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Abstract
Mixed Membership Models (MMMs) are a popular family of latent structure mod-

els for complex multivariate data. Instead of forcing each subject to belong to a single
cluster, MMMs incorporate a vector of subject-specific weights characterizing partial
membership across clusters. With this flexibility come challenges in uniquely identi-
fying, estimating, and interpreting the parameters. In this article, we propose a new
class of Dimension-Grouped MMMs (Gro-M3s) for multivariate categorical data, which
improve parsimony and interpretability. In Gro-M3s, observed variables are partitioned
into groups such that the latent membership is constant for variables within a group
but can differ across groups. Traditional latent class models are obtained when all
variables are in one group, while traditional MMMs are obtained when each variable
is in its own group. The new model corresponds to a novel decomposition of probabil-
ity tensors. Theoretically, we derive transparent identifiability conditions for both the
unknown grouping structure and model parameters in general settings. Methodologi-
cally, we propose a Bayesian approach for Dirichlet Gro-M3s to inferring the variable
grouping structure and estimating model parameters. Simulation results demonstrate
good computational performance and empirically confirm the identifiability results.
We illustrate the new methodology through an application to a functional disability
dataset.

Keywords : Bayesian Methods, Grade of Membership Model, Identifiability, Mixed Member-
ship Model, Multivariate Categorical Data, Probabilistic Tensor Decomposition.
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1 Introduction

Mixed membership models (MMMs) are a popular family of latent structure models for

complex multivariate data. Building on classical latent class and finite mixture models

(McLachlan and Peel, 2000), which assign each subject to a single cluster, MMMs include

a vector of probability weights characterizing partial membership. MMMs have seen many

applications in a wide variety of fields, including social science surveys (Erosheva et al., 2007),

topic modeling and text mining (Blei et al., 2003), population genetics (Pritchard et al.,

2000), biological and social networks (Airoldi et al., 2008), and data privacy (Manrique-

Vallier and Reiter, 2012); see Airoldi et al. (2014) for more examples.

Although MMMs are conceptually appealing and very flexible, with the rich modeling

capacity come challenges in identifying, accurately estimating, and interpreting the param-

eters. MMMs have been popular in many applications, yet key theoretical issues remain

understudied. The handbook of Airoldi et al. (2014) emphasized theoretical difficulties of

MMMs ranging from non-identifiability to multi-modality of the likelihood. Finite mixture

models have related challenges, and the additional complexity of the individual-level mixed

membership incurs extra difficulties. A particularly important case is MMMs for multivari-

ate categorical data, such as survey response (Woodbury et al., 1978; Erosheva et al., 2007;

Manrique-Vallier and Reiter, 2012). In this setting, MMMs provide an attractive alterna-

tive to the latent class model of Goodman (1974). However, little is known about what is

fundamentally identifiable and learnable from observed data under such models.

Identifiability is a key property of a statistical model, meaning that the model parameters

can be uniquely obtained from the observables. An identifiable model is a prerequisite for

reproducible statistical inferences and reliable applications. Indeed, interpreting parameters

estimated from an unidentifiable model is meaningless, and may lead to misleading conclu-

sions in practice. It is thus important to study the identifiability of MMMs and to provide

theoretical support to back up the conceptual appeal. Even better would be to expand the

MMM framework to allow variations that aid interpretability and identifiability. With this

motivation, and focused on mixed membership modeling of multivariate categorical data,

this paper makes the following key contributions.

We propose a new class of models for multivariate categorical data, which retains the same
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flexibility offered by MMMs, while favoring greater parsimony and interpretability. The key

innovation is to allow the p-dimensional latent membership vector to belong to G (G � p)

groups; memberships are the same for different variables within a group but can differ across

groups. We deem the new model the Dimension-Grouped Mixed Membership Model (Gro-

M3). Gro-M3 improves interpretability by allowing the potentially high-dimensional observed

variables to belong to a small number of meaningful groups. Theoretically, we show that

both the continuous model parameters, and the discrete variable grouping structure, can

be identified from the data for models in the Gro-M3 class under transparent conditions on

how the variables are grouped. This challenging identifiability issue is addressed by carefully

leveraging the dimension-grouping structure to write the model as certain structured tensor

products, and then invoking Kruskal’s fundamental theorem on the uniqueness of three-way

tensor decompositions (Kruskal, 1977; Allman et al., 2009).

To illustrate the methodological usefulness of the proposed class of models, we consider

a special case in which each subject’s mixed membership proportion vector follows a Dirich-

let distribution. This is among the most popular modeling assumption underlying various

MMMs (Blei et al., 2003; Erosheva et al., 2007; Manrique-Vallier and Reiter, 2012; Zhao et al.,

2018). For such a Dirichlet Gro-M3, we employ a Bayesian inference procedure and develop a

Metropolis-Hastings-within-Gibbs algorithm for posterior computation. The algorithm has

excellent computational performance. Simulation results demonstrate this approach can ac-

curately learn the identifiable quantities of the model, including both the variable-grouping

structure and the continuous model parameters. This also empirically confirms the model

identifiability result.

The rest of this paper is organized as follows. Section 2 reviews existing mixed mem-

bership models, introduces the proposed Gro-M3, and provides an interesting probabilistic

tensor decomposition perspective of the models. Section 3 is devoted to the study of identi-

fiability of the new model. Section 4 focuses on the Dirichlet distribution induced Gro-M3

and proposes a Bayesian inference procedure. Section 5 includes simulation studies and

Section 6 applies the new model to reanalyze the NLTCS disability survey data. Section 7

provides discussions. The technical proofs of all the theoretical results are contained in the

Supplementary Material.
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2 Dimension-Grouped Mixed Membership Models

2.1 Existing Mixed Membership Models

In this subsection, we briefly review the existing MMM literature to give our proposal appro-

priate context. Let K be the number of extreme latent profiles. Denote the K-dimensional

probability simplex by ∆K−1 = {(π1, . . . , πK) : πk ≥ 0 for all k,
∑K

k=1 πk = 1}. Each sub-

ject i has an individual proportion vector πi = (πi,1, . . . , πi,K) ∈ ∆K−1, which indicates

the degrees to which subject i is a member of the K extreme profiles. The general mixed

membership models summarized in Airoldi et al. (2014) have the following distribution,

p

({
y

(r)
i,1 , . . . , y

(r)
i,p

}R
r=1

)
=

∫
∆K−1

p∏
j=1

R∏
r=1

(
K∑
k=1

πi,kf(y
(r)
i,j | λj,k)

)
dDα(πi), (1)

where πi = (πi,1, . . . , πi,K) follows the distribution Dα and is integrated out; the α refers

to some generic population parameters depending on the specific model. The p here is

the number of “characteristics”, and R is the number of “replications” per characteristic.

As shown in (1), for each characteristic j, there are a corresponding set of K conditional

distributions indexed by parameter vectors {λj,k : k = 1, . . . , K}. Many different mixed

membership models are special cases of the general setup (1). For example, the popular

Latent Dirichlet Allocation (LDA) (Blei et al., 2003; Blei, 2012) for topic modeling takes a

document i as a subject, and assumes there is only p = 1 distinct characteristic (one single

set of K topics which are distributions over the word vocabulary) with R > 1 replications (a

document i contains R words which are conditionally i.i.d. given πi); LDA further specifies

Dα(πi) to be the Dirichlet distribution with parameters α = (α1, . . . , αK).

Focusing on MMMs for multivariate categorical data, there are generally many charac-

teristics with p � 1 and one replication of each characteristic with R = 1 in (1). Each

variable yi,j ∈ {1, . . . , dj} takes one of dj unordered categories. For each subject i, the

observables yi = (yi,1, . . . , yi,p)
> are a vector of p categorical variables. MMMs for such

data are traditionally called Grade of Membership models (GoMs) (Woodbury et al., 1978).

GoMs have been extensively used in applications, such as disability survey data (Erosheva

et al., 2007), scholarly publication data (Erosheva et al., 2004), and data disclosure risk and

privacy (Manrique-Vallier and Reiter, 2012). GoMs are also useful for psychological mea-
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surements where data are Likert scale responses to psychology survey items, and educational

assessments where data are students’ correct/wrong answers to test questions (e.g. Shang

et al., 2021).

