
HAL Id: hal-03522215
https://hal.science/hal-03522215

Submitted on 11 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constructive theory of ordinals
Thierry Coquand, Henri Lombardi, Stefan Neuwirth

To cite this version:
Thierry Coquand, Henri Lombardi, Stefan Neuwirth. Constructive theory of ordinals. Marco Benini;
Olaf Beyersdorff; Michael Rathjen; Peter Schuster. Mathematics for Computation - M4C, World
Scientific, inPress. �hal-03522215�

https://hal.science/hal-03522215
https://hal.archives-ouvertes.fr


Constructive theory of ordinals

Thierry Coquand*, Henri Lombardi**, and Stefan Neuwirth**

*Computer Science and Engineering Department, University of Gothenburg,
Fax: +46-31-772-3663, Tel.: +46-31-772-1030, coquand@chalmers.se.
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Fax: +33-3-8166-6623, henri.lombardi@univ-fcomte.fr, Tel.: +33-3-8166-6330 and

stefan.neuwirth@univ-fcomte.fr, Tel.: +33-3-8166-6351.

January 11, 2022

Abstract

Martin-Löf [1970] describes recursively constructed ordinals. He gives a
constructively acceptable version of Kleene’s computable ordinals. In fact,
the Turing definition of computable functions is not needed from a construc-
tive point of view. We give in this paper a constructive theory of ordinals that
is similar to Martin-Löf’s theory, but based only on the two relations “x 6 y”
and “x < y”, i.e. without considering sequents whose intuitive meaning is a
classical disjunction. In our setting, the operation “supremum of ordinals”
plays an important rôle through its interactions with the relations “x 6 y”
and “x < y”. This allows us to approach as much as we may the notion of
linear order when the property “α 6 β or β 6 α” is provable only within
classical logic. Our aim is to give a formal definition corresponding to intu-
ition, and to prove that our constructive ordinals satisfy constructively all
desirable properties.
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1 Introduction

In classical mathematics, a natural definition for an ordinal is to be an order-type
of a well-ordered set (see e.g. [Bourbaki, 1968, III.2.Ex.14]). Nevertheless it is more
convenient to use von Neumann ordinals, for which many results can be proved
without using choice (see e.g. [Krivine, 1998, Chapitre 2] and [Dehornoy, 2017,
Chapitre II]).

Let us now propose a constructive approach. A binary relation < on a set
X is said to be well-founded if for any family of sets (Ex)x∈X indexed by X ,
it is possible to construct elements of

∏

x∈X Ex by <-induction. Precisely, each
time a construction γ is given which from an element a ∈ X and an element
ϕ ∈

∏

x∈X,x<aEx constructs an element γ(a, ϕ) ∈ Ea, there exists a unique Φ ∈
∏

x∈X Ex such that for all a ∈ X we have Φ(a) = γ(a,Φ|x∈X,x<a).
This notion has a clear constructive meaning.
In particular, let us consider a property for elements in X . If the property is

<-hereditary, i.e. if it is true for a ∈ X as soon as it is true for all x ∈ X with
x < a, then this property is true for all elements in X .

In constructive mathematics, Mines, Richman, and Ruitenburg [1988, Sec-
tion I.6] define an ordinal as a linearly ordered set for which the order relation
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is well-founded. So all subsets of N are ordinals, even if we don’t know whether
they have a smallest element.

The Univalent Foundations Program [2013, Section 10.3] proceeds similarly in
the framework of univalent homotopy type theory; the ordinals of a given universe
turn out to form a set (and not a groupoid).

Among other constructive points of view there are descriptions of countable
ordinals constructed by induction in the works Brouwer [1926], Gentzen [1936],
Church [1938], Kleene [1938], Heyting [1961], and Martin-Löf [1970, Chapter 3].

Brouwer proposes an inductive construction based on the idea that when or-
dinals αn are defined for all n ∈ N and are linearly ordered well-founded sets,
then we can describe the ordinal α corresponding intuitively to α1 followed by α2

followed by α3 followed by . . . . The ordered set α defined by Brouwer will again
be a linearly ordered well-founded set. And if the order relation on each αi is
decidable, the same is true for α.

Two Brouwer ordinals are in general not comparable (within intuitionistic
logic): there is no general criterion allowing us to decide whether two ordinals
have the same order-type, and, when this is not the case, which is isomorphic to
an initial segment of the other.

Martin-Löf describes recursively constructed ordinals. He gives a constructively
acceptable version of Kleene’s computable ordinals. Intuitively, an ordinal à la
Martin-Löf is inductively defined using two basic constructions:

• there is a minimum ordinal 0;

• if (αn) is an explicit sequence of ordinals (indexed by N or by an Nk =
{n ∈ N |n < k }), the supremum of the successors of the αn’s is an ordinal1.

To say that the definition is inductive is to say that every ordinal is constructed
using the indicated rules.

In a constructive framework, we can drop Turing machines and replace Tur-
ing computability by intuitive (undefined) computability. In this case, the main
difference between Brouwer and Martin-Löf ordinals is that Martin-Löf ordinals,
being defined in a “parallel” way rather than in a “sequential” way, are more gen-
eral: it is possible for any sequence of well-defined ordinals (αn) to construct the
supremum of the successors of the ordinals αn. A drawback is that there is no
way to associate to a Martin-Löf ordinal a linearly ordered well-founded set with
the same order-type. E.g. if the αn are all equal to 0 or 1, it is a priori impossible
to decide whether the supremum of the successors of the αn’s equals 1 or 2.

