queries.

3 Deep Reinforcement Learning based Query
Re-Optimization

In this section, we present our query re-optimization algorithm that makes use of
reinforcement learning, ReOptRL. First, we discuss our query processing proce-
dure in the cloud database system. Then we describe how the deep reinforcement
learning algorithm is used in our query processing to select the best actions for
the performance of queries. In this algorithm, a query will be converted into a
logical plan by a traditional query parser. Then for each logical query operator,
we use a deep reinforcement learning model to select what physical operator and
which machines (containers) should be used to execute this logical operator so
that each operator execution is optimized to gain the maximum improvement
on overall performance. These selections are learned from the same operator ex-
ecuted previously in the system. Besides that, as in large applications, there will
be a large number of queries running frequently. For a query operator, it is rea-
sonable to utilize the performance of its previous executions of the same query
to predict the performance of its current execution because the time between
the two executions is short.

3.1 The Environment of Our Cloud Database System

In this section, we first briefly describe our environment for query processing. Our
applications mainly focus on processing queries in a mobile cloud environment.
Fig. 2 shows the process flow of query processing in the mobile-cloud database
system that we have developed [17]. In this architecture, the mobile device is for
the user to access the database and input queries, the data owner is a server on-
site that contains private data, and the cloud provider owns the cloud database
system. Executing a query incurs three different costs: the monetary cost of
query execution on the cloud, the overall query execution time, and the energy
consumption on the mobile device where the query might be executed. These
three costs constitute the multi-objectives that the query optimizer needs to
minimize to choose the optimal query execution plan (QEP). Different QEPs
are available due to the elasticity of the cloud which considers multiple nodes
with different specifications. In this paper, we focus on query processing on the
cloud provider’s part. We consider both the query execution time and monetary
cost, but not the energy cost on mobile devices.

Different users have different preferences for choosing a suitable QEP for their
purposes. In an application scenario where many queries are executed per day,
organizations may want to minimize the monetary cost spent for query execution
to fit their budget. They may also want to minimize query execution time to meet
customers’ query response time requirements and to optimize employees’ working
time. In order to incorporate these user’s preferences into the query optimization
algorithm, we use the Normalized Weighted Sum Model we have developed in
[3] to select the best plan. In this model, every possible QEP alternative is
rated by a score that combines both the objectives, query response time, and
monetary cost, with the weights defined by the user and the environment for each

objective, and the user-defined acceptable maximum value for each objective.
These weights defined by the user are called Weight Profile (wp), which is a
two-dimensional vector and each dimension is a number between 0 to 1 which
defines the preferences. The following function is used to compute the score of a
QEP:

n
WSM—SCORE __ Qij
A4; =)W oo (1)
j=1 J

where a;; is the value of QEP alternative i (QEPF;) for objective j, m; the
user-defined acceptable maximum value for objective j, and w; the normalized
composite weight of the user and environment weights for objective j, which is
defined as follows:

uw; * ew,
> (uw * ew)

where vw; and ew; describe the user and the environmental weight for objec-
tive j, respectively. These weights are user-defined. Since the different objectives
are representative of different costs, the model chooses the alternative with the
lowest score to minimize the costs.

H e)
L:Input Query
I 3:5end Query 4:5end Query

2:Check Query Cache for
available result

(2)

U)j:

Cloud Providers

Storage Service

ss.aupn ized query 6R e Response

7:Receive Response - ’

Computing Service

Estimation ke ol
Cache

Storage Service

4:Send Query 4:5end Query
7:Receive Response | / / Database pg

Computing Service

Fig. 2: Mobile Cloud Database Environment

3.2 Overview of Reinforcement Learning based Query Processing
Algorithm (ReOptRL)

In this work, we use a policy gradient deep RL algorithm for query re-optimization.
This algorithm uses a deep neural network to help the agent decide the best ac-
tion to perform under each state. In this work, the agent is the query optimizer,
an action is a combination of a physical operator to execute a logical operator

and a machine to execute this operator, and a state is a fixed-length vector
encoded from the logical query plan parsed from a traditional query optimizer.

The input of the neural network is the vector of the current state. The input
is sent to the first hidden layer of the neural network whose output is then sent to
the second layer, and so on until the final layer is reached, and then an action is
chosen. The policy gradient is updated using a sample of the previous episodes,
which is an operator execution in our case. Once an episode is completed (which
means a physical operator and execution container are selected in our case), the
execution performance is recorded and a reward is received where a reward is a
function to evaluate the selected action. The details of the reward function will
be explained in Section 3.3. The Weights of the neural network is updated after
several episodes using existing techniques, such as back-propagation [6].

