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Abstract

Various global health initiatives are currently advocating the elimination of schistosomiasis

within the next decade. Schistosomiasis is a highly debilitating tropical infectious disease

with severe burden of morbidity and thus operational research accurately evaluating diag-

nostics that quantify the epidemic status for guiding effective strategies is essential. Latent

class models (LCMs) have been generally considered in epidemiology and in particular in

recent schistosomiasis diagnostic studies as a flexible tool for evaluating diagnostics

because assessing the true infection status (via a gold standard) is not possible. However,

within the biostatistics literature, classical LCM have already been criticised for real-life prob-

lems under violation of the conditional independence (CI) assumption and when applied to a

small number of diagnostics (i.e. most often 3-5 diagnostic tests). Solutions of relaxing the

CI assumption and accounting for zero-inflation, as well as collecting partial gold standard

information, have been proposed, offering the potential for more robust model estimates. In

the current article, we examined such approaches in the context of schistosomiasis via anal-

ysis of two real datasets and extensive simulation studies. Our main conclusions highlighted

poor model fit in low prevalence settings and the necessity of collecting partial gold standard

information in such settings in order to improve the accuracy and reduce bias of sensitivity

and specificity estimates.

Author summary

Accurate schistosomiasis diagnosis is essential to assess the impact of large scale and

repeated mass drug administration to control or even eliminate this disease. However, in

schistosomiasis diagnostic studies, several inherent study design issues pose a real chal-

lenge for the currently available statistical tools used for diagnostic modelling and associ-

ated data analysis and conclusions. More specifically, those study design issues are: 1) the
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inclusion of small number of diagnostic tests (i.e. most often five), 2) non formal consen-

sus about a schistosomiasis gold standard, 3) the contemporary use of relatively small

sample sizes in relevant studies due to lack of research funding, 4) the differing levels of

prevalence of the studied disease even within the same area of one endemic country and

5) other real world factors such as: the lack of appropriate equipment, the variability of

certain methods due to biological phenomena and training of technicians across the

endemic countries because of scarce financial resources contributing to the existing lack

of a schistosomiasis gold standard. The current study aims to caution practitioners from

blindly applying statistical models with small number of diagnostic tests and sample sizes,

proposing design guidelines of future schistosomiasis diagnostic accuracy studies with

recommendations for further research. While our study is centred around the diagnosis

of schistosomiasis, we feel that the recommendations can be adapted to other major tropi-

cal infectious diseases as well.

Introduction

Schistosomiasis affects over 250 million people in rural and some urban populations across

much of Africa and regions in South America, the Caribbean, People’s Republic of China, and

Southeast Asia [1, 2]. Since the new millennium, schistosomiasis interventions are escalating

[3] with elimination and interruption of transmission in selected areas to be set as World

Health Organization key goals for 2025. Accurate schistosomiasis diagnosis is essential to

assess the impact of large scale and repeated mass drug administration to control or even elim-

inate this disease [4]. Some molecular assays could constitute the gold standard for schistoso-

miasis diagnosis [5, 6] but the lack of sufficient funds, suitably trained staff and laboratory

supplies still hinders their use in endemic countries. Certainly, with the African schistosomes,

some work has been done to answer in the affirmative, the detection of species specific DNA

in body fluids, either blood or urine. Lodh et al. [7] carried out a study in Zambia to compare

KK, CCA and DNA (from urine) in an exposed population in Zambia. A total of 89 volunteers

were examined, KK showed 45/89 infected, CCA 55/89 (6 false positives) and 79/89 had detect-

able Schistosoma mansoni DNA. Clearly if there is a schistosomiasis gold standard, it is the

presence of parasite specific DNA. For Schistosoma haematobium work has been done in

Western Nigeria [8], comparing the presence of parasite eggs detected on the filter paper from

the filtered urine, haematuria detected by dipstick, and detection of the Dra1 DNA extracted

from the filters. Some 400 specimens were examined in that study and the conclusion was that

detection of Dra1 fragment is a definitive test for the presence of S. haematobium infection.

Nevertheless, renewed emphasis upon research and evaluation of schistosomiasis diagnostic

tools has been generated [5, 9] with a notable increase of diagnostic studies particularly during

the last five years [10–27], using a 2-latent class model without a gold standard [28, 29] to esti-

mate and evaluate diagnostic accuracy.

Latent class models (LCMs) have been increasingly utilised to describe the relationship

among schistosomiasis diagnostic tests and other infectious diseases as being indicators of

latent classes representing usually two states of a disease that of infected and non-infected [30].

Such models explain the associations among a number of diagnostic tests or observed items in

general using a small number of unobserved classes. van Smeden et al. [30] reviewed a large

number of publications in terms of their LCA methodology as a diagnostic tool in the absence

of gold standard.
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The simplest LCM assumes diagnostic tests are independent given the latent class. This is

known as the conditional independence (CI) assumption implying that if the true disease sta-

tus is misclassified by one test, the probability that it will be misclassified by another test will

not be affected. However, as with any statistical model, the validity of modelling results in the

real world is often jeopardised, leading to systematically overestimated classification accuracy

rates [31] when assumptions are violated. Hence, checking model assumptions through overall

goodness-of-fit tests such as chi-square or likelihood ratio tests and measures of fit such as

residuals constitute an essential part of the data analysis. This is important in order to appraise

the validity of the reported results when LCMs without a gold standard are used.

Here we start by discussing violations of the CI assumption in general and within the con-

text of schistosomiasis diagnosis in particular. LCMs have already been criticised for real-life

problems not only on the ground of violation of the CI assumption but also when applied to

a small number of diagnostic tests [32]–another pertinent problem in schistosomiasis diag-

nostic studies. We subsequently outline two more variants of LCMs with conditional depen-

dencies and introduce the idea of including the partial gold standard for the improvement of

bias and precision of these model parameter estimates. Currently there is no agreed gold

standard diagnostic test for schistosomiasis; however, we are assuming that in due course the

presence of parasite specific DNA in the urine will be acceptable as the gold standard. This is

based on evidence from two previous studies [7, 8] as well as a more recent research by

Archer et al. [33]. Another practical solution for including another partial ‘gold standard’

could be to combine information on a subset of individuals from different tests as in [34]

and compare those to data from other imperfect diagnostic tests on all individuals via the

proposed models. Furthermore, we fit these three variations on LCMs and discuss results on

real data for S. haematobium infection from Ghana [24] and S. mansoni infection from

Uganda [10]. Both of these datasets contain five observed binary items, have similar sample

sizes and lack gold standard evaluations. Such datasets are typical examples of the majority

of diagnostic studies to date and constitute a good basis for the current study to build simula-

tions and provide recommendations for correct interpretation of their results. Simulations

on relevant scenarios for S. mansoni infection allows us to study the performance of the clas-

sical LCM when CI is violated. Within these simulations, we also examine whether partial

gold standard information improves the accuracy of parameter estimates (prevalence, sensi-

tivities and specificities for the examined diagnostic tests) in the presence of model viola-

tions. Such a process permits to examine how would our results (bias and precision) change

if gold standard information was available for some individuals for the three fitted latent var-

iable models.

We aim to caution the practitioner not to blindly apply methods for estimating diagnostic

errors particularly with small sample sizes and limited number of diagnostic tests (i.e. five) in

schistosomiasis diagnostic studies. We would also like to emphasise at this point that the cur-

rent study does not aim necessarily to promote or demote particular available diagnostic tests.