In GoMs, the conditional distribution f(yi,j | λj,k) in (1) can be written as P(yi,j | λj,k) =∏dj
cj=1 λ

I(yi,j=cj)
j,cj ,k

. Hence, the probability mass function of yi in a GoM is

pGoM (yi,1, . . . , yi,p | Λ,α) =

∫
∆K−1

p∏
j=1

 K∑
k=1

πi,k

dj∏
cj=1

λ
I(yi,j=cj)
j,cj ,k

 dDα(πi). (2)

See a graphical model representation of the GoM with sample size n in Figure 1(b), where

individual latent indicator variables (zi,1, . . . , zi,p) ∈ [K]p are introduced to better describe

the data generative process.

We emphasize that the case with p > 1 and R = 1 is fundamentally different from

the topic models with p = 1 and R > 1, with the former typically involving many more

parameters. To see this, note topic models such as LDA are also called “bag of words”

models, since given the individual topic proportion vector πi of each document i, all the R

words in the document have identical conditional distributions and hence are exchangeable

replications. This means there is one single set of K topic-word distributions {λk : k =

1, . . . , K}, for which multiple words per document are observed. While in the considered

GoM, each variable j ∈ {1, . . . , p} has its own set of K conditional distributions indexed by

{λj,k : k = 1, . . . , K}, for each of which we observe only one response yi,j per subject i. This

fact is made clear also in Figure 1(b), where for each j ∈ [p] there is a population quantity,

the parameter node Λj,:,: (also denoted by Λj for simplicity), that governs its distribution.

Thus identifiability is a much greater challenge for GoM models.

2.2 New Modeling Component: the Variable Grouping Structure

Generalizing Grade of Membership models for multivariate categorical data, we propose a

new structure that groups the p observed variables in the following sense: any subject’s

latent membership is the same for variables within a group but can differ across groups. To

represent the key structure of how the p variables are partitioned into G groups, we introduce

a notation of the grouping matrix L = (`j,g). The L is a p × G matrix with binary entries,
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with rows indexed by the p variables and columns by the G groups. Each row j of L has

exactly one entry of “1” indicating group assignment. In particular,

L = (`j,g)p×G, `j,g =

1, if the jth variable belongs to the gth group;

0, otherwise.
(3)

For each subject i, assuming πi = (πi,1, . . . , πi,K) ∼ Distribution Dα, our key specification

is the following generative process,

Gro-M3: zi,1, . . . , zi,G | πi
i.i.d∼ Categorical([K]; πi); (4)

{yi,j}`j,g=1 | zi,g = k
ind.∼ Categorical

(
[dj];

(
λj,1,k, · · · , λj,dj ,k

))
.

Hence, given the population parameters (L,Λ,α), the probability distribution of yi can be

written as

pGro-M3

(yi,1, . . . , yi,p | L,Λ,α) =

∫
∆K−1

G∏
g=1

 K∑
k=1

πi,k
∏

j: `j,g=1

dj∏
cj=1

λ
I(yi,j=cj)
j,cj ,k

 dDα(πi).

For a sample with n subjects, assume the observed responses y1, . . . ,yn are independent and

identically distributed according to the above model.

We visualize the proposed model as a probabilistic graphical model to highlight connec-

tions to and differences from existing latent structure models for multivariate categorical

data. In Figure 1, we show the graphical model representations of two popular latent struc-

ture models for multivariate categorical data in (a) and (b), and for the newly proposed

Gro-M3 in (c) and (d). The Λj for j ∈ [p] denotes a dj × K matrix with entries λj,cj ,k.

Each column of Λj characterizes a conditional probability distribution of variable yj given

a particular extreme latent profile. We emphasize that the variable grouping is done at the

level of the latent allocation variables z, and that the Λj parameters are still free without

constraints just as they are in traditional LCMs or GoMs. From the visualizations in Figure

1 we can also easily distinguish our proposed model from another popular family of meth-

ods, the co-clustering methods (Dhillon et al., 2003; Govaert and Nadif, 2013). Co-clustering

usually refers to simultaneously clustering the subjects and clustering the variables, where
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subjects within a cluster exhibit similar behaviors and variables within a cluster also share

similar characteristics. Our Gro-M3, however, does not restrict the p variables to have sim-

ilar characteristics within groups, but rather allows them to have entirely free parameters

Λ1, . . . ,Λp. The “dimension-grouping” happens at the latent level by constraining the latent

allocations behind the p variables to be grouped into G statuses. Such groupings give rise to

a novel probabilistic hybrid tensor decomposition visualized in Figure 1(c)–(d); see the next

Section 2.3 for details.

Other than helping to establish model identifiability (see Section 3), our dimension-

grouping modeling assumption is also motivated by real-world applications. In Section 6, we

apply our methodology to a widely analyzed survey dataset, the NLTCS functional disability

data initially analyzed with the grade of membership (GoM) model Erosheva et al. (2007). To

gain some insight into the possible dependence structures among the p = 16 item responses,

we calculate the sample mutual information measures between each pair of items. Figure 2

plots the pairwise mutual information matrix for the NLTCS data. By visual inspection of

the left plot in Figure 2, variables 1-6, all belonging to the “Activities of Daily Living” type of

survey questions, have stronger dependence among themselves than with other variables, and

variables 7-11 form a similar block. Details on calculating the pairwise mutual information

between categorical variables are provided in the Supplementary Material, and there we

also plot pairwise mutual information matrices for datasets simulated under our model. The

simulated data pairwise mutual information plots show a somewhat similar grouping pattern

to that for the NLTCS data. We conjecture that many real world datasets in other applied

domains exhibit similar grouped dependence structures.

2.3 Probabilistic Tensor Decomposition Perspective

The Gro-M3 class has interesting connections to popular tensor decompositions. For a

subject i, the observed vector yi resides in a contingency table with
∏p

j=1 dj cells. Since

the MMMs for multivariate categorical data (both traditional GoM and the newly pro-

posed Gro-M3) induce a probability of yi being in each of these cells, such probabili-

ties {p (yi,1 = c1, . . . , yi,p = cp | −) ; cj ∈ [dj] for each j ∈ [p]} can be arranged as a p-way

d1 × d2 × · · · × dp array. This array is a tensor with p modes and we denote it by P; Kolda

and Bader (2009) provided a review of tensors. The tensor P has all the entries nonnegative
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yi,1 yi,2 · · · · · · · · · yi,p

zi zi ∈ [K]

ν

n

Λ1,:,: Λ2,:,: · · · · · · · · · Λp,:,:

(a) Latent Class Model

(Probabilistic CP Decomposition)

yi,1 yi,2 · · · · · · · · · yi,p

zi,1 · · · · · · · · · · · · zi,p

πi πi ∈ ∆K−1

α

n

Λ1,:,: Λ2,:,: · · · · · · · · · Λp,:,:

(b) Grade of Membership Model, zi,j ∈ [K]

(Probabilistic Tucker Decomposition)

n

yi,1 yi,2 · · · · · · · · · yi,p

zi,1 · · · zi,G

ηi f(ηi) ∈ ∆K−1

L µ Σ

Λ1,:,: Λ2,:,: · · · · · · · · · Λp,:,:

(c) (New) Gro-M3, f(ηi) logit normal

(Probabilistic Hybrid Decomposition)

n

yi,1 yi,2 · · · · · · · · · yi,p

zi,1 · · · zi,G

πi πi ∈ ∆K−1

L α

Λ1,:,: Λ2,:,: · · · · · · · · · Λp,:,:

(d) (New) Gro-M3, πi Dirichlet

(Probabilistic Hybrid Decomposition)

Figure 1: Graphical model representations of LCMs in (a), GoMs in (b), and the proposed
family of Gro-M3s with two examples in (c), (d). Shaded nodes {yi,j} are observed variables,
white nodes are latent variables, quantities outside each solid box are population parameters.
In (c) and (d), the dotted red box is the key dimension-grouping structure, where the red
edges from {zi,g} to {yi,j} correspond to entries of “1” in the grouping matrix L.

and they sum up to one, so we call it a probability tensor. We next describe in detail the

tensor decomposition perspective of our model; such a perspective will turn out to be useful
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Figure 2: Pairwise Mutual Information (MI) measures between the p = 16 item responses
for the NLTCS disability survey data. See Section 6 for details of the dataset, including the
specific content of each item in Figure 4. The left plot shows the calculated MI for each
pair of items, while the right plot shows the binary indicator matrix, each entry indicating
whether the corresponding pair of items has the largest 20% MI among all the pairs.

in the study of identifiability.