Executon 15t
operatpr of new QEP

Costs (trme and money) of executng
158 CORANr

Execute next oparatos
n new QEP
3

—Yer—>, Send Resuls %o user

Smer2zamer end

Conven coMaNe 10 vacir

vecior and executon costs

RL Model

v decon

Semect Acden
No—<_10 Qxacute
sgerator

Yo§

Fig. 3: Procedure of the proposed algorithm, ReOptRL

Fig.3 shows the major steps in query processing when ReOptRL is incorpo-
rated for query re-optimization. First, the optimizer receives a query and then
the query is compiled into a QEP (logical plan). Secondly, the first available op-
erator is converted into a vector representation and is sent to the RL model. The

RL model will select the optimal action, which is the combination of a physical
operator and a container to execute this operator. Then this operator is sent
to execution and the execution time and monetary costs of this execution are
recorded to update the reward function. Once the reward function is updated,
the weights of this RL model are adjusted according to the updated reward
function. Then the updated RL model is ready for future action selections of the
same operator.

There are various kinds of reinforcement learning algorithms. Q-Learning is
one of the popular value-based reinforcement learning algorithms [19]. In Q-
Learning, a table (called Q-table) is used to store all the potential state-action
pairs (S,, a,) and an evaluated Q-value associated with this pair. When the
agent needs to decide which action to perform, it looks up the Q-value from the
Q-table for each potential action under the current state and selects and performs
the action with the highest Q-value. After the selected action is performed, a
reward is given and the Q-value is updated using the Bellman equation [11].

Q(St, ar) + Q(St, ar) + a(Ry +yQ(St41, ary1) — Q(St, ar)) (3)

In Equation (3), Q(St, a) is an evaluated value (called Q-value) of executing
Action a; at State S;. This value is used to select the best Action to perform
under the current state. To keep this value updated with accurate evaluation is
the key to reinforcement learning. « is the learning rate and + is the discount
rate. These two values are constant between 0 and 1. The learning rate « controls
how fast the new Q-value is updated. The discount rate + controls the weight of
future rewards. If v = 0, the agent only cares for the first reward, and if v = 1,
the agent cares for all the rewards in the future [5]. R is the reward which is
described in Section 3.3

Fig.4 shows the pseudo-code of the proposed algorithm. First, the optimizer
receives a query and then the query is compiled into a QEP (logical plan) (Line
4). Then, the QEP is converted into a vector representation. By doing this,
the current QEP represents the current state and can be used as the input
of a neural network. We use a one-hot vector to present this vector and this
technique is adapted from the recent work [7] (Line 5). This vector is sent to
the RL model, which is a neural network as described in Section 3.1. The RL
model will evaluate the Q-values for all the potential actions to execute the next
available query operator (Line 6). Each of these actions includes two aspects, the
optimal physical operator and the best container to execute the next available
query operator. Then the action with the best Q-value will be selected and
performed by the DBMS (Line 7). After that, the executed operator is discarded
from the QEP and the time and monetary costs to execute this operator are
used to compute the reward for this action (Line 8). The reward is updated
with the time and monetary cost to execute the operator and then the expected
Q-value is updated by the Bellman Equation (3) with the updated reward (Line
9-11). The weights of the neural network are updated accordingly by the back-
propagation method (Line 12). This process repeats for each operator in the

QEP and terminates when all the operators in the QEP are executed. The query
results are then sent to the user (Line 15).

Algorithm 1: Query Processing with Reinforcement Learning Based
Re-Optimization (Re-OptRL)
Data: SQL query, Weight Profile wp, Reward Function R (), Learning rate «,

Discount rate ~
Result: The query result set of the input query

1 t=0;

2 Result = 0;

3 Qi=0;

4 while QEP # () do

5 State S; = convert QEP to a state vector;

6 Actiont=RunLearningModel (S, wp);

7 Result=Result U execute (Op, Action:);

8 QEP=QEP-Op;

9 Update R:=R (wp, Actiont.time, Actiont.money));

10 Obtain Q-value of next state ;41 from the neural network;
11 Update Q-value of current state Q+ = Bellman(Q¢, Qt+1, Re, o, 7);
12 Update Weights in the neural network;

13 t=t+1;
14 end

15 return Result;

Fig. 4: Pseudo code of Proposed algorithm (ReOptRL)

3.3 Reward Function

In ReOptRL, after an action is performed, the reward function is used to eval-
uate the action. This gives feedback on how the selected action performs to the
learning model. The performed action with a high reward will be more likely to
be selected again under the same state. The reward function plays a key role
in the entire algorithm. In our algorithm, we would like the actions with low
query execution time and monetary cost to be more likely chosen. To reflect this
feature, here we define the reward function as follows:

1
= 4
Reward R T Wy = T8 & (W M5 (4)

where W} and W, are the time and monetary weights provided by the user, T2,
and MJ, is the time and monetary costs for executing the current operator op
in query q. According to this reward function, the query is executed based on
the user’s preference which is either the user wants to spend more money for
a better query execution time or vice versa. We call these preferences Weights.