With transparency (i.e. clearly describing the model assumptions, structure and parameter val-

ues) as well as validation (i.e. subjecting the models to tests such as comparing the model’s

results with events observed in reality through real world data analysis and simulations) the

current study aims to show under which scenarios LCMs might work or not for the evaluation

of existing schistosomiasis diagnostics. Finally, we propose guidelines for design of future

schistosomiasis and other infectious diseases diagnostic accuracy studies and make recom-

mendations for further research. We additionally provide the JAGS code used to fit the dis-

cussed models in this study in the S1 File. We can also share codes for simulations upon

request for other interested researchers.
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Assumption of conditional independence in the 2-latent class model

The CI assumption might be plausible when different tests are based on different scientific/

technological grounds or when they measure different characteristics of the disease. However,

this assumption often fails in practice. When some individuals without the disease of interest

have another condition in common that increases the likelihood of two (or more) tests to ren-

der false positives because they are based on a comparable biological principle [35]–this can

induce correlation between tests beyond the one explained by the disease status of interest.

This could be the case in patients with alternative causes of microhaematuria and not infected

with S. haematobium and perhaps with diagnostic tests such as reagent strips and urine filtra-

tion of 10 ml or whole urine samples from single urine specimens [36].

The existence of some other disease that has two or more diagnostic tests in common with

the disease of primary interest can violate the CI of the examined variables even within latent

classes of the disease of primary interest [29]. More precisely, again within the context of diag-

nosis of urogenital S. haematobium infection, a series of self-reported urogenital symptoms

(i.e. abnormal discharge colour, abnormal discharge smell, burning sensation in the genitals,

bloody discharge, genital ulcer, red urine, pain on urination, stress incontinence and urge

incontinence) might be also caused by sexually transmitted diseases such as Chlamydia tracho-
matis [21]. Individuals can be co-infected with C. trachomatis and urogenital S. haematobium
at the same time and such symptoms might be also used for diagnosis of C. trachomatis in

schistosomiasis endemic countries.

Another cause for conditional dependence among test results could arise if there is a sub-

group of individuals with an early or less severe stage of the disease of interest and if these indi-

viduals are more likely to be missed by some tests [37]. The latter can be the case in S. mansoni
infection where the parasitological Kato-Katz (KK) method [38] to detect Schistosoma eggs in

stool exhibits day-to-day variation in faecal egg output, and has low sensitivity in detecting

light-intensity infections [12]. In addition, serological tests, such as screening for antischistoso-

mal antibodies, are of limited use for the diagnosis of active infection, as large parts of the pop-

ulation may carry antibodies due to past cured infections [5, 9]. The need to understand the

mechanisms of the tests, and in particular their mutual dependence in diseased and non-dis-

eased subjects, as well as a clear clinical definition for disease has been already previously

highlighted [39].

Finally, an additional consideration is if some of the tests are administered by the same

nurse or doctor and some are self-reported, there might be a method-effect and the outcomes

might not be solely explained by the disease status.

Material and methods

Statistical models with conditional dependencies

Two more variants of LCMs that are commonly used in epidemiological studies to define dis-

ease status in the absence of a gold standard and when the CI assumption does not hold, are

the latent class random effect model (LCRE), and the finite mixture latent class model (FM).

In the LCRE, conditional dependencies among variables is accommodated through an individ-

ual-specific random effect applied to all diagnostic tests capturing heterogeneities that cannot

be explained by the two classes. In the current study we do not examine latent class models

with random effects to specific diagnostic items as this would imply that we have pre-knowl-

edge on which diagnostic items are correlated beyond the correlation that can be explained by

the latent structure. When subjects have the disease or are healthy with certainty, in the data

this will be seen as an excess number of all 0 or all 1 test results. Data that contain an excess
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number of zeros, relatively to what the model allows/predicts, are called zero-inflated data

[40]. In the case of schistosomiasis, it is well known that schistosomes are over dispersed

within certain populations and age-groups; a small number of individuals carry most of the

parasites and thus the all-zero effect is most relevant [41]. The FM allows for the modelling of

excess zeros (all-zero) and excess ones (all-one) in the data as separate components of a LCM.

Mathematical details of the LCM with CI, LCRE and FM are given below.

Latent class model with conditional independence. We first discuss the standard LCM

with CI. The marginal probability of a response pattern r is given by:

PðyrÞ ¼
X1

j¼0

Pðx ¼ jÞPðyr j x ¼ jÞ; r ¼ 1; . . . ;R; ð1Þ

where τ = P(ξ = 1) defines the disease prevalence parameter for the population of interest. Fur-

thermore, the tests are assumed to be conditionally independent given the true disease status

which implies: Pðyr j x ¼ jÞ ¼
Qp

i¼1
Pðyi j x ¼ jÞ. Each yi in turn is modelled with the Ber-

noulli distribution with class conditional probabilities λ1i = P(yi = 1jξ = 1) and λ2i = P(yi = 1 j ξ
= 0). The model parameters are the λ1i, λ2i, τ, for i = 1, . . ., p. Furthermore, for the ith diagnos-

tic test, its sensitivity is the probability of the positive test result given that the true diagnosis is

positive, P(yi = 1 j ξ = 1), and its specificity is the probability of a negative response given that

the true diagnosis is negative, P(yi = 0 j ξ = 0) = 1 − P(yi = 1 j ξ = 0). The sensitivity and specific-

ity of test i implied by the latent class model are then simply P(yi = 1 j ξ = 1) = λ1i and P(yi = 0jξ
= 0) = 1 − λ2i.

Latent class Gaussian random effects model. In some applications the CI assumption

does not hold for all or some of the indicators. To accommodate conditional dependencies

among variables, an individual-specific random effect is introduced to capture heterogeneities

that cannot be explained by the two classes [42, 43]. The random effect is a continuous, nor-

mally distributed, unobserved variable that serves as a summary of individual characteristics

that explain–together with the disease status–the outcome of a test. This is known as a latent

class Gaussian random effects model (LCRE). Under this model, the yi are modelled with the

Bernoulli distribution with P(yi = 1 j ξ = j, u) = F(βij + σj u), where F is the cumulative distri-

bution function of the normal and u is the individual-specific random effect that follows a

standard normal distribution. The parameter σj allows the random effect to have a different

variance in each latent class defined by ξ. The marginal probability of a response pattern r
under CI is given by:

PðyrÞ ¼
X1

j¼0

Pðx ¼ jÞ
Z Yp

i¼1

Pðyi j x ¼ j; uÞ�ðuÞdu; r ¼ 1; . . . ;R: ð2Þ

The sensitivities and specificities for the latent class Gaussian random effects model for each

test i are given in closed form:

Pðyi ¼ 1 j x ¼ 1Þ ¼ F
bi1

ð1þ s2
1
Þ

1=2

 !

and

Pðyi ¼ 0 j x ¼ 0Þ ¼ 1 � F
bi0

ð1þ s2
0
Þ

1=2

 !

respectively. When s2
0
¼ s2

1
¼ 0, the model reduces to the latent class model with local

PLOS NEGLECTED TROPICAL DISEASES Schistosomiasis diagnosis

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009042 February 4, 2021 5 / 23

https://doi.org/10.1371/journal.pntd.0009042


independence. Although such a model does not specify (in)dependence among certain tests,

we would expect them to capture such structures when these models provide good fit to the

data overall. The sensitivities and the specificities computed after Eq (2) depend on the vari-

ance of the random effect which is allowed to be different in each class but common for all

diagnostic tests.

Finite mixture latent class model. The above two models do not account for subjects

who either have the disease or are healthy with certainty. As already discussed, in the data this

will be seen as an excess number of all 0 or all 1 test results. Ignoring that excess in the data can

affect the true dimensionality of the data detected by standard goodness of fit tests and can

also distort the parameter estimates and as a result sensitivities and specificities.