The probability mass function of yi under the traditional GoM model can be written as

follows by exchanging the order of product and summation,

pGoM (yi,1 = c1, . . . , yi,p = cp | Λ,α) =

∫
∆K−1

p∏
j=1

[
K∑
k=1

πi,kλj,cj ,k

]
dDα(πi)

=
K∑

k1=1

· · ·
K∑

kp=1

p∏
j=1

λj,cj ,k

∫
∆K−1

πi,k1 · · · πi,kpdDα(πi)︸ ︷︷ ︸
=: φGoM

k1,...,kp

. (5)

Then ΦGoM :=
(
φGoM
k1,...,kp

; kj ∈ [K]
)

forms a tensor with p modes, and each mode has dimen-

sion K. Further, this tensor Φ is a probability tensor, because φk1,...,kp ≥ 0 and it is not hard

to see that the sum of its entries is one. Viewed from a tensor decomposition perspective,

this is the popular Tucker decomposition (Tucker, 1966); more specifically this is the non-

negative and probabilistic version of the Tucker decomposition. The ΦGoM represents the

Tucker tensor core, and the product of the {λj,cj ,k} form the Tucker tensor arms.

It is useful to compare our modeling assumption to that of the the Latent Class Model
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(LCM; Goodman, 1974), which follows the graphical model shown in Figure 1(a). The LCM

is essentially a finite mixture model assuming each subject i belongs to a single cluster. The

distribution of yi under an LCM is

pLC (yi,1 = c1, . . . , yi,p = cp | Λ,ν) =
K∑
k=1

P(zi = k)

p∏
j=1

P(yi,j | zi = k) =
K∑
k=1

νk

p∏
j=1

λj,cj ,k. (6)

Based on the above definition, each subject i has a single variable zi ∈ [K] indicating which

latent class it belongs to, rather than a mixed membership proportion vector πi. Denoting

νLC = (νk; k ∈ [K]), then (6) corresponds to the popular CP decomposition of tensors

(Hitchcock, 1927), where the CP rank is at most K.

Finally, consider our proposed Gro-M3,

pGro-M3

(yi,1, . . . , yi,p | L,Λ,α) =

∫
∆K−1

G∏
g=1

 K∑
k=1

πi,k
∏

j: `j,g=1

f(yi,j | λj,cj ,k)

 dDα(πi)

=
K∑

k1=1

· · ·
K∑

kp=1

G∏
g=1

∏
j: `j,g=1

f(yi,j | λj,cj ,kj)
∫

∆K−1

πi,k1 · · · πi,kGdDα(πi)︸ ︷︷ ︸
=: φGro-M3

k1,...,kG

. (7)

In this case, ΦGro-M3
:=
(
φGro-M3

k1,...,kG
; kg ∈ [K]

)
forms a tensor with G modes, and each mode

has dimension K. There still is
∑K

k1=1 · · ·
∑K

kG=1 φ
Gro-M3

k1,...,kG
= 1. This reduces the size of the

core tensor in the classical Tucker decomposition because G < p. The Gro-M3 incorporates

aspects of both the CP and Tucker decompositions, providing a probabilistic hybrid decom-

position of probability tensors. The CP is obtained when all variables are in the same group,

while the Tucker is obtained when each variable is in its own group; see Figure 1 for a clear

illustration of this fact.

Gro-M3 is conceptually related to the collapsed Tucker decomposition (c-Tucker) of

Johndrow et al. (2017), though they did not model mixed memberships, used a very dif-

ferent model for the core tensor Φ, and did not consider identifiability. Nonetheless and

interestingly, our identifiability results can be applied to establish identifiability of c-Tucker

decomposition (see Remark 1 in Section 4). Another work related to our dimension-grouping

assumption is Anandkumar et al. (2015), which considered the case of overcomplete topic
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modeling with the number of topics exceeding the vocabulary size. For such scenarios, the au-

thors proposed a “persistent topic model” which assumes the latent topic assignment persists

locally through multiple words, and established identifiability. Our dimension-grouped mixed

membership assumption is similar in spirit to this topic persistence assumption. However, the

setting we consider here for general multivariate categorical data has the multi-characteristic

single-replication nature (p > 1 and R = 1); as mentioned before, this is fundamentally dif-

ferent from topic models with a single characteristic and multiple replications (p = 1 and

R > 1).

Recently, Russo et al. (2021) proposed a class of multivariate mixed membership models.

Their model is motivated by applications in which it is natural to partition variables into

groups prior to analysis. For example, in a malaria risk study based on household survey

data on the Brazilian Amazon frontier, there are two groups of variables, corresponding

to environmental and behavioral factors. Within each group of variables b ∈ {1, . . . , G},

Russo et al. (2021) endow each subject i with a group-specific mixed-membership proportion

vector π
(b)
i . Our dimension-grouping assumption is different in the following two aspects:

each subject is still endowed with a single vector of membership scores instead of G different

vectors, and the grouping information is not fixed in advance but is treated as unknown here.

3 Identifiability of Dimension-Grouped MMMs

Identifiability is an important property of a statistical model, generally meaning that model

parameters can be uniquely recovered from the observables. Identifiability serves as a funda-

mental prerequisite for valid statistical estimation and inference. The study of identifiability,

however, can be challenging for complicated models and especially latent variable models,

including the Gro-M3s considered here. In subsections 3.1 and 3.2, we propose easily check-

able and practically useful identifiability conditions for Gro-M3s by carefully inspecting the

inherent algebraic structures. Specifically, we will exploit the variable groupings to write the

model as certain highly structured mixed tensor products, and then prove identifiability by

invoking Kruskal’s theorem on the uniqueness of tensor decompositions (Kruskal, 1977). We

point out that such proof procedures share a similar spirit to those in Allman et al. (2009),

but the complicated structure of the new Gro-M3s requires some special care to handle. Our
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theoretical developments provide a solid foundation for performing estimation of the latent

quantities and drawing valid conclusions from data.

3.1 Strict Identifiability Conditions

For LDA and closely related topic models, there is a rich literature investigating identifiabil-

ity under different assumptions (Anandkumar et al., 2012; Arora et al., 2012; Nguyen, 2015;

Wang, 2019). Typically, when there is only one characteristic (p = 1), R ≥ 2 is necessary

for identifiability; see Example 2 in Wang (2019). However, there has been limited consid-

eration of identifiability of mixed membership models with multiple characteristics and one

replication, i.e., p > 1 and R = 1. GoM models belong to this category, as does the proposed

Gro-M3s, with GoM being a special case of Gro-M3s.

We consider the general setup in (1), where Φ denotes the G-mode tensor core induced by

any distribution D(πi) on the probability simplex ∆K−1. The following definition formally

defines the concept of strict identifiability for the proposed model.

Definition 1 (Strict Identifiability of Gro-M3s). A parameter space Θ of a Gro-M 3 is said

to be strictly identifiable, if for any valid set of parameters (L,Λ,Φ) ∈ Θ, the following

equations hold if and only if (L,Λ,Φ) and the alternative (L,Λ,Φ) are identical up to per-

mutations of the K extreme latent profiles and permutations of the G variable groups,

P(y = c | L,Λ,Φ) = P(y = c | L,Λ,Φ), ∀c ∈ ×pj=1[dj]. (8)

Definition 1 gives the strongest possible notion of identifiability of the considered pop-

ulation quantities (L,Λ,Φ) in the model. In particular, the strict identifiability notion in

Definition 1 requires identification of both the continuous parameters Λ and Φ, and the dis-

crete latent grouping structure of variables in L. The following theorem proposes sufficient

conditions for the strict identifiability of Gro-M3s.

Theorem 1. Under a Gro-M 3, the following two identifiability conclusions hold.

(a) Suppose each column of L contains at least three entries of “1”s, and the corresponding

conditional probability table Λj = (λj,cj ,k)dj×K for each of these three j has full column

rank. Then the Λ and Φ are strictly identifiable.
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(b) In addition to the conditions in (a), if Λ satisfies that for each j ∈ [p], not all the

column vectors of Λj are identical, then L is also identifiable.

Example 1. Denote by IG a G×G identity matrix. Suppose p = 3G and the matrix L takes

the following form,

L = (IG IG IG)>. (9)

Also suppose for each j ∈ {1, . . . , 3G}, the Λj of size dj ×K has full column rank K. Then

the conditions in Theorem 1 hold, so Λ, L and Φ are identifiable. Theorem 1 implies that if

L contains any additional row vectors other than those in (9) the model is still identifiable.

Theorem 1 requires that each of the G variable groups contains at least three variables,

and that for each of these 3G variables, the corresponding conditional probability table Λj

has linearly independent columns. Theorem 1 guarantees not only the continuous param-

eters are identifiable, but also the discrete variable grouping structure summarized by L

is identifiable. This is important practically as typically the appropriate variable grouping

structure is unknown, and hence needs to be inferred from the data.