10

These weights defined by the user are called Weight Profile (wp), which is a
two-dimensional vector and each dimension is a number between 0 to 1. Notice
that, the user only needs to specify one dimension of the weight profile, the
other dimension is computed with 1-Weight automatically. For example, if a user
demands fast query response time and is willing to invest more money to achieve
it, the weight profile for this user probably would be < W; = 0.9, W,, = 0.1 >.
The detail can be found in our previous work [3]. This reward function is a
monotonic decreasing function. With the increase of (W x T,) + (W, * MJ,),
which is the total costs of executing a query operator, the reward decreases.
Notice that, as (W; *T4,) + (W, * M2,) approaches zero, the reward approaches
positive infinity. When this situation happens, if an action A is performed with
small total costs, then A will always be selected and performed, and all the
other actions will be ignored. This is not desirable, and to keep the relationship
of reward and total costs close to linear, we use 1+ (W; * Td,) + (Wy, * MJ,)
as the denominator in the reward function. In summary, if performing an action
takes high costs, this action will be less likely to be chosen in the future.

4 Performance Evaluation

In this section, we first describe the hardware configuration, database bench-
mark, and parameters we used in our experimental model. We also introduce
the algorithms we compared with our algorithm.

4.1 Hardware Configuration, Database Benchmark, and Parameter
Values

There are two sets of machines that are used in our experiments. The first set
consists of a single local machine used to train the machine learning model and to
perform the query optimization. This local machine has an Intel i5 2500K Dual-
Core processor running at 3 GHz with 16GB DRAM. The second set consists of
10 dedicated Virtual Private Servers (VPSs) that are used for the deployment
of the query execution engine. 5 of these VPSs, called small containers, have
one Intel Xeon E5-2682 processor running at 2.5GHz with 1 GB of DRAM.
The other 5 VPSs, called large containers, each has two Intel Xeon E5-2682
processors running at 2.5GHz with 2 GB of DRAM. The query optimizer and
the query engine used in this experiment are modified from the open source
database management system, PostgreSQL 8.4 [14]. The data are distributed
among these VPSs. The queries and database tables are generated using the
TPC-H benchmark [1]. There are eight database tables with a total size of 1,000
GB. We run 50,000 queries in total and these queries are generated by the
query templates randomly selected from the 22 query templates from the TPC-
H benchmark [1]. In the experiments, to update the Q-value using the Bellman
equation as shown in Equation (3) discussed in Section 3.2, we set the learning
rate a as 0.1 and discount rate v as 0.5.

11

4.2 Evaluation of ReOptRL

In this section, we compare the query processing performances obtained when the
following query re-optimization algorithms are incorporated into query process-
ing: 1) our proposed algorithm (denoted as ReOptRL); 2) the algorithm where
a query re-optimization is conducted automatically after the execution of each
stage in the query is completed (denoted as ReOpt), which we developed based
on the state-of-art works [17,2]; 3) the algorithm where a query re-optimization
is conducted by a supervised machine learning model decision (denoted as Re-
OptML); 4) the query re-optimization algorithm which uses sampling-based
query estimation (denoted as Sample) proposed in [21]; and 5) the query pro-
cessing algorithm that uses no re-optimization (denoted as NoReOpt).

We use NoReOpt as the baseline and the other algorithms are compared to
the baseline. The two figures, Fig. 5 and Fig. 6, show the improvement of each
algorithm over the baseline. From Fig 5, we can see that, from the query execu-
tion time perspective, ReOptRL performs 39% better on average than NoReOpt,
while ReOptML performs 27%, ReOpt 13% and Sample 1% better than NoRe-
Opt. There are 15 out of 22 query types that have better performance if our
algorithm is used. The best case is query 9 (Q9), for which our algorithms per-
form 50% better than NoReOpt. From Fig 6, from the monetary cost perspective,
query processing uses ReOptRL performs 52% better on average than NoReOpt,
while ReOptML performs 27%, ReOpt 17%, and Sample 5% better than NoRe-
Opt. There are 14 out of 22 query types that have better performance if our
proposed algorithm is used. The best case is also Q9, for which our algorithms
perform 56% better than NoReOpt.