The finite mixture latent class model allows for the modelling of excess zeros (all-zero) and

excess ones (all-one) in the data as separate components of a latent class model. To model all-

zero and all-one effects, the finite mixture model [32] (FM) is employed. The model uses the

two-class structure as its basis and adds two point masses for the combinations of all-zero and

all-one responses. These point masses correspond to the healthiest and the most severely dis-

eased patients that are always classified correctly. This model can be also considered as a latent

class model with four classes, of which two classes are fitted as having a point mass. In the truly

diseased class the probability of a positive outcome test is 1 and in the truly healthy class the

probability of a positive outcome is 0. Let t be an indicator that denotes correct classification.

Specifically, let t = 0 if a healthy subject is always classified correctly (i.e., has the all-zero

response pattern with p tests), t = 1 if a diseased subject is always classified correctly, and let

t = 2 otherwise. Thus, subjects are either always classified correctly, when either t = 0 or t = 1, or

a diagnostic error is possible when t = 2. Denote the probabilities for correctly classifying dis-

eased and healthy subjects by η1 = P(t = 1) and η0 = P(t = 0), respectively. Let also wi(ξ) denote

the probability of the ith test making a correct diagnosis when t = 2. The finite mixture model of

Albert & Dodd [32] assumes that the test results yi are independent Bernoulli random variables,

conditional on the true disease status and the classification indicator. The model becomes:

Pðyi ¼ 1 j x; tÞ ¼

wið1Þ; if x ¼ 1 and t ¼ 2

1; if x ¼ 1 and t ¼ 1

1 � wið0Þ; if x ¼ 0 and t ¼ 2

0; if x ¼ 0 and t ¼ 0:

8
>>>>>>><

>>>>>>>:

ð3Þ

Note that P(yi = 1 j ξ = 1, t = 0) = P(yi = 1 j ξ = 0, t = 1) = 0. The sensitivity and specificity of the

ith test under the finite mixture model are then P(yi = 1 j ξ = 1) = η1 + (1 − η1)wi(1) and P(yi =

0 j ξ = 0) = η0 + (1−η0)wi(0), respectively.

The marginal probability of a response pattern r is given by:

PðyrÞ ¼
X2

t¼0

X1

j¼0

Pðyr j x ¼ j; tÞPðx ¼ j j tÞPðtÞ; r ¼ 1; . . . ;R; ð4Þ

Note that P(ξ = 0 j t = 0) = 1 and P(ξ = 1 j t = 1) = 1.

An alternative solution: Inclusion of partial gold standard

Within the biostatistics literature, authors studied the effect of CI violation on LCM, LCRE

and FM on parameter estimates [42–45] under different simulation scenarios. A review of

some of the approaches can be also found in [46].

PLOS NEGLECTED TROPICAL DISEASES Schistosomiasis diagnosis

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009042 February 4, 2021 6 / 23

https://doi.org/10.1371/journal.pntd.0009042


The main findings were that estimates of sensitivity, specificity, and prevalence were sub-

stantially different under the different types of models. Another important finding has been

that when the number of diagnostic tests is less or equal to ten, it is typically very difficult to

discern statistically between the two forms of conditional dependence. They comment that it

may be easier to distinguish between these models in a larger number of tests and sample sizes.

However, they do also recognise that in most cases the inclusion of 10 diagnostic tests is unre-

alistic which is definitively also the case of schistosomiasis.

Dendukuri et al. [47] discuss sample size calculations when two conditionally independent

diagnostic tests are used in the absence of a gold standard. van Smeden [48] in his PhD thesis

(Chapter 5) provides a closer examination of the models and simulation scenarios discussed

by Albert & Dodd [32]. Erosheva & Joutard [49] performed simulation studies to examine

recovery of diagnostic accuracy estimates confirming the findings of Albert & Dodd [42]. They

identified the same difficulties in distinguishing the latent dependencies structure and biased

estimations of diagnostic accuracy parameters when deterministic mixture components are

present for the all-zero and all-one response patterns.

While these results would caution against using these LCMs, the difficulties of obtaining

gold standard verification especially for infectious diseases in endemic countries remain a

practical reality. Albert & Dodd [50] proposed a solution that collects gold standard informa-

tion on a subset of subjects but incorporates information from both the verified and non-veri-

fied subjects during LCMs estimation, offering the potential for more robust LCM estimates;

they conducted simulations assuming common sensitivity and specificity across six diagnostic

tests.

In this article, inspired by Albert & Dodd [50], we conduct simulations by considering

three latent structure models (LCM, LCRE and FM) and different proportions of gold standard

for the evaluation of imperfect schistosomiasis diagnostics. However, unlike Albert & Dodd

[50], we consider different sensitivities and specificities for different diagnostic tests and a

range of prevalence settings, more appropriate in the context of schistosomiasis.

Goodness-of-fit test statistics and measures of fit

In this section we address the following questions: 1) does the model (LC, LCRE or FM) fit the

data? 2) which of the three models (LC, LCRE, FM) provide a better fit to the data and when?

and 3) which diagnostic tests are not fitted well by the hypothesised model? A model that does

not fit the data would imply that more classes might be needed to explain the dependencies

and therefore lack of CI of the hypothesised model. In addition, chi-square type measures

(bivariate residuals) for pair of diagnostic tests can also identify those items that are not fitted

well by the hypothesised model and violate the CI assumption [51].

The first way for checking the fit of the models is to use global goodness-of-fit tests that

compare the observed and expected (under the model) frequencies across the response pat-

terns such as the likelihood ratio or Pearson chi-squared goodness-of-fit tests. The Pearson

chi-squared goodness-of-fit test statistic, X2, is given by:

X2 ¼
X2p

r¼1

N
ðpr � p̂rÞ

2

p̂r
; ð5Þ

where r represents a response pattern, N denotes the sample size, and pr and p̂r represent the

observed and expected probabilities, respectively, of response pattern r. By multiplying pr and

p̂r by N we obtain the observed and expected frequencies of pattern r. p̂r for LC, LCRE and FM

is estimated from P(yr) given in Eqs (1), (2) and (4) respectively.
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If the model holds, (5) is distributed approximately as χ2 with degrees of freedom equal to

the number of different response patterns (2p) minus the number of independent parameters

(prevalence, sensitivities, specificities, variances of random effects) minus one. For the LC and

LCRE with two latent classes, the degrees of freedom are 2p − 2p − 2 and 2p − 2p − 4 respec-

tively. For the FM model (with four classes) the degrees of freedom are 2p − 2p − 3. The data

can be considered as a 2p contingency table. For instance, in our two real datasets from Ghana

and Uganda, there are five diagnostic tests in each of them that give a 2 × 2 × 2 × 2 × 2 contin-

gency table. The sample sizes for the two datasets are 220 and 258 respectively and only 25 and

17 out of the total 32 response patterns appear in the sample and many patterns that occur in

the sample have low (less than 5) frequencies. Theory tells us that small expected cell frequen-

cies (less than five) (known also as sparseness) have a distorting effect on the chi-square tests.

Under sparseness, the test statistic will no longer have the chi-square distribution and so from

the practical point of view these tests cannot be used (see e.g. [52]).