The conditions in Theorem 1 essentially requires at least 3G conditional probability

tables, each being a matrix of size dj ×K, to have full column rank. This implicitly requires

dj ≥ K. Tan and Mukherjee (2017) proposed a moment-based estimation approach for

traditional mixed membership models and briefly discussed the identifiability issue, also

assuming dj ≥ K with some full-rank requirements. However, the cases where the number

of categories dj’s are small but the number of extreme latent profiles K is much larger can

arise in applications; for example, the disability survey data analyzed in Erosheva et al.

(2007) and Manrique-Vallier (2014) have binary responses with d1 = · · · = dp = 2 while the

considered K ranges from 2 to 10. Our next theoretical result establishes weaker conditions

for identifiability that accommodates dj < K, by taking advantage of the dimension-grouping

property of our proposed model class.

Before stating the theorem, we first introduce two useful notions of matrix products.

Denote by
⊗

the Kronecker product of matrices and by
⊙

the Khatri-Rao product. Consider

two matrices A = (ai,j) ∈ Rm×r, B = (bi,j) ∈ Rs×t; and another two matrices C = (ci,j) =

(c:,1 | · · · | c:,k) ∈ Rn×k, D = (di,j) = (d:,1 | · · · | d:,k) ∈ R`×k, then there are A
⊗

B ∈
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Rms×rt and C
⊙

D ∈ Rn`×k with

A
⊗

B =

a1,1B · · · a1,rB
...

...
...

am,1B · · · am,rB

 , C
⊙

D =
(
c:,1
⊗
d:,1 | · · · | c:,k

⊗
d:,k

)
.

The above definitions show the Khatri-Rao product is the column-wise Kronecker product.

The Khatri-Rao product of matrices plays an important role in the technical definition of

the proposed dimension-grouped MMM. The following Theorem 2 exploits the grouping

structure in L to relax the identifiability conditions in the previous Theorem 1.

Theorem 2. Denote by Ag = {j ∈ [p] : `j,g = 1} the set of variables that belong to group

g. Suppose each Ag can be partitioned into three sets Ag = ∪3
m=1Ag,m, and for each g ∈ [G]

and m ∈ {1, 2, 3} the matrix Λ̃g,m defined below has full column rank K.

Λ̃g,m :=
⊙

j∈Ag,m

Λj. (10)

Also suppose for each j ∈ [p], not all the column vectors of Λj are identical. Then the model

parameters L, Λ, and Φ are strictly identifiable.

Compared to Theorem 1, Theorem 2 relaxes the identifiability conditions by lifting the

full-rank requirement on the individual matrices Λj’s. Rather, as long as the Khatri-Rao

product of several different Λj’s have full column rank as specified in (10), identifiability can

be guaranteed. Recall that the Khatri-Rao product of two matrices Λj1 of size dj1 ×K and

Λj2 of size dj2 × K has size (dj1dj2) × K. So intuitively, requiring Λj1

⊙
Λj2 to have full

column rank K is weaker than requiring each of Λj1 and Λj2 to have full column rank K.

The following Example 2 formalizes this intuition.

Example 2. Consider d1 = d2 = 2, K = 3 with the following conditional probability tables

Λ1 =

(
a1 a2 a3

1− a1 1− a2 1− a3

)
; Λ2 =

(
b1 b2 b3

1− b1 1− b2 1− b3

)
.

Suppose variables j = 1, 2 belong to the same group, e.g., `1,: = `2,:. Then since K > d1 = d2,

both Λ1 and Λ2 can not have full column rank K. However, if we consider their Khatri-Rao

product, it has size 4× 3 in the following form
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Λ1

⊙
Λ2 =


a1b1 a2b2 a3b3

a1(1− b1) a2(1− b2) a3(1− b3)

(1− a1)b1 (1− a2)b2 (1− a3)b3

(1− a1)(1− b1) (1− a2)(1− b2) (1− a3)(1− b3)

 .

Indeed, Λ1

⊙
Λ2 has full column rank for “generic” parameters θ := (a1, a2, a3, b1, b2, b3);

precisely speaking, for θ varying almost everywhere in the parameter space [0, 1]6 (the 6-

dimensional hypercube), the subset of θ that renders Λ1

⊙
Λ2 rank-deficient has Lebesgue

measure zero in R6. To see this, let x = (x1, x2, x3)> ∈ R3 such that (Λ1

⊙
Λ2)x = 0, then

a1b1x1 + a2b2x2 + a3b3x3 = 0;

a1(1− b1)x1 + a2(1− b2)x2 + a3(1− b3)x3 = 0;

(1− a1)b1x1 + (1− a2)b2x2 + (1− a3)b3x3 = 0;

(1− a1)(1− b1)x1 + (1− a2)(1− b2)x2 + (1− a3)(1− b3)x3 = 0;

invertible transform⇐⇒


a1b1x1 + a2b2x2 + a3b3x3 = 0;

a1x1 + a2x2 + a3x3 = 0;

b1x1 + b2x2 + b3x3 = 0;

x1 + x2 + x3 = 0.

Based on the last four equations above, one can use basic algebra to obtain the following set

of equations about (x1, x2, x3),(
b1 − b3 b3 − b2

a1 − a3 a3 − a2

)(
x1

x2

)
=

(
b2 − b1 b1 − b3

a2 − a1 a1 − a3

)(
x2

x3

)
=

(
0

0

)
.

This implies as long as the following inequalities hold, there must be x1 = x2 = x3 = 0,(b1 − b3)(a3 − a2)− (a1 − a3)(b3 − b2) 6= 0;

(b2 − b1)(a1 − a3)− (a2 − a1)(b1 − b3) 6= 0
(11)

Now note that the subset of the parameter space {(a1, a2, a3, b1, b2, b3) ∈ [0, 1]6 : Eq. (11) holds}

is a Lebesgue measure zero subset of [0, 1]6. This means for such “generic” parameters vary-

ing almost everywhere in the parameter space [0, 1]6, the (Λ1

⊙
Λ2)x = 0 implies x = 0

which means Λ1

⊙
Λ2 has full column rank K = 3.
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Example 2 shows that the Khatri-Rao product of two matrices seems to have full rank

under fairly mild conditions. This indicates that the conditions in Theorem 2 are much

weaker than those in Theorem 1 by imposing the full-rankness requirement only on a certain

Khatri-Rao product of the Λj-matrices, instead of on individual Λjs. To be more concrete,

the next Example 3 illustrates Theorem 2, as a counterpart of Example 1.

Example 3. Consider the following grouping matrix L with G = 3 and p = 6G = 18,

L =

L1

L1

L1

 , where L1 =


1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

 . (12)

Then L contains six copies of the identity matrix IG after a row permutation. Thanks

to greater variable grouping compared to the previous Example 1, we can use Theorem 2

(instead of Theorem 1) to establish identifiability. Specifically, consider binary responses

with d1 = · · · = d18 =: d = 2 and K = 3 extreme latent profiles. For g = 1, define

sets Ag,1 = {1, 2}, Ag,2 = {7, 8}, Ag,3 = {13, 14}; for g = 2, define sets Ag,1 = {3, 4},

Ag,2 = {5, 6}, Ag,3 = {7, 8}; and for g = 3, define sets Ag,1 = {5, 6}, Ag,2 = {11, 12},

Ag,3 = {17, 18}. Then for each (g,m) ∈ {1, . . . , G} × {1, 2, 3}, the Λ̃g,m =
⊙

j∈Ag,m Λj

defined in Theorem 2 has size d2 ×K which is 4× 3, similar to the structure in Example 2.

Now from the derivation and discussion in Example 2, we know such a Λ̃g,m has full rank for

almost all the valid parameters in the parameter space. So the conditions in Theorem 2 are

easily satisfied, and for almost all the valid parameters of such a Gro-M3, the identifiability

conclusion follows.

3.2 Generic Identifiability Conditions

Example 2 shows that the Khatri-Rao product of conditional probability tables easily has full

column rank in a toy case, and Example 3 leverages this observation to establish identifiability

for almost all parameters in the parameter space using Theorem 2. We next generalize this

observation to derive more practical identifiability conditions, under the generic identifiability

notion introduced by Allman et al. (2009). Generic identifiability generally means that the
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unidentifiable parameters belong to a set of Lebesgue measure zero with respect to the

parameter space. Its definition adapted to the current Gro-M3s is given as follows.