The above results show that overall our proposed algorithm improves more
time and monetary cost than the four algorithms, ReOpt, ReOptML, Sample,
and NoReOpt. Especially, the monetary cost has a significant improvement (56%
better than NoReOpt); however, for simple query types (1,2,3,4,6,8,10,11) which
are 8 query types out of 22 TPC-H query types, our algorithm does not improve
their performance due to the overhead involved.

O||||||II||||||IH‘|I.. |HI|” I |MH
Ql Q2 Qa3 Q4 Qs Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Ql6 Q17 Q18 Q20 Q21 Q22
Query Type

Noow

=
S)

Average Query Resp. Time (sec)

® NoReOpt ReOpt ReOptML ™ Sample ReOptRL

Fig. 5: Time cost performance of executing query using different algorithms

12

60
50
0

; i LD
s (10006 O

Ql Q2 Q3 Q4 Q5 06 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q20 Q21 Q22
Query Type

w s

Average Monetary Cost (US Cent)

mNoReOpt ®ReOpt WReOptML MSample M ReOptRL

Fig. 6: Monetary cost performance of executing queries using different algorithms

In these experiments, the Reinforcement Learning part of the query pro-
cessing contributes to these improvements and it is beneficial in the follow-
ing aspect. In all the three algorithms, ReOpt, ReOptML, and Sample, query
re-optimization requires a lot of overhead data statistics that need to be ac-
cessed and updated frequently. In our proposed algorithms, no data statistics
are needed, and re-optimization is based on the results of learning which can be
decided quickly.

5 Impacts of Weight Profiles

Our algorithm allows users to input their weight profiles and this feature is
reflected in the reward function. We study how our proposed algorithm works
under different weight profiles submitted by users. Fig.7 shows the performance
of the monetary cost of each algorithm and the percentage of improvement of the
monetary cost of each algorithm compared to the baseline on different weights.
Notice that the Weight of Money in our application is (1-Weight of Time).

0.015 100%
0018 e ——— zgz
0.013 S
0.012 60%
0.011 50%

0.01 40%
0.009 0%
0.008

20%
0.007
0.006
10% 20% 30% 40% 50% 60% 70% 80% 90%

10%

-10% 10% 20% 30% 40% 50% 60% 70% 80% 90%

-20%
Weight of Time

Average Query Monetary Cost (cents)
Percentage of Improvement over
Monteary Cost

Weight of Time

NoReOpt ReOpt ReOpEML ReOpt vs NoReopt ReOptML vs NoReopt

ReOPtRL Sample ReOPtRL vs NOREOPt s Sample vs NoReopt

Fig. 7: Impacts of the weight of query execution time on the performance im-
provement of the algorithm over the baseline algorithm, NoReopt

13

From Fig.7, we can see that, when the weight of money increases, the mon-
etary cost to execute the query decreases accordingly. Even when the weight of
money is low, our algorithm still outperforms other algorithms on the monetary
cost (by 10%). This happens because by using the learning model, our algorithm
always chooses the right physical operator and container to execute the operator.
Similarly, from the monetary cost perspective, our algorithm performs better on
average than the other three algorithms.

The above results show that our algorithm can adapt to the user’s weight
profile very well. When the user has a high demand on either query execution
time or money cost, our algorithm still outperforms the other algorithms.

6 Conclusion and Future Work

This paper presents an algorithm called ReOptRL for processing queries in a
cloud database system taking both query execution time and money costs to be
paid to the cloud provider into consideration. The algorithm uses a reinforcement
learning-based model to decide the physical operator and machines to execute
an operator from a query execution plan (QEP) of a query. The experimental
performance evaluations using the TPC-H benchmark show that our proposed
algorithm, ReOptRL, improves the query response time (from 12% to 39%) and
monetary cost (from 17% to 56%) over the existing algorithms that use either
no re-optimization, re-optimization after each stage in the query execution plan
(QEP) is executed, supervised machine learning-based query re-optimization, or
sample-based re-optimization.

While our studies have shown that reinforcement learning has positive im-
pacts on the optimization and execution of each operator in a query, our algo-
rithm currently does not consider the Service Agreement Level (SLA), which is
an important feature of cloud database systems. For future work, we will inves-
tigate techniques to incorporate this feature into our algorithm by adjusting the
reward function to consider SLA.

Acknowledgement

This work is partially supported by the National Science Foundation Award No.
1349285.