Apart from looking at the whole set of response patterns, a second additional way could

involve instead computing likelihood ratio and chi-square values for the two-way cross-tabula-

tion of the diagnostic tests. That is, we can construct the 2 × 2 contingency tables obtained by

taking two diagnostic tests at a time. For each cell of these bivariate contingency tables, we

define a GF-Fit for which we compare the observed frequency with the expected frequency

estimated under the corresponding latent variable model (LC, LCRE and FM). We use these

terms to emphasise that there are no χ2-distribution associated with them. For category a of

variable i and category b of variable j the GF-Fits are defined as follows

GF � FitðijÞab ¼ NðpðijÞab � p̂ðijÞab Þ
2
=p̂ðijÞab : ð6Þ

As a rule of thumb, if we consider the GF � FitðijÞab as having a χ2 distribution with one degree

of freedom, then a value of those fit measures greater than 4 is indicative of poor fit at the 5%

significance level [51, 53]. Similarly, summing these measures over a and b give the bivariate

GF-Fits for variable i and j and therefore a value greater than sixteen will be then indicative of

poor fit. The probabilities p̂ can be evaluated under the LC, LCRE and FM models. The chi-

squared residuals provide a measure of the discrepancy between the observed and the pre-

dicted frequency. A study of the bivariate chi-squared residuals provides information about

where the model does not fit or in other words pair of variables for which the CI assumption is

violated (local dependencies).

Furthermore, we conducted a parametric bootstrapping for finding the empirical distribu-

tion of the χ2 test statistic and the corresponding p-values. For each model, we generated

K = 10, 000 data sets from using the estimated model parameters from the data as the true

ones. For each generated data set we computed the chi-square test statistic. To obtain the

empirical p-value we count the number of times the test statistic from the original data is larger

than the generated χ2 test statistics. We will illustrate this in both of our real datasets.

Results

Results from real datasets

We first used data from a study conducted in three villages northwest of Accra in Ghana

which examined 220 adults using five S.haematobium diagnostic measures: microscopic exam-

ination of urine for detection of S. haematobium eggs, dipsticks for detection of haematuria,

tests for circulating antigens, serological antibody tests (ELISA) and ultrasound scans of the

urinary system [24]. We also used data from a most recent study from 258 children near Lake

Albert in Uganda using four S. mansoni diagnostic measures: microscopy of duplicate Kato-
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Katz smears from two consecutive stools (these are counting as two observed tests), urine-cir-

culating cathodic antigen (CCA) dipstick, DNA-TaqMan and soluble egg antigen enzyme-

linked immunosorbent assay (SEA-ELISA) [10]. De-identification of data before release to the

statisticians and previous consent of study subjects was ensured. As mentioned in the intro-

ductory section, both datasets have five observed binary variables and do not have any observa-

tion with known gold standard. We employed Bayesian estimation methods to fit the models,

assuming uninformative priors on the model parameters.

For the dataset from Ghana, all three models perform similarly in terms of model fit (the

overall X2 statistic is 12.79, d.f. = 20 for the LC model, 12.42, d.f. = 19 for the FM model and

13.23, d.f. = 18 for the LCRE model) and provide us with similar estimates of prevalence, sensi-

tivity and specificity. The estimated parameters under the LC, LCRE and FM models as well as

goodness-of-fit statistics are provided in Tables 1 and 2 and also in the Shiny application

(https://perma.cc/QJ4V-GQ84) under the Ghana example tab. All the bivariate chi-squared

residuals have values smaller than 4 indicating also a good fit. In addition, the empirical p-val-

ues for this data set also indicate a good fit (LC: X2 = 16.42, p = 0.982; LCRE: X2 = 17.08,

p = 0.965 and FM: X2 = 16.60, p = 0.982).

We note that the prevalence level as estimated is fairly small, around 15%. We also note that

sensitivity estimates for all diagnostic tests, except for ELISA, have very high associated uncer-

tainty (estimated standard errors). Based on acceptable overall fit from all three models (LC,

LCRE, and FM), in this case, researchers might conclude that the LCM is appropriate but that

no reliable inference is available for item sensitivities.

For the dataset from Uganda, the estimated parameters under the LC, LCRE and FM mod-

els as well as goodness-of-fit statistics are provided in Tables 3 and 4 and also in the Shiny

application under the Uganda example tab (https://perma.cc/QJ4V-GQ84). The models again

perform similarly between them in terms of parameter estimates, however, the overall fit for

this data set is poor across all three models (the overall X2 ranges from 36.93, d.f. = 20 for LC

to 40.25, d.f. = 18 for LCRE, to 44.42, d.f. = 19 for FM). Note that the overall significant (not an

adequate model fit) result we obtained from the global goodness-of-fit tests cannot be trusted

Table 1. Parameter estimates for the three model fits for the Ghana data set.

LC LCRE FM

Prevalence 0.16 (0.04) 0.15 (0.04) 0.15 (0.04)

Sensitivities
ELISA 0.95 (0.04) 0.97 (0.04) 0.94 (0.05)

Ultrasound 0.63 (0.10) 0.66 (0.11) 0.64 (0.10)

Haematuria 0.74 (0.10) 0.76 (0.11) 0.78 (0.12)

Eggs 0.84 (0.11) 0.89 (0.13) 0.84 (0.12)

Circ. Antigens 0.48 (0.09) 0.48 (0.10) 0.46 (0.10)

Specificities
ELISA 0.37 (0.04) 0.36 (0.04) 0.37 (0.04)

Ultrasound 0.74 (0.03) 0.74 (0.03) 0.73 (0.03)

Haematuria 0.87 (0.03) 0.87 (0.03) 0.88 (0.03)

Eggs 0.97 (0.02) 0.96 (0.02) 0.96 (0.02)

Circ. Antigens 0.57 (0.04) 0.57 (0.04) 0.56 (0.04)

The table shows the estimated prevalences, sensitivities and specificities with standard errors in parentheses for the

Ghana data set.

https://doi.org/10.1371/journal.pntd.0009042.t001
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due to sparseness (i.e. there are response patterns with expected frequencies under the model

less than 5). More specifically, the GF-Fit values are given in Table 1 in the S1 Appendix for

the pair POC-CCA and SEA-ELISA diagnostic tests and for the LC, LCRE and FM models.

The LC model gives a total GF-Fit equal to 10.37 (similarly the GF-fit values are 9.54 and 4.00

for the LCRE and FM models respectively). This is the total of the GF-fit values from the four

cells. If we apply the rule of thumb given above, then any cell with a value greater than 16 indi-

cates a bad fit or in other words the average across the four cells should not be greater than

four. According to the rule of thumb, all three models show a good fit on the bivariate tables.

On the evidence from the margins, we have no reason to reject any of the three models. The

univariate and bivariate GF-Fits for the LC, LCRE and FM models are given in Table 2 in S1

Appendix for all pairs of diagnostic tests. Among the three models the LCRE provides the

smallest bivariate GF-Fits but all models show adequate fit. Each value that appears in the table

is smaller than 16.

Furthermore, for this same data set and the three examined models the empirical p-values

are: LC: X2 = 43.51, p = 0.125; LCRE: X2 = 47.032, p = 0.104; FM: X2 = 50.6, p = 0.060. These

Table 2. Fitted frequencies for the three model fits for the Ghana data set.