Definition 2 (Generic Identifiability of Gro-M3s). Under a Gro-M 3, a parameter space T for

(Λ,Φ) is said to be generically identifiable, if there exists a subset N ⊆ T that has Lebesgue

measure zero with respect to T such that for any (Λ,Φ) ∈ T \N and an associated L matrix,

the following holds if and only if (L,Λ,Φ) and the alternative (L,Λ,Φ) are identical up to

permutations of the K extreme latent profiles and that of the G variable groups,

P(y = c | L,Λ,Φ) = P(y = c | L,Λ,Φ), ∀c ∈ ×pj=1[dj].

Compared to the strict identifiability notion in Definition 1, the generic identifiability

notion in Definition 2 is less stringent in allowing the existence of a measure zero set of

parameters where identifiability does not hold; see the previous Example 2 for an instance

of a measure-zero set. Such an identifiability notion usually suffices for real data analyses

(Allman et al., 2009). In the following Theorem 3, we propose simple conditions to ensure

generic identifiability of Gro-M3s.

Theorem 3. For the notation Ag = {j ∈ [p] : `j,g = 1} defined in Theorem 2, suppose each

Ag can be partitioned into three non-overlapping sets Ag = ∪3
m=1Ag,m, such that for each g

and m the following holds,

∏
j∈Ag,m

dj ≥ K. (13)

Then the matrix
⊙

j∈Ag,m Λj has full column rank K for generic parameters. Further, the

Λ, L, and Φ are generically identifiable.

Compared to Theorem 2, Theorem 3 lifts the explicit full-rank requirements on any

matrix. Rather, Theorem 3 only requires that certain products of dj’s should not be smaller

than the number of extreme latent profiles, which in turn guarantees that the Khatri-Rao

products of matrices have full column rank for generic parameters. Intuitively, the more

variables belonging to a group and the more categories each variable has, the easier the

identifiability conditions are to satisfy. This illustrates the benefit of dimension-grouping to

model identifiability.
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4 Dirichlet Gro-M3 and Bayesian Inference

4.1 Dirichlet model and identifiability

The previous section studies identifiability of general Gro-M3s, not restricting the distribution

Dα(·) of the mixed membership scores to be a specific form. Next we focus on an interesting

special case where Dα(·) is a Dirichlet distribution with unknown parameters α. Among

all the possible distributions for the individual mixed-membership proportions, the Dirichlet

distribution is the most popular. It is widely used in applications including social science

survey data (Erosheva et al., 2007), topic modeling (Blei et al., 2003; Griffiths and Steyvers,

2004), and data privacy (Manrique-Vallier and Reiter, 2012). We term the Gro-M3 with πi

following a Dirichlet distribution the Dirichlet Gro-M3, and propose a Bayesian inference

procedure to estimate both the discrete variable groupings and the continuous parameters.

Such a Dirichlet Gro-M3 has the graphical model representation in Figure 1(d).

For an unknown vector α = (α1, . . . , αK) with αk > 0 for all k ∈ [K], suppose

Dirichlet Gro-M3: πi = (πi,1, . . . , πi,K)
i.i.d.∼ Dirichlet(α1, . . . , αK). (14)

The vector α characterizes the distribution of membership scores. As αk → 0, the model

simplifies to a latent class model in which each individual belongs to a single latent class.

For larger αk’s, there will tend to be multiple elements of πi that are not close to 0 or 1.

Recall that the previous identifiability conclusions in Theorems 1–3 generally apply to L,

Λ, and Φ, where Φ is the core tensor with KG entries in our hybrid tensor decomposition.

Now with the core tensor Φ parameterized by the Dirichlet distribution in particular, we can

further investigate the identifiability of the Dirichlet parametersα. The following proposition

establishes the identifiability of α for Dirichlet Gro-M3s.

Proposition 1. Consider a Dirichlet Gro-M 3. If G ≥ 2, then following conclusions hold.

(a) If the conditions in Theorem 1 or Theorem 2 are satisfied, then the Dirichlet parameters

α = (α1, . . . , αK) are strictly identifiable.

(b) If the conditions in Theorem 3 are satisfied, then the Dirichlet parameters α = (α1, . . . , αK)

are generically identifiable.
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Remark 1. Our identifiability results have implications for the collapsed Tucker (c-Tucker)

decomposition for multivariate categorical data (Johndrow et al., 2017). Our assumption

that the latent memberships underlying several variables are in one state is similar to that in

c-Tucker. However, c-Tucker does not model mixed memberships, and the c-Tucker tensor

core, Φ in our notation, is assumed to arise from a CP decomposition (Goodman, 1974)

with φk1,...,kG =
∑r

v=1wv
∏G

g=1 ψg,kg ,v. We can invoke the uniqueness of the CP decomposition

(e.g., Kruskal, 1977; Allman et al., 2009) to obtain identifiability of parameters w = (wv; v ∈

[r]) and ψ = (ψg,k,v; g ∈ [G], k ∈ [K], v ∈ [r]). Hence, under our assumptions on the

variable grouping structure in Section 3, imposing existing mild conditions on w and ψ will

yield identifiability of all the c-Tucker parameters.

4.2 Bayesian inference

Considering the complexity of our latent structure model, we adopt a Bayesian approach.

We next describe the prior specification for L, Λ, and α in Dirichlet Gro-M3s. The number

of variable groups G and number of extreme latent profiles K are assumed known; we relax

this assumption in Section 5. Recall the indicators s1, . . . , sp ∈ [G] are defined as sj = g if

and only if `j,g = 1, so there is a one-to-one correspondence between the matrix L and the

vector s = (s1, . . . , sp). We adopt the following prior for the sj’s,

s1, . . . , sp
i.i.d.∼ Categorical([G], ξ1, . . . , ξG),

where Categorical([G], ξ1, . . . , ξG) is a categorical distribution over G categories with pro-

portions ξg ≥ 0 and
∑G

g=1 ξg = 1. We choose uniform priors over the probability simplex for

(ξ1, . . . , ξG) and each column of Λj. We remark that if certain prior knowledge about the

variable groups is available for the data, then it is also possible to employ informative priors

such as those in Paganin et al. (2021) for the sj’s. For the Dirichlet parameters α, defining

α0 =
∑K

k=1 αk and η = (α1/α0, . . . , αK/α0), we choose the hyperpriors α0 ∼ Gamma(aα, bα)

and η is uniform over the (K − 1)-probability simplex.

Given a sample of size n, denote the observed data by Y = {yi; i = 1, . . . , n}. Given Y,

we propose a Metropolis-Hastings-within-Gibbs sampler for posterior computation of L, Λ,

and α. The MCMC sampler cycles through the following steps.
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Step 1–3. Sample each column of the conditional probability tables Λj’s, the individual

mixed-membership proportions πi’s, and the individual latent assignments zi,g’s from

their full conditional posterior distributions. Define indicator variables yi,j,c = I(yi,j =

c) and zi,g,k = I(zi,g = k). These posteriors are

{λj,:,k | −}sj=g ∼ Dirichlet

(
1 +

n∑
i=1

zi,g,kyi,j,1, . . . , 1 +
n∑
i=1

zi,g,kyi,j,dj

)
;

πi | − ∼ Dirichlet

(
α1 +

G∑
g=1

zi,g,1, . . . , αK +
G∑
g=1

zi,g,K

)
;

P(zi,g = k | −) =
πi,k

∏
j: sj=g

∏dj
c=1 λ

yi,j,c
j,c,k∑K

k′=1 πi,k′
∏

j: sj=g

∏dj
c=1 λ

yi,j,c
j,c,k′

, k ∈ [K].

Step 4. Sample the variable grouping structure (s1, . . . , sp). The posterior of each sj is

P(sj = g | −) =
ξg
∏n

i=1 λj,yi,j ,zi,g∑G
g′=1 ξg′

∏n
i=1 λj,yi,j ,zi,g′

, g ∈ [G].

The posterior of (ξ1, . . . , ξG) is

(ξ1, . . . , ξG) | − ∼ Dirichlet

(
1 +

p∑
j=1

I(sj = 1), . . . , 1 +

p∑
j=1

I(sj = G)

)
.

Step 5. Sample the Dirichlet parameters α = (α1, . . . , αK). The conditional posterior dis-

tribution of α (or equivalently, α0 and η) is

p(α | −) ∝ Gamma(α0 | a, b)×Dirichlet(η | 1K)×
n∏
i=1

Dirichlet(πi | α)

∝ αaα−1
0 exp(−bαα0)×

[
Γ(α0)∏K
k=1 Γ(αk)

]n
×

K∏
k=1

[
n∏
i=1

πi,k

]αk
,

which is not an easy-to-sample-from distribution. We use a Metropolis-Hastings sam-

pling strategy in Manrique-Vallier and Reiter (2012). The steps are detailed as follows.