References

1. Barata, M., Bernardino, J., Furtado, P.: An overview of decision support bench-
marks: Tpc-ds, tpe-h and ssb. In: Rocha, A., Correia, A.M., Costanzo, S., Reis, L.P.
(eds.) New Contributions in Information Systems and Technologies. pp. 619-628
(2015)

2. Bruno, N., Jain, S., Zhou, J.: Continuous cloud-scale query optimization and pro-
cessing. Proc. VLDB Endow. 6(11), 961-972 (Aug 2013)

14

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

Helff, F., Gruenwald, L., d’Orazio, L.: Weighted sum model for multi-objective
query optimization for mobile-cloud database environments. In: Proceedings of
the Workshops of the EDBT/ICDT 2016 Joint Conference. vol. 1558 (2016)
Kabra, N., DeWitt, D.J.: Efficient mid-query re-optimization of sub-optimal query
execution plans. p. 106-117. SIGMOD ’98 (1998)

Kipf, A., Kipf, T., Radke, B., Leis, V., Boncz, P.A., Kemper, A.: Learned cardinal-
ities: Estimating correlated joins with deep learning. In: 9th Biennial Conference
on Innovative Data Systems Research, CIDR 2019 (2019)

Liu, H., Xu, M., Yu, Z., Corvinelli, V., Zuzarte, C.: Cardinality estimation using
neural networks. p. 53-59. CASCON ’15, IBM Corp. (2015)

Marcus, R., Negi, P., Mao, H., Zhang, C., Alizadeh, M., Kraska, T., Papaem-
manouil, O., Tatbul, N.: Neo: A learned query optimizer 12(11), 1705-1718 (2019)
Marcus, R., Papaemmanouil, O.: Deep reinforcement learning for join order enu-
meration. aiDM’18 (2018)

Markl, V., Raman, V., Simmen, D., Lohman, G., Pirahesh, H., Cilimdzic, M.: Ro-
bust query processing through progressive optimization. In: Proceedings of the 2004
ACM SIGMOD International Conference on Management of Data. p. 659-670.
SIGMOD ’04 (2004)

Murphy, K.P.: Machine Learning: A Probabilistic Perspective. The MIT Press
(2012)

Ohnishi, S., Uchibe, E., Yamaguchi, Y., Nakanishi, K., Yasui, Y., Ishii, S.: Con-
strained deep g-learning gradually approaching ordinary g-learning. Frontiers in
Neurorobotics 13, 103 (2019)

Ortiz, J., Balazinska, M., Gehrke, J., Keerthi, S.S.: Learning state representa-
tions for query optimization with deep reinforcement learning. In: Proceedings of
the Second Workshop on Data Management for End-To-End Machine Learning.
DEEM’18 (2018)

Park, Y., Tajik, A.S., Cafarella, M., Mozafari, B.: Database learning: Toward a
database that becomes smarter every time. In: Proceedings of the 2017 ACM In-
ternational Conference on Management of Data. p. 587-602. SIGMOD ’17 (2017)
PostgreSQL: (2021), https://www.postgresql.org/

Stillger, M., Lohman, G.M., Markl, V., Kandil, M.: Leo - db2’s learning optimizer.
In: Proceedings of the 27th International Conference on Very Large Data Bases.
p. 19-28. VLDB ’01 (2001)

Trummer, 1., Moseley, S., Maram, D., Jo, S., Antonakakis, J.: Skinnerdb: Regret-
bounded query evaluation via reinforcement learning. Proc. VLDB Endow. 11(12),
2074-2077 (Aug 2018)

Wang, C., Arani, Z., Gruenwald, L., d’Orazio, L.: Adaptive time, monetary cost
aware query optimization on cloud database systems. In: IEEE International Con-
ference on Big Data, Big Data 2018. pp. 3374-3382. IEEE (2018)

Wang, W., Zhang, M., Chen, G., Jagadish, H.V., Ooi, B.C., Tan, K.L.: Database
meets deep learning: Challenges and opportunities. SIGMOD Rec. 45(2), 17-22
(Sep 2016)

Wiering, M., van Otterlo, M.: Reinforcement Learning: State-of-the-Art. Springer
Publishing Company, Incorporated (2014)

Wu, C., Jindal, A., Amizadeh, S., Patel, H., Le, W., Qiao, S., Rao, S.: Towards
a learning optimizer for shared clouds. Proc. VLDB Endow. 12(3), 210-222 (Nov
2018)

Wu, W., Naughton, J.F., Singh, H.: Sampling-based query re-optimization. p.
1721-1736. SIGMOD ’16, Association for Computing Machinery (2016)