Pattern Observed LC LCRE FM

1 00000 28 23.99 23.93 23.59

2 00001 19 18.48 18.28 18.53

3 00010 1 0.89 0.94 1.10

4 00100 4 3.49 3.58 3.43

5 00101 3 2.69 2.74 2.70

6 00110 1 0.34 0.25 0.42

7 01000 10 8.56 8.62 8.56

8 01001 2 6.60 6.59 6.73

9 01100 1 1.30 1.31 1.32

10 10000 34 41.53 41.88 41.08

11 10001 35 32.02 32.02 32.28

12 10010 2 2.79 2.74 2.87

13 10011 3 2.35 2.30 2.33

14 10100 6 6.68 6.68 6.61

15 10101 7 5.25 5.19 5.24

16 10110 5 4.11 3.98 4.14

17 10111 2 3.72 3.69 3.54

18 11000 19 15.16 15.30 15.18

19 11001 14 11.74 11.74 11.95

20 11010 2 2.90 2.81 2.60

21 11011 3 2.58 2.54 2.18

22 11100 3 3.41 3.12 3.46

23 11101 1 2.81 2.53 2.81

24 11110 7 6.81 7.26 7.09

25 11111 8 6.21 6.80 6.08

X2 12.79 13.23 12.42

The table shows the observed and expected frequencies under the three model fits for the Ghana data set. Note that the expected frequencies for the patterns 00000 and

11111 under the FM model fit are based on the non-deterministic component of the model. Adding these frequencies to the deterministic part gives us the total

observed frequencies in these all zero and all one responses.

https://doi.org/10.1371/journal.pntd.0009042.t002
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values now suggest that all three models are a good fit to the data. This result is in line with the

fact that the bivariate margins did not detect any misfits in the bivariate residuals.

In the absence of gold standard and solid prior knowledge on latent dependencies, can

researchers make conclusions by using these results? In this paper, we attempt to address this

broad question with the simulation study below.

Table 3. Parameter estimates for the three model fits for the Uganda data set.

LC LCRE FM

Prevalence 0.47 (0.03) 0.48 (0.03) 0.52 (0.05)

Sensitivities
POC-CCA 0.98 (0.01) 0.98 (0.01) 0.98 (0.02)

SEA-ELISA 0.98 (0.01) 0.98 (0.01) 0.98 (0.02)

DNA-TaqMan 0.92 (0.03) 0.92 (0.03) 0.88 (0.04)

Kato-Katz 1 0.79 (0.04) 0.79 (0.04) 0.73 (0.06)

Kato-Katz 2 0.79 (0.04) 0.79 (0.04) 0.72 (0.06)

Specificities
POC-CCA 0.80 (0.04) 0.81 (0.04) 0.88 (0.06)

SEA-ELISA 0.46 (0.04) 0.46 (0.04) 0.51 (0.05)

DNA-TaqMan 0.55 (0.04) 0.55 (0.05) 0.56 (0.05)

Kato-Katz 1 0.99 (0.01) 1.00 (0.01) 0.99 (0.01)

Kato-Katz 2 0.99 (0.01) 1.00 (0.01) 0.99 (0.01)

The table shows the estimated prevalences, sensitivities and specificities with standard errors in parentheses for the

Uganda data set.

https://doi.org/10.1371/journal.pntd.0009042.t003

Table 4. Fitted frequencies for the three model fits for the Uganda data set.

Pattern Observed LC LCRE FM

1 00000 39 26.81 27.48 29.89

2 00100 20 22.11 22.42 23.76

3 01000 22 31.48 32.22 29.06

4 01011 1 0.14 0.12 0.22

5 01100 28 26.05 26.38 23.29

6 01101 1 0.7 0.43 0.88

7 10000 1 6.62 6.46 4.08

8 10100 2 5.55 5.36 3.43

9 10110 2 0.45 0.38 0.61

10 11000 13 8.18 7.97 5.1

11 11001 2 1.72 1.59 3.13

12 11010 1 1.72 1.59 3.16

13 11011 5 6.2 5.98 8.16

14 11100 18 11.04 10.9 11.66

15 11101 14 17.69 17.97 22.42

16 11110 14 17.83 18.05 22.65

17 11111 75 67.27 68.45 59.31

X2 36.93 40.25 44.42

The table shows the observed and expected frequencies under the three model fits for the Uganda data set. As in Table 2, the expected frequencies under the FM model

fit for the all zero and all one responses only show the non-deterministic component.

https://doi.org/10.1371/journal.pntd.0009042.t004
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Design of the simulations

To resemble real world problems in the diagnosis of schistosomiasis, we consider five imper-

fect test items and the gold standard which we assume has 100% sensitivity and 100% specific-

ity. In the simulation study, we consider changing four settings: the sample size, the disease

prevalence, the availability of gold standard, and the data generating model. Thus, we specify

two sample sizes: 1) 250, which is similar to a typical sample size in practice, and 2) 1000,

which we use to demonstrate potential improvements solely due to a larger sample. We specify

a high, 40% as an in-between value for S. mansoni and S. haematobium, and a low, 8%, disease

prevalence settings to examine how latent variable modelling results might be affected by dif-

ferent prevalence levels. We consider cases when gold standard is not collected (100% of indi-

viduals are missing the gold standard), when gold standard is available for 20% (80% missing)

and when gold standard is available for 50% (50% missing). Finally, we consider three latent

variable models for generating the data: latent class (LC), latent class with individual-specific

random effects (LCRE) and the finite mixture model (FM). These settings give us 3 × 2 ×
2 × 3 = 36 simulation scenarios, and we use 128 replications for each one.

Because, in real world problems, we do not know the data generating process, we fit all

three models for every simulated data set and study bias and mean squared error for the esti-

mates of prevalence, specificities and sensitivities under the three hypothesised models. As in

the real data example above, the models were fitted fully Bayesian with uninformative priors

on the model parameters. The aims of the simulation study are two-fold. First, we explore the

idea of sensitivity analysis by using latent structure models with different specifications of

latent dependencies, similarly to Albert & Dodd [50] and Erosheva & Joutard [49] (but exclud-

ing the Grade of Membership and Extended Mixture Grade of Membership models in the cur-

rent study), now with different settings of prevalence, sensitivity and specificity parameters

that are particularly relevant for S. mansoni. Given that we do not know the data generating

model, we examine whether one can make reliable conclusions about prevalence, sensitivity,

and specificity for the given tests by relying on results from the various models and goodness

of fit test. Second, because many empirical studies only use the LC, we focus on its perfor-

mance in our simulations. We investigate how the standard LC model performs under CI vio-

lation in small and medium sample sizes, two differing proportions of prevalence, and three

levels of available gold standard.

The simulated data have been generated using the sensitivities and specificities given in

Table 5. Note that, for test items other than gold standard, the true sensitivity values range

from 0.6 to 0.95 and the true specificity values range from 0.45 to 0.99. These scenarios were

assumed to represent a real world problem for the diagnosis of S. mansoni infection.

Table 5. Simulated parameter values for sensitivity and specificity for the diagnosis of S. mansoni infection.

Sensitivity Specificity

Microscopy [54] 0.60 0.99

CCA [7] 0.73 0.45

CAA [55] 0.90 0.87

Antibody 0.90 0.50

LAMP 0.95 0.90

Gold std. [7, 8, 33] 1.00 1.00

These parameter values are a mixture of best guesses of schistosomiasis diagnostics expert Prof. Clive Shiff and

available published evidence. The relevant references are provided in the above table.

https://doi.org/10.1371/journal.pntd.0009042.t005
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Following Erosheva & Joutard [49], we set σ0 = σ1 = 1.5 for the random effects variance in

the LCRE model. The correlation between items will be attributed to two components, namely

the latent class and the random effect. Given a latent class, the diagnostic tests will still be cor-

related based on the random effect and the higher the variance of the random effect the higher

the correlation between the items from the same class. For generating the zero- and one-excess

in the FM model, we set η0 = P(t = 0) = 0.5 and η1 = P(t = 1) = 0.2 for generating the zero- and

one-excess in the FM model.

We use as performance criteria the bias and mean squared error (MSE) for each parameter

given by: Bias ¼ 1

T

PT
i¼1
ðŷ i � yÞ and MSE ¼ 1

T

PT
i¼1
ðŷ i � yÞ

2
, where T here is the number of

valid replicates, ŷ i is the estimate of a parameter or of its asymptotic standard error at the ith
valid replication, and θ is the corresponding true value.