• Sample each entry of α? = (α?1, . . . , α
?
K) from independent lognormal distributions
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(proposal distribution g(α? | α)) as

α?k
ind.∼ lognormal(logαk, σ

2
α), (15)

where σα is a tuning parameter that affects the acceptance ratio of the draw.

Based on our preliminary simulations, σ should be relatively small to avoid the

acceptance ratio to be always too close to zero.

• Let α?0 =
∑K

k=1 α
?
k. Define

r? =
p(α? | −)g(α | α?)
p(α | −)g(α? | α)

=

(
α?0
α0

)aα−1

exp (−bα(α?0 − α0))×

(
Γ(α∗0)

Γ(α0)
·
∏K

k=1 Γ(αk)∏K
k=1 Γ(α?k)

)n

×
K∏
k=1

(
n∏
i=1

πi,k

)α?k−αk

×
K∏
k=1

α?k
αk

The Metropolis-Hastings acceptance ratio of the proposed α? is r = min {1, r?}.

After collecting posterior samples from the output of the above MCMC algorithm, for

those continuous parameters in the model we can calculate their posterior means as point

estimates. As for the discrete variable grouping structure, we can obtain the posterior modes

of each sj. That is, given the T posterior samples of s(t) = (s
(t)
1 , . . . , s

(t)
p ) for t = 1, . . . , T ,

we define point estimates s and L with entries

sj = arg max
g∈[G]

T∑
t=1

I(s(t)
j = g); `j,g =

1, if sj = g;

0, otherwise.
(16)

5 Simulation Studies

In this section, we carry out simulation studies to assess the performance of the proposed

Bayesian estimation approach, while verifying that identifiable parameters are indeed esti-

mated more accurately as sample size grows. In Section 5.1, we perform a simulation study

to assess the estimation accuracy of the model parameters, assuming the number of extreme

latent profiles K and the number of variable groups G are known. This is the same setting
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as considered in our identifiability theory as well as in many existing estimation methods of

traditional MMMs (e.g., Manrique-Vallier and Reiter, 2012). In Section 5.2, to facilitate the

use of our estimation method in applications, we propose data-driven criteria to select K

and G and perform a corresponding simulation study.

5.1 Estimation of Grouping Structure and Model Parameters

In this simulation study, we assess the proposed algorithm’s performance in estimating the

(L,Λ,α) in Dirichlet Gro-M3s. We consider various simulation settings, with K = 2, 3, or

4, and (p,G) = (30, 6), (60, 12), or (90, 15). The number of categories of each yj is specified

to be three, i.e., d1 = · · · = dp = 3. The true Λ-parameters are specified as follows: in the

most challenging case with K = 4 and (p,G) = (90, 15), for u = 0, 1, . . . , p/6− 1 we specify

Λ6u+1 =

0.1 0.7 0.3 0.1
0.8 0.2 0.4 0.1
0.1 0.1 0.3 0.8

 ; Λ6u+2 =

0.1 0.8 0.1 0.2
0.2 0.1 0.6 0.5
0.7 0.1 0.3 0.3

 ; Λ6u+3 =

0.1 0.8 0.2 0.9
0.2 0.1 0.5 0.05
0.7 0.1 0.3 0.05

 ;

Λ6u+4 =

0.1 0.1 0.8 0.3
0.8 0.2 0.1 0.6
0.1 0.7 0.1 0.1

 ; Λ6u+5 =

0.2 0.7 0.3 0.1
0.6 0.2 0.4 0.1
0.2 0.1 0.3 0.8

 ; Λ6u+6 =

0.1 0.8 0.1 0.2
0.2 0.1 0.1 0.6
0.7 0.1 0.8 0.2

 .

As for other simulation settings with smaller K and (p,G), we specify the Λj’s by taking a

subset of the above matrices and retaining a subset of columns from each of these matrices.

The true Dirichlet parameters α are set to (0.4, 0.5) for K = 2, (0.4, 0.5, 0.6) for K = 3,

and (0.4, 0.5, 0.6, 0.7) for K = 4. The true grouping matrix L of size p × G is specified to

containing p/G copies of identity submatrices IG up to a row permutation. Under these

specifications, our identifiability conditions in Theorem 2 are satisfied. We consider sample

sizes n = 250, 500, 1000, 1500. In each scenario, 50 independent datasets are generated and

fitted with the proposed MCMC algorithm described in Section 4. In our MCMC algorithm

under all simulation settings, we take hyperparameters to be (aα, bα) = (2, 1) and σα = 0.02.

The MCMC sampler is run for 15000 iterations, with the first 10000 iterations as burn-in

and every fifth sample is collected after burn-in to thin the chain.

We observed good mixing and convergence behaviors of the model parameters from ex-

amining the trace plots. In particular, simulations show that the estimation of the discrete

variable grouping structure in matrix L (equivalently, vector s) is quite accurate in general,

22



and the posterior means of the continuous Λ and α are also close to their truth. Next

we first present details of two typical simulation trials as an illustration, before presenting

summaries across the independent simulation replicates.

Two random simulation trials were taken from the settings (n, p,G,K) = (500, 30, 6, 2)

and (n, p,G,K) = (500, 90, 15, 2). All the parameters were randomly initialized from their

prior distributions. In Figure 3, the left three plots in each of the first two rows show the

sampled Liter. in the MCMC algorithm, after the 1st, 201st, and 401st iterations, respectively;

the fourth plot show the posterior mode L defined in (16), and the last plot shows the

simulation truth L. If an L̃ equals the true L after a column permutation then it indicates

L̃ and L induce identical variable groupings. The bottom two plots in Figure 3 show the

Adjusted Rand Index (ARI, Rand, 1971) of the variable groupings of Liter. (siter.) with

respect to the true L (true s) along the first 1000 MCMC iterations. The ARI measures

the similarity between two clusterings, and it is appropriate to compare a true s and an

estimated s because they each summarizes a clustering of the p variables into G groups.

The ARI is at most 1, with ARI = 1 indicating perfect agreement between two clusterings.

The bottom row of Figure 3 shows that in each simulation trial, the ARI measure starts

with values around 0 due to the random MCMC initialization, and within a few hundred

iterations the ARI increases to a distribution over much larger values. For the simulation

with (n, p,G,K) = (500, 90, 15, 2), the posterior mode of L exactly equals the truth, and

the corresponding plot on the bottom right of Figure 3 shows the ARI is distributed very

close to 1 after just about 500 MCMC iterations. In general, our MCMC algorithm has

excellent performance in inferring the L from randomly initialized simulations; also see the

later Tables 1–3 for more details.

We next present estimation accuracy results of both L and (Λ,α) summarized across 50

simulation replicates in each setting. For continuous parameters (Λ,α), we calculate their

Root Mean Squared Errors (RMSEs) to evaluate the estimation accuracy. To obtain the

estimation error of (Λ,α) after collecting posterior samples, we need to find an appropriate

permutation of the K extreme latent profiles in order to compare the (Λ,α) and the true

(Λ,α). To this end, we first reshape each of Λ and Λ to a (
∑p

j=1 dj) × K matrix Λmat

and Λmat, calculate the inner product matrix (Λmat)
>Λmat, and then find the index ik of

the largest entry in each kth row of the inner product matrix. Such a vector of indices
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Figure 3: Estimation of L (from s) in two random simulation trials, one under (n, p,G,K) =
(500, 30, 6, 2) and the other under (n, p,G,K) = (500, 90, 15, 2). In each of the first two rows,
the left three plots record the sampled Liter. after the 1st, 201st, and 401st MCMC iteration,
respectively. The fourth plot shows the posterior mode L and the last shows the true L.
The two plots in the bottom row record the ARI of the clustering of p variables given by
Liter. along the first 1000 MCMC iterations, for each of the two simulation scenarios.

(i1, . . . , iK) gives a permutation of the K profiles, and we will compare Λj,:,(i1,...,iK) to Λj and

compare α(i1,...,iK) to α. In Tables 1–3, we present the RMSEs of (Λ,α) and the ARIs of

L under the aforementioned 36 different simulation settings. The median and interquartile

range of the ARIs or RMSEs across the simulation replicates are shown in these tables.

Tables 1–3 show that under each setting of true parameters with a fixed (p,G,K), the
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ARIs of the variable grouping L generally increase as sample size n increases, and the RMSEs

of Λ and α decreases as n increases. This shows the increased estimation accuracy with

an increased sample size. In particular, the estimation accuracy of the variable grouping

structure is quite accurate across the considered settings. The estimation errors are slightly

larger for larger values of K in Table 3 compared to smaller values of K in Tables 1 and 2.