Simulation results

Simulation results show that the low prevalence setting could result in very unreliable estimates

for prevalence and sensitivities for low sample sizes and in the absence of full gold standard.

Moreover, even for larger sample size and particularly for low prevalence levels, not having

any gold standard observations in the data could prohibit parameter recovery. We note that

specificity parameters are generally estimated more reliably than sensitivity parameters in all

scenarios (see Fig 1), consistent with findings from prior research [49]. Also consistent with

prior research [49], we find when specificity parameters are biased, they are biased upwards.

However, we do not observe a general trend in the direction of biases for sensitivity parame-

ters. The sensitivity parameter estimates acquire large expected biases when the data generating

model is LCRE (see Fig 1C); the biases are smaller but substantial when FM is the data generat-

ing model (see Fig 1E), and the biases are the smallest when LC is the data generating model

(see Fig 1A). A similar pattern arises for the MSE of parameter estimates (see Fig 2). We also

observe that it is difficult to distinguish between various forms of latent dependencies solely

based on the goodness of fit results (see ‘Model Fit’ tab in https://perma.cc/QJ4V-GQ84),

which is consistent with prior findings [49, 50].

Within each generating model scenario, having a large quantity of gold standard observa-

tions is improving the bias in estimates substantially. Thus, when gold standard is available for

50% of observations, we can conclude that specificity parameter estimates acquire little bias for

either the large or the small sample size, irrespective of the data generating model and the two

different assumed prevalence levels, and, most importantly, irrespective of the fitted model.

Likewise, having 20% of gold standard improves with expected biases in sensitivity estimates,

however, we still observe bias up to 0.1 for sensitivity estimates when the sample size is small

and LCRE is the data-generating model. Notably, these biases are observed when a simpler LC

model is fitted to LCRE-generated data, however, these biases are comparable to expected

biases when LCRE model is fit to LCRE-generated data. Thus, sensitivity estimates from both

models–the true LCRE and the simpler LCM–acquire expected biases in this case. As expected,

these biases improve and become potentially negligible for the larger sample size of 1000. The

simulated results under the LC, LCRE and FM models data generating mechanisms as well as

for the two different assumed sample sizes and prevalences are provided in the Shiny applica-

tion (https://perma.cc/QJ4V-GQ84) under the ‘Simulated results’ tab and by selecting corre-

sponding different simulation scenarios within this tab. Interestingly, the expected impact on

parameter estimates due to using an incorrect fitting model is quite negligible as compared to

the impact on parameter estimates due to the absence of gold standard particularly for the sen-

sitivity estimates.
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Fig 1. Bias of parameter estimates (sensitivities and specificities), as estimated by the LC, LCRE and FM models under differing

proportions of missing gold standard, and under differing data generating mechanisms (sample size = 250, prevalence = 0.08).

https://doi.org/10.1371/journal.pntd.0009042.g001
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Fig 2. MSE of parameter estimates (sensitivities and specificities) as estimated by the LC, LCRE and FM models under differing

proportions of missing gold standard, and under differing data generating mechanisms (sample size = 250, prevalence = 0.08).

https://doi.org/10.1371/journal.pntd.0009042.g002
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We observe that parameter recovery is less reliable when latent dependency structures are

more complex than under the CI-LCM, with LCRE data-generating scenario being the most

problematic. Thus, for the small sample size of 250, and 8% prevalence, when no gold standard

is available and data are generated from the LCRE model, we find that the expected bias in sen-

sitivity estimates ranges from −0.4 to 0.2, with high specificity items experiencing negative

biases that are largest in magnitude. Results improve in the case of 40% prevalence and sample

size of 250 (see S1 and S2 Figs). Under the LCRE generating model, inspecting the fit of the

three models, we find that this cannot be considered adequate (even when taking into account

that the data are quite sparse); however, we find that estimates from different models are in

agreement. In this setting, using the LCRE model for prevalence estimation could result in

erroneously estimating the prevalence to be much higher than it actually is (e.g., this could

range from 12.3% at the 80th replication to 37.5% at the 100th replication versus the assumed

8%). For one to obtain the different model estimates and fit across the 128 replications, in the

Shiny app go to tab ‘Model fit’ and type successively 1–128 in the box ‘Replication number’).

When LC model was the data generating model, all three models showed good model fit and

reasonable estimates of prevalence. When FM was the data generating model, the prevalence

estimates were also reasonable for the bigger sample size.

To conclude our observations from the simulation studies, we recommend that in the

absence of strong scientific knowledge about the data generating mechanisms, one needs to be

careful when interpreting prevalence and sensitivity estimates from latent structure models in

the absence of gold standard especially in small sample sizes and in the presence of low preva-

lence. The simulation results indicate that the availability of LCMs and their extensions does

not automatically imply that assessing the true disease status is unnecessary. In fact, under real-

istic scenarios of a few test items and a sample size of a couple hundred observations, it is pos-

sible to obtain severely biased estimates, especially for prevalence and sensitivity parameters,

when the true data generating mechanism is more complex than standard LCM with CI. The

biases should be of utmost concern when true disease prevalence is low. Based on the simula-

tion studies, we recommend to carefully examine model fit before drawing any conclusions. In

our simulations, the fit of LC, LCRE and FM models was poor across the board for small sam-

ple sizes when data generating models were complex. If the fit was found to be poor, in the

case of small prevalence, sensitivity and prevalence estimates were found to be not reliable

even if there is an agreement among different latent structure models. In such cases, we recom-

mend collecting some gold standard. Our simulation results indicate that even 20% of gold

standard can drastically improve estimation. Another alternative, which we did not explore in

this paper, is in the absence of gold standard to consider covariates such as gender and age on

the prevalence and item response probabilities (i.e. the sensitivities and specificities of the diag-

nostic tests) and/or Bayesian estimation with informative priors.

Discussion

In schistosomiasis diagnostic studies, several inherent study design issues might compromise

accurate estimation of parameters from latent variable models. More specifically, those study

design issues are: the inclusion of small number of diagnostic tests (i.e. most often�5) with

different mutual dependencies in diseased and non-diseased subjects; the lack of a gold stan-

dard due to mainly lack of appropriate equipment and training of technicians across the

endemic countries because of scarce financial resources; the current use of relatively small

sample sizes in relevant studies due to lack of research funding, and finally the inherent differ-

ing levels of prevalence of the studied disease even within the same area of one endemic coun-

try. In general, some of these issues can also be pertinent in the diagnosis of other major
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tropical infectious diseases such as malaria, tuberculosis, dengue and soil transmitted hel-

minths and thus we hope that current findings would be also considered and adapted more

broadly.

We have initially fitted three different latent variable models–LCM with CI assumption,

LCRE and FM–in two real schistosomiasis datasets from sub-Saharan Africa of small sample

size and with a limited number of diagnostic tests in order to caution the practitioners not to

blindly apply such methods for estimating diagnostic error without a gold standard. We have

subsequently explored solutions from the biostatistical literature [50] of whether including a

partial gold standard in these models improves bias and precision of parameter estimates for

the problem of schistosomiasis diagnosis via extensive simulation studies (assuming different

sensitivities and specificities for different diagnostic tests and a low- and a high-prevalence set-

tings). All of these are data-driven modelling approaches searching for relationships in the

available data and accounting for measurement error and dependencies between the diagnos-

tic tests as well as excessive number of zero and one responses, aiming for accurate parameter

inference. The latter is a key component for correct predictions from mechanistic approaches,

which incorporate the available knowledge of the system into the model [56]. Combination of

data-driven and mathematical modelling approaches could offer great synergies with regards

to the understanding of interactions between population epidemiology and diagnostic tests

characteristics. Our simulations did not take into account that the Kato Katz sensitivity might

change with infection intensity as shown in [16, 57, 58], and this can be an interesting topic for

further research to refine the current simulations. Another interesting topic for further

research can involve another set of simulations in which the gold standard is not allowed to

have 100% sensitivity and specificity but close to them as a means to examine additional biases

of assuming a diagnostic as a gold standard when it is not. Nevertheless, the current simulation

results still provide useful recommendations for researchers to consider in their study design

and analysis.

For the real dataset from Ghana, all three models provided acceptable overall model fit,

with all the bivariate chi-squared residuals also indicating a good fit. Estimates of prevalence,

sensitivity and specificity were all similar across the three fitting models and thus in this case,

researchers might conclude that the LCM is appropriate but that no reliable inference is avail-

able for item sensitivities (due to large standard errors) in the absence of partial gold standard

information. However, for the real dataset from Uganda although the models performed simi-

larly in terms of parameter estimates, the overall fit was poor across all three models but with

all the bivariate χ2 residuals indicating a good fit. For the specific dataset from Uganda and

based on our simulation results, we conclude that inclusion of partial gold standard informa-

tion would have added more confidence in the parameter estimates and derived conclusions.

It should be also noted that if the inclusion of partial gold standard is not feasible, then alterna-

tively the inclusion of covariates or Bayesian estimation with informative priors [58] might

have improved model fit.

Furthermore, our simulation studies indicated that the sensitivity parameter estimates

acquired some degree of expected biases in small sample sizes. We explain the reasons for

these findings below. For instance, in our simulation scenarios, when we generate data from

the FM with an excess for all-one and all-zero responses and a sample size of 250 we are left

with 75 observations to be fitted by the hypothesised model. When prevalence is also low, we

then get very unstable results. On the other hand, the LCRE fits a continuous latent variable

(random effect) in addition to the two latent classes to explain the dependencies among the

five (in the full absence of gold standard) or six items (when there is partial gold standard

information), respectively, beyond the ones explained by the two latent classes. With an LCRE

we do not estimate loadings for the random effects but again the model is probably overfitting
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and could also result in unstable estimation. Another inherent problem with the LCRE fitting

for the scenario of the small sample size, is the difficulty of estimating random effects variance

from small samples. Those two might be the reasons that even when we estimate from LCRE

or FM models to their respective data generating models, the number of items is small or the

sample size is small after we eliminate the 1 and 0 response patterns.

More generally, the simulation studies showed that the fit of all three examined models was

poor in the case of low prevalence and that partial gold standard information improved the

accuracy and bias of parameter estimates (prevalence, sensitivities, and specificities for the

examined diagnostic tests) in the presence of model violations. In particular, when a future

study could afford recruiting only around 250 participants, we recommend the inclusion of at

least 20% gold standard information (i.e., collect gold standard on 50 randomly selected indi-

viduals of the initial sample) and, most ideally, of 50% gold standard (i.e., collect gold standard

on 125 randomly selected individuals of the initial sample) for both low and higher prevalence

scenarios. However, even for sample size of 1000, particularly for low prevalence levels, the full

absence of gold standard could lead to erroneous parameter estimates but inclusion of 20%

gold standard (i.e., gold standard collected on 200 randomly selected individuals of the initial

sample) can also notably improve the obtained parameter estimates. If a high prevalence is

expected, and the sample size can be as large as 1000, the inclusion of partial gold standard for

the improvement of bias and precision of model estimates becomes less important.

For all different prevalence levels and sample sizes, we definitely recommend to carefully

examine different models fit of real world data before drawing any conclusions. Latent class

models can be fitted to binary but also other type of indicators such as continuous, ordinal or

mixed. Sensitivities and specificities would need to be carefully considered for those type of

data too but in principle the examined models of the current study can be extended to handle

any type of data (such as original egg counts and CCA results) [59, 60]. It should be noted that

the more complex models presented here are not possible to be fitted with less than five diag-

nostic items. With a higher number of items, it could also be warranted to explore other for-

mulations for latent dependencies such as mixed membership [61], which may not necessarily

be helpful for only five items as in our case because of known difficulties in determining true

latent dependency structures [49, 50]. The openly available datasets in from the paper by Bäre-

nbold et al. at [58] with up to 12 diagnostic tests from many different sites and in total several

thousand individuals or the dataset used in the paper by Prada et al. in ‘additional file 3’ [57]

can be good sources to try and apply such models. In applied studies where only three or four

diagnostic tests would be available and no gold standard would be feasible to be collected, we

would also recommend Bayesian inference and the inclusion of informative priors on latent

class modelling parameters. Such an approach would represent our (un)certainty in the model

parameters and this could also improve the model estimation accuracy [62, 63]. The inclusion

of informative priors and their impact on certain parameters compared to the impact of add-

ing gold-standard information is definitely a subject that warrants further study but this is out

of scope of this article.

Finally, future methodological research should also explore the more precise merits of

incorporating covariates (such as gender and age) on the prevalence and item response proba-

bilities and how those could improve the fit of these models. Overall, the inclusion of covari-

ates can strengthen the prediction power of a model. With latent variable models such as LC,

LCRE and FM, the inclusion of individual level characteristics on the sensitivities and specifici-

ties can identify individual-item effects that might be of medical importance and interest (for

e.g., diagnostic tests behaving differently between men and women or different age groups)

but also covariates can be seen as variables that together with the latent structure explain local

dependencies and reduce the variance of the random effects. The inclusion of individual level
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covariates on the prevalences can identify groups of individuals that are more or less prone to

a disease. For instance, in schistosomiasis, chronic infections occur in adults of increasing age,

but in these groups it has been difficult to detect infection based on egg detection while sero-

logical and immunological tests can be more appropriate to detect duration of infection [64]

so assessing diagnostic accuracy for different age groups in schistosomiasis studies, is highly

relevant. In addition, gender may influence the accuracy of estimates through factors such as

menstruation and genitourinary tract infection in females [65] and thus gender is another

highly relevant covariate to be considered. Such approaches have been also empirically

explored and applied in schistosomiasis diagnostic accuracy studies [8]. Other covariates rele-

vant to diagnostic accuracy could be multiple labs or technicians, different locations, schools

or different countries. Such scenarios could be possible if identical training or equipment is

not used across the different locations, or if multi-country diagnostic studies were in place and

the researcher analysing the data would be keen to check and estimate such differences.

There are currently various debates and initiatives within the global health arena towards

the elimination of schistosomiasis within the next decade [66]. Thus, operational research

accurately evaluating existing and new diagnostic tools as well as quantifying the epidemic

status for guiding effective and well-focused strategies is essential [67]. Our article apart from

outlining the mathematical details of these models and their optimal usage for modelling diag-

nostic errors in the context of schistosomiasis, also provides the JAGS code so that readers can

fit the discussed models to other relevant datasets and perform their own sensitivity analysis.