Overall, the simulation results empirically confirm the identifiability and estimability of the

model parameters in our Dirichlet Gro-M3.

{p, G} n
ARI of L RMSE of Λ RMSE of α

Median (IQR) Median (IQR) Median (IQR)

(30, 6)

250 0.74 (0.18) 0.042 (0.005) 0.064 (0.056)
500 0.88 (0.17) 0.030 (0.004) 0.031 (0.043)

1000 0.91 (0.29) 0.023 (0.014) 0.027 (0.028)
1500 0.91 (0.31) 0.018 (0.022) 0.026 (0.045)

K = 2 (60, 12)

250 0.73 (0.13) 0.042 (0.004) 0.039 (0.041)
500 0.79 (0.14) 0.032 (0.003) 0.031 (0.021)

1000 0.85 (0.20) 0.027 (0.010) 0.018 (0.029)
1500 0.81 (0.21) 0.028 (0.016) 0.024 (0.025)

(90, 15)

250 0.95 (0.05) 0.042 (0.003) 0.045 (0.045)
500 1.00 (0.00) 0.026 (0.002) 0.032 (0.023)

1000 1.00 (0.00) 0.018 (0.001) 0.019 (0.021)
1500 1.00 (0.08) 0.015 (0.010) 0.017 (0.017)

Table 1: Simulation results of the Dirichlet Gro-M3 for K = 2. “ARI” of L is the Adjusted
Rand Index of the estimated variable groupings with respect to the truth. “RMSE” of Λ
and α are Root Mean Squared Errors. “Median” and “IQR” are based on 50 replicates in
each simulation setting.

5.2 Selecting G and K from Data

In Section 3, model identifiability is established under the assumption that G and K are

known, like many other latent structure models; for example, generic identifiability of latent

class models in Allman et al. (2009) is established assuming the number of latent classes

is known. But in order to provide a practical estimation pipeline applicable to real-world

applications, we next briefly discuss how to select G and K in a data-driven way.

Our basic rationale is to use a practically useful criterion that favors a model with
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(p, G) n
ARI of L RMSE of Λ RMSE of α

Median (IQR) Median (IQR) Median (IQR)

(30, 6)

250 1.00 (0.00) 0.045 (0.004) 0.046 (0.048)
500 1.00 (0.00) 0.033 (0.003) 0.046 (0.059)

1000 1.00 (0.00) 0.023 (0.022) 0.039 (0.037)
1500 1.00 (0.00) 0.019 (0.023) 0.029 (0.032)

K = 3 (60, 12)

250 1.00 (0.00) 0.045 (0.004) 0.044 (0.030)
500 1.00 (0.00) 0.032 (0.002) 0.030 (0.018)

1000 1.00 (0.00) 0.023 (0.002) 0.021 (0.017)
1500 1.00 (0.00) 0.018 (0.002) 0.020 (0.017)

(90, 15)

250 1.00 (0.00) 0.045 (0.002) 0.047 (0.036)
500 1.00 (0.00) 0.031 (0.002) 0.026 (0.022)

1000 1.00 (0.00) 0.022 (0.001) 0.021 (0.013)
1500 1.00 (0.21) 0.019 (0.024) 0.024 (0.023)

Table 2: Simulation results of the Dirichlet Gro-M3 for K = 3. See the caption of Table 1
for the meanings of columns.

(p, G) n
ARI of L RMSE of Λ RMSE of α

Median (IQR) Median (IQR) Median (IQR)

(30, 6)

250 1.00 (0.00) 0.064 (0.007) 0.078 (0.056)
500 1.00 (0.00) 0.046 (0.006) 0.062 (0.072)

1000 1.00 (0.00) 0.032 (0.004) 0.043 (0.046)
1500 1.00 (0.00) 0.026 (0.004) 0.032 (0.036)

K = 4 (60, 12)

250 1.00 (0.00) 0.064 (0.005) 0.060 (0.031)
500 1.00 (0.00) 0.043 (0.003) 0.047 (0.027)

1000 1.00 (0.00) 0.031 (0.002) 0.032 (0.014)
1500 1.00 (0.00) 0.025 (0.001) 0.023 (0.017)

(90, 15)

250 1.00 (0.00) 0.046 (0.004) 0.053 (0.036)
500 1.00 (0.00) 0.041 (0.003) 0.037 (0.022)

1000 1.00 (0.00) 0.029 (0.001) 0.026 (0.027)
1500 1.00 (0.00) 0.024 (0.001) 0.026 (0.020)

Table 3: Simulation results of the Dirichlet Gro-M3 for K = 4. See the caption of Table 1
for the meanings of columns.

good out-of-sample predictive performance while remaining parsimonious. Gelman et al.

(2014) contains a comprehensive review of various predictive information criteria for evalu-

ating Bayesian models. We first considered using the Deviance Information Criterion (DIC,
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Spiegelhalter et al., 2002), a traditional model selection criteria for Bayesian models. How-

ever, our preliminary simulations imply that DIC does not work well for selecting the latent

dimensions in Gro-M3s. In particular, we observed that DIC sometimes severely overselects

the latent dimensions in our model, while that the WAIC (Widely Applicable Information

Criterion, Watanabe, 2010) has better performance in our simulation studies (see the next

paragraph for details). Our observation about DIC agrees with previous studies on the in-

consistency of DIC in several different settings (Gelman et al., 2014; Hooten and Hobbs,

2015; Piironen and Vehtari, 2017).

Watanabe (2010) proved that WAIC is asymptotically equal to Bayesian leave-one-out

cross validation and provided a solid theoretical justification for using WAIC to choose

models with relatively good predictive ability. WAIC is particularly useful for models with

hierarchical and mixture structures, making it well suited to selecting the latent profile

dimension K and variable group dimension G in our proposed model. Denote the posterior

samples by θ(t), t = 1, . . . , T . For each i ∈ [n] and t ∈ [T ], denote

p(yi | θ(t)) =
G∏

m=1

 K∑
k=1

π
(t)
ik

∏
`
(t)
j,m=1

dj∏
c=1

(
λ

(t)
j,c,k

)yi,j,c .
In particular, Gelman et al. (2014) recommended using the following version of the WAIC,

where “lppd” refers to log pointwise predictive density and pWAIC2 measures the model com-

plexity through the variance,

WAIC = −2 (lppd− pWAIC2) (17)

= −2
n∑
i=1

log

(
1

T

T∑
t=1

p(yi | θ(t))

)
+ 2

n∑
i=1

varTt=1

(
log p

(
yi | θ(t)

))
,

where varTt=1 refers to the variance based on T posterior samples, with definition varTt=1(at) =

1/(T − 1)
∑T

t=1

(
at −

∑T
t′=1 at′/T

)2
. Based on the above definition, the WAIC can be easily

calculated based on posterior samples. The model with a smaller WAIC is favored.

We carried out a simulation study to evaluate how WAIC performs on selecting G and

K, focusing on the previous setting where 50 independent datasets are generated from

(n, p,G,K) = (1000, 30, 6, 3). When fixing the candidate K to the truth K = 3 and
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varying the candidate Gcandi ∈ {4, 5, 6, 7, 8}, the percentages of the datasets that each of

G = 4, 5, 6, 7, 8 is selected are 0%, 0%, 74% (true G), 20%, 6%, respectively. When fixing

the candidate G to the truth G = 6 and varying Kcandi ∈ {2, 3, 4, 5, 6}, the percentages of

the datasets that each of K = 2, 3, 4, 5, 6 is selected are 0%, 80% (true K), 6%, 4%, 10%,

respectively. This simulation study shows that the WAIC does not tend to underselect the

latent dimensions K and G, and that it generally has a reasonably good accuracy of selecting

the truth. We remark that here our goal was to pick a practical selection criterion that can

be readily applied in real-world applications. To develop a selection strategy for deciding

on the number of latent dimensions with rigorous theoretical guarantees under the proposed

models would need future investigations.

6 Application to Disability Survey Data

In this section we apply Gro-M3 methodology to a functional disability dataset extracted

from the National Long Term Care Survey (NLTCS), created by the former Center for

Demographic Studies at Duke University. This dataset has been widely analyzed, both

with mixed membership models (Erosheva et al., 2007; Manrique-Vallier, 2014), and with

other models for multivariate categorical data (Dobra and Lenkoski, 2011; Johndrow et al.,

2017). Here we reanalyze this dataset as an illustration of our dimension-grouped mixed

membership approach.