In this way, we strongly believe that the current article could contribute notably valuable tools

to the operational research agenda mentioned above.
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of the circulating cathodic antigen rapid urine test in the diagnosis of Schistosomiasis mansoni infection

and evaluation of morbidity in a low-endemic area in Brazil. Revista da Sociedade Brasileira de Medi-

cina Tropical. 2017; 50(3):358–364. https://doi.org/10.1590/0037-8682-0423-2016 PMID: 28700054

20. Foo KT, Blackstock AJ, Ochola EA, Matete DO, Mwinzi PN, Montgomery SP, et al. Evaluation of point-

of-contact circulating cathodic antigen assays for the detection of Schistosoma mansoni infection in

low-, moderate-, and high-prevalence schools in western Kenya. The American Journal of Tropical

Medicine and Hygiene. 2015; 92(6):1227–1232. https://doi.org/10.4269/ajtmh.14-0643 PMID:

25870418

21. Galappaththi-Arachchige HN, Holmen S, Koukounari A, Kleppa E, Pillay P, Sebitloane M, et al. Evaluat-

ing diagnostic indicators of urogenital Schistosoma haematobium infection in young women: A cross

sectional study in rural South Africa. PLoS One. 2018; 13(2):e0191459. https://doi.org/10.1371/journal.

pone.0191459 PMID: 29451887

22. Holmen SD, Kleppa E, Lillebø K, Pillay P, van Lieshout L, Taylor M, et al. The first step toward diagnos-

ing female genital schistosomiasis by computer image analysis. The American Journal of Tropical Medi-

cine and Hygiene. 2015; 93(1):80–86. https://doi.org/10.4269/ajtmh.15-0071 PMID: 25918212

23. Knopp S, Corstjens PL, Koukounari A, Cercamondi CI, Ame SM, Ali SM, et al. Sensitivity and specificity

of a urine circulating anodic antigen test for the diagnosis of Schistosoma haematobium in low endemic

settings. PLoS Neglected Tropical Diseases. 2015; 9(5):e0003752. https://doi.org/10.1371/journal.

pntd.0003752 PMID: 25973845

24. Koukounari A, Webster JP, Donnelly CA, Bray BC, Naples J, Bosompem K, et al. Sensitivities and spec-

ificities of diagnostic tests and infection prevalence of Schistosoma haematobium estimated from data

on adults in villages northwest of Accra, Ghana. The American Journal of Tropical Medicine and

Hygiene. 2009; 80(3):435–441. https://doi.org/10.4269/ajtmh.2009.80.435 PMID: 19270295

25. Lindholz CG, Favero V, de Marco Verissimo C, Candido RRF, de Souza RP, Dos Santos RR, et al.

Study of diagnostic accuracy of Helmintex, Kato-Katz, and POC-CCA methods for diagnosing intestinal

schistosomiasis in Candeal, a low intensity transmission area in northeastern Brazil. PLoS Neglected

Tropical Diseases. 2018; 12(3):e0006274. https://doi.org/10.1371/journal.pntd.0006274 PMID:

29518081

26. Shane HL, Verani JR, Abudho B, Montgomery SP, Blackstock AJ, Mwinzi PN, et al. Evaluation of urine

CCA assays for detection of Schistosoma mansoni infection in Western Kenya. PLoS Neglected Tropi-

cal Diseases. 2011; 5(1):e951. https://doi.org/10.1371/journal.pntd.0000951 PMID: 21283613

PLOS NEGLECTED TROPICAL DISEASES Schistosomiasis diagnosis

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009042 February 4, 2021 21 / 23

https://doi.org/10.1017/S0031182003004128
https://doi.org/10.1017/S0031182003004128
https://doi.org/10.1016/j.ijpara.2005.06.010
http://www.ncbi.nlm.nih.gov/pubmed/16188261
https://doi.org/10.1186/s13071-018-2700-4
http://www.ncbi.nlm.nih.gov/pubmed/29475457
https://doi.org/10.1371/journal.pntd.0006102
http://www.ncbi.nlm.nih.gov/pubmed/29220354
https://doi.org/10.4269/ajtmh.12-0639
https://doi.org/10.4269/ajtmh.12-0639
http://www.ncbi.nlm.nih.gov/pubmed/23339198
https://doi.org/10.1016/j.actatropica.2016.08.024
https://doi.org/10.1016/j.actatropica.2016.08.024
http://www.ncbi.nlm.nih.gov/pubmed/27591137
https://doi.org/10.4269/ajtmh.13-0292
http://www.ncbi.nlm.nih.gov/pubmed/24515945
https://doi.org/10.1590/0037-8682-0423-2016
http://www.ncbi.nlm.nih.gov/pubmed/28700054
https://doi.org/10.4269/ajtmh.14-0643
http://www.ncbi.nlm.nih.gov/pubmed/25870418
https://doi.org/10.1371/journal.pone.0191459
https://doi.org/10.1371/journal.pone.0191459
http://www.ncbi.nlm.nih.gov/pubmed/29451887
https://doi.org/10.4269/ajtmh.15-0071
http://www.ncbi.nlm.nih.gov/pubmed/25918212
https://doi.org/10.1371/journal.pntd.0003752
https://doi.org/10.1371/journal.pntd.0003752
http://www.ncbi.nlm.nih.gov/pubmed/25973845
https://doi.org/10.4269/ajtmh.2009.80.435
http://www.ncbi.nlm.nih.gov/pubmed/19270295
https://doi.org/10.1371/journal.pntd.0006274
http://www.ncbi.nlm.nih.gov/pubmed/29518081
https://doi.org/10.1371/journal.pntd.0000951
http://www.ncbi.nlm.nih.gov/pubmed/21283613
https://doi.org/10.1371/journal.pntd.0009042


27. Sheele JM, Kihara JH, Baddorf S, Byrne J, Ravi B. Evaluation of a novel rapid diagnostic test for Schis-

tosoma haematobium based on the detection of human immunoglobulins bound to filtered Schistosoma

haematobium eggs. Tropical Medicine & International Health. 2013; 18(4):477–484. https://doi.org/10.

1111/tmi.12063

28. Hui SL, Walter SD. Estimating the error rates of diagnostic tests. Biometrics. 1980; p. 167–171.

29. Rindskopf D, Rindskopf W. The value of latent class analysis in medical diagnosis. Statistics in Medi-

cine. 1986; 5(1):21–27. https://doi.org/10.1002/sim.4780050105

30. van Smeden M, Naaktgeboren CA, Reitsma JB, Moons KG, de Groot JA. Latent class models in diag-

nostic studies when there is no reference standard—a systematic review. American Journal of Epidemi-

ology. 2014; 179(4):423–431. https://doi.org/10.1093/aje/kwt286

31. Spencer BD. When do latent class models overstate accuracy for diagnostic and other classifiers in the

absence of a gold standard? Biometrics. 2012; 68(2):559–566. https://doi.org/10.1111/j.1541-0420.

2011.01694.x

32. Albert PS, Dodd LE. A cautionary note on the robustness of latent class models for estimating diagnos-

tic error without a gold standard. Biometrics. 2004; 60(2):427–435. https://doi.org/10.1111/j.0006-341X.

2004.00187.x

33. Archer J, Barksby R, Pennance T, Rostron P, Bakar F, Knopp S, et al. Analytical and Clinical Assess-

ment of a Portable, Isothermal Recombinase Polymerase Amplification (RPA) Assay for the Molecular

Diagnosis of Urogenital Schistosomiasis. Molecules. 2020; 25(18):4175. https://doi.org/10.3390/

molecules25184175 PMID: 32933094

34. Lamberton PH, Kabatereine NB, Oguttu DW, Fenwick A, Webster JP. Sensitivity and specificity of multi-

ple Kato-Katz thick smears and a circulating cathodic antigen test for Schistosoma mansoni diagnosis

pre- and post-repeated-Praziquantel treatment. PLoS Neglected Tropical Diseases. 2014; 8(9):e3139.

https://doi.org/10.1371/journal.pntd.0003139

35. Dendukuri N, Hadgu A, Wang L. Modeling conditional dependence between diagnostic tests: a multiple

latent variable model. Statistics in Medicine. 2009; 28(3):441–461. https://doi.org/10.1002/sim.3470
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