The dataset was downloaded from NLTCS at http://lib.stat.cmu.edu/datasets/. It

is an extract from the NLTCS containing responses from n = 21574 community-dwelling

elderly Americans aged 65 and above, pooled over 1982, 1984, 1989, and 1994 survey waves.

The disability survey contains p = 16 items, with respondents being either coded as healthy

(level 0) or as disabled (level 1) for each item. Among the p = 16 NLTCS disability items,

functional disability researchers distinguish six activities of daily living (ADLs) and ten

instrumental activities of daily living (IADLs). Specifically, the first six ADL items are more

basic and relate to hygiene and personal care: eating, getting in/out of bed, getting around

inside, dressing, bathing, and getting to the bathroom or using a toilet. The remaining ten

IADL items are related to activities needed to live without dedicated professional care: doing

heavy house work, doing light house work, doing laundry, cooking, grocery shopping, getting
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about outside, travelling, managing money, taking medicine, and telephoning.

Here, we apply the MCMC algorithm developed for the Dirichlet Gro-M3 to the data; the

Dirichlet distribution was also used to model the mixed membership scores in Erosheva et al.

(2007). Our preliminary analysis of the NLTCS data indicates the Dirichlet parameters α

are relatively small, so we adopt a small σα = 0.002 in the lognormal proposal distribution

in Eq. (15) in the Metropolis-Hastings sampling step. For each setting of (G,K), we run the

MCMC for 40000 iterations and consider the first 20000 as burn-in to be conservative. We

retain every 10th sample after the burn-in. The candidate values for the (G,K) are all the

combinations of G ∈ {2, 3, . . . , 15, 16} and K ∈ {6, 7, . . . , 11, 12}.

For selecting the values of latent dimensions (G,K) in practice, we recommend picking

the (G?, K?) that provide the lowest WAIC value and also do not contain any empty groups

of variables. In particular, for certain pairs of (G,K) (in our case, for all G > 10) under

the NLTCS data, we observe that the posterior mode of the grouping matrix, L, has some

all-zero columns. If G̃ denotes the number of not-all-zero columns in L, this means after

model fitting, the number of groups occupied by the p variables is G̃ < G. Models with

G̃ < G are difficult to interpret because empty groups that do not contain any variables

cannot be assigned meaning. Therefore, we focus only on models where L does not contain

any all-zero columns and pick the one with the smallest WAIC among these models. Using

this criterion, for the NLTCS data, the model with G? = 10 and K? = 9 is selected. We have

observed reasonably good convergence and mixing of our MCMC algorithm for the NLTCS

data. The proposed new dimension-grouping model provides a better fit in terms of WAIC

and a parsimonious alternative to traditional MMMs.

We provide the estimated L under the selected model with G? = 10 and K? = 9 in Figure

4. The estimated variable groupings are given in Figure 4. Out of the G? = 10 groups, there

are three groups that contain multiple items. In Figure 4, the item labels of these three

groups are colored in blue (j = 1, 2, 4, 5), red (j = 9, 10, 16), and yellow (j = 12, 13) for

better visualization. These groupings obtained by our model lead to several observations.

First, four out of six ADL variables (j = 1, 2, 4, 5) are categorized into one group. This group

of items are basic self-care activities that require limited mobility. Second, the three IADL

variables (j = 9, 10, 16) in one group may be ralated to traditional gender roles – these items

correspond to activities performed more frequently by women than by men. Finally, the
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Figure 4: Estimated variable grouping structure s (i.e., L) for the NLTCS data with
(G?, K?) = (10, 9). The first six items are ADL “activities of daily living” and the remaining
ten items are IADL “instrumental activities of daily living”. Out of the G? = 10 variable
groups, the three groups containing multiple items are colored coded in blue (j = 1, 2, 4, 5),
red (j = 9, 10, 16), and yellow (j = 12, 13) for better visualization.

two items j = 12 “getting about outside” and j = 13 “traveling” that require high level of

mobility form another group. The variable grouping structure we obtained using the Gro-M3

model partly resembles the dependence structure shown in the previous Figure 2 on pairwise

mutual information. We emphasize that such a model-based grouping of the items could

not have been obtained applying previous mixed membership modeling approaches to the

NLTCS disability data (Erosheva et al., 2007).

In addition to the variable grouping structures, we plot posterior means of the positive

response probabilities Λ:,1,: in Figure 5 for the selected model. For each survey item j ∈ [p]

and each extreme latent profile k ∈ [K], the Λj,1,k records the conditional probability of

giving a positive response of being disabled on this item conditional on possessing the kth

latent profile. The K? = 9 profiles are quite well separated and can be interpreted as usual

in mixed membership analysis. For example, in Figure 5, the leftmost column for k = 1

represents a relatively healthy latent profile, the rightmost column for k = 9 represents a

relatively severely disabled latent profile. As for the Dirichlet parameters α, their posterior

30



means are α = (0.0245, 0.0289, 0.0074, 0.0176, 0.0231, 0.0193, 0.0001, 0.0001, 0.0242).

Such small values of the Dirichlet parameters imply that membership score vectors tend to

be dominated by one component for a majority of individuals. This observation is consistent

with Erosheva et al. (2007). Meanwhile, here we obtain a simpler model than that in Erosheva

et al. (2007) as each subject can partially belong to up to G latent profiles according to the

grouping of variables, rather than p = 16 ones as in the traditional MMMs.

Figure 5: Estimated positive response probabilities Λ:,1,: for the NLTCS data with (G?, K?) =
(10, 9). Each column represents one extreme latent profile. Entries are conditional probabil-
ities of giving a positive response (1 = disabled) to each item given that latent profile.

7 Discussion

We have proposed a new class of mixed membership models for multivariate categorical data,

dimension-grouped mixed membership models (Gro-M3s), studied its model identifiability,

and developed a Bayesian inference procedure for Dirichlet Gro-M3s. On the methodology

side, the new model strikes a nice balance between model flexibility and model parsimony.

Considering popular existing latent structure models for multivariate categorical data, the

Gro-M3 bridges the parsimonious yet insufficiently flexible Latent Class Model (correspond-
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ing to CP decomposition of probability tensors) and the very flexible yet not parsimonious

Grade of Membership Model (corresponding to Tucker decomposition of probability tensors).

On the theory side, we establish the identifiability of population parameters that govern the

distribution of Gro-M3s. The quantities shown to be identifiable include not only the con-

tinuous model parameters, but also the key discrete structure – how the variables’ latent

assignments are partitioned into groups. The obtained identifiability conclusions lay a solid

foundation for reliable statistical analysis and real-world applications. We have performed

Bayesian estimation for the new model using a Metropolis-Hastings-within-Gibbs sampler.

Numerical studies show that the method can accurately estimate the quantities of interest,

empirically validating the identifiability results.

Our modeling assumption of the variable grouping structure can be useful to other re-

lated models. For example, Manrique-Vallier (2014) proposed a longitudinal MMM to cap-

ture heterogeneous pathways of disability and cognitive trajectories of elderly population for

disability survey data. The proposed dimension-grouping assumption can provide an inter-

esting new interpretation to such longitudinal settings. Specifically, when survey items are

answered in multiple time points, it may be plausible to assume that a subject’s latent profile

locally persists for a block of items, before potentially switching to a different profile for the

next block of items. This can be readily accommodated by the dimension-grouping modeling

assumption, with the slight modification that items belonging to the same group should be

forced to be close in time. Our identifiability results can be applied to this setup. Similar

computational procedures can also be developed. Furthermore, although this work focuses

on modeling multivariate categorical data, the applicability of the new dimension-grouping

assumption is not limited to such data. A similar assumption may be made in other mixed

membership models; examples include the generalized latent Dirichlet models for mixed data

types studied in Zhao et al. (2018).

In terms of identifiability, the current work has focused on the population quantities, in-

cluding the variable grouping matrix L, the conditional probability tables Λ, and the Dirich-

let parameters α. In addition to these population parameters, an interesting future question

is the identification of individual mixed membership proportions {πi; i = 1, . . . , n} for sub-

jects in the sample. Studying the identification and accurate estimation of πi’s presumably

requires quite different conditions from ours. A recent work (Mao et al., 2020) considered
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a similar problem for mixed membership stochastic block models for network data. Finally,

in terms of estimation procedures, in this work we have employed a Bayesian approach to

Dirichlet Gro-M3s, and the developed MCMC sampler shows excellent computational perfor-

mance. In the future, it would also be interesting to consider method-of-moments estimation

for the proposed models related to Zhao et al. (2018) and Tan and Mukherjee (2017).
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