1Martin-Löf denotes this supremum by sup(αn). In his setting, 0 is in fact the supremum of
the empty sequence. Except for this case, his sup(αn) is the supremum of the successors of the
αn’s; we shall prefer the notation s(αn).
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Ordinals as trees

Martin-Löf proposes to visualise an ordinal α as a well-founded tree with finite or
countable branchings. The ordinal α is given with an index set denoted by Inα; in
the sequel, it will be an element of the set F2 of index sets consisting of N and its
finite subsets Nk.

• The tree with only its root represents 0.

• If (ti)i∈Inα
is a family of ordinal trees for a family of ordinals (αi)i∈Inα

, the
supremum α = s(αi)i∈Inα

of the successors of the αi’s is given by the ordinal
tree for which there are #Inα branches above the root and a copy of ti is
attached to the branch indexed by i ∈ Inα.

If n ∈ N, the ordinal n can be represented by the tree with n successive unary
branchings at n nodes, so that it has n+ 1 nodes.

The first infinite ordinal ω can be represented by the tree that has a countable
branching above the root, the branches being the preceding trees (representing n,
n ∈ N).

Its successor, denoted by ω + 1, can be represented by the tree with unary
branching above the root, the branch being the preceding tree.

The ordinal ω + 2 can be represented by the tree with unary branching above
the root, the branch being the preceding tree.

The ordinal ω+ω can be represented by the tree that has a countable branching
above the root, the branches being the trees representing ω + n, n ∈ N.

Figure 1: Ordinal trees.

More formally, such a tree can be defined as the set of its nodes, or branching
points, suitably named. We may consider the set Lst(N) of finite lists of elements
of N. Let n ∈ N and ℓ, ℓ′ ∈ Lst(N). We denote by n⁀ ℓ the list [n, ℓ1, . . . , ℓk], where
ℓ = [ℓ1, . . . , ℓk], by ℓ⁀ n the list [ℓ1, . . . , ℓk, n], and by ℓ⁀ ℓ′ the concatenation of
the lists ℓ and ℓ′.
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We remark that Lst(N) can be enumerated in a natural way2 and that the
notion of an N-indexed family in Lst(N) corresponds, via such an enumeration, to
the basic (undefined) notion of map from N to N.

A well-founded tree with finite or countable branchings can then be described
as a detachable subset T of Lst(N) which is inductively constructed according to
the previously indicated process. T is stable by initial segments: if ℓ ∈ Lst(N),
p ∈ N, and ℓ⁀ p ∈ T , then ℓ ∈ T . Thus, to each ordinal α, we are associating a
tree, defined as a suitable subset of Lst(N), denoted by Tree(α).

If n ∈ N, the ordinal n can be described by the finite sequence of n+1 lists [ ],
[0], [0, 0], . . . , [0, . . . , 0].

The first infinite ordinal ω can be described by the subset of Lst(N) enumerated
by the infinite sequence [ ], [0], [1], [1, 0], [2], [2, 0], [2, 0, 0], [3], [3, 0], [3, 0, 0],
[3, 0, 0, 0], etc.

The ordinal ω + 1 can be described by the infinite sequence [ ], [0], [0, 0], [0, 1],
[0, 1, 0], [0, 2], [0, 2, 0], [0, 2, 0, 0], [0, 3], [0, 3, 0], [0, 3, 0, 0], [0, 3, 0, 0, 0], etc.

The ordinal ω+2 can be described by the infinite sequence [ ], [0], [0, 0], [0, 0, 0],
[0, 0, 1], [0, 0, 1, 0], [0, 0, 2], [0, 0, 2, 0], [0, 0, 2, 0, 0], [0, 0, 3], [0, 0, 3, 0], [0, 0, 3, 0, 0],
[0, 0, 3, 0, 0, 0], etc.

The ordinal ω + ω can be described by the doubly infinite sequence [ ], [0],
[0, 0], [0, 1], [0, 1, 0], [0, 2], [0, 2, 0], [0, 2, 0, 0], [0, 3], [0, 3, 0], [0, 3, 0, 0], [0, 3, 0, 0, 0],
etc., [1], [1, 0], [1, 0, 0], [1, 0, 1], [1, 0, 1, 0], [1, 0, 2], [1, 0, 2, 0], [1, 0, 2, 0, 0],
[1, 0, 3], [1, 0, 3, 0], [1, 0, 3, 0, 0], [1, 0, 3, 0, 0, 0], etc., [2], [2, 0], [2, 0, 0], [2, 0, 0, 0],
[2, 0, 0, 1], [2, 0, 0, 1, 0], [2, 0, 0, 2], [2, 0, 0, 2, 0], [2, 0, 0, 2, 0, 0], [2, 0, 0, 3], [2, 0, 0, 3, 0],
[2, 0, 0, 3, 0, 0], [2, 0, 0, 3, 0, 0, 0], etc., etc.

∗ ∗ ∗

We give in this paper a constructive theory of ordinals that is similar to Martin-
Löf’s theory, but based only on the two relations “x 6 y” and “x < y”, i.e. without
considering sequents whose intuitive meaning is a classical disjunction.

In our setting, the operation “supremum of ordinals” plays an important rôle
through its interactions with the relations “x 6 y” and “x < y”. This allows us to
approach as much as we may the notion of linear order when the property “α 6 β

or β 6 α” is provable only within classical logic.
Our problem is to give a formal definition corresponding to intuition, and to

prove that our constructive ordinals satisfy constructively all desirable properties.

∗ ∗ ∗

The first step in Section 2 is to describe which these desirable properties are.

2For example, for ℓ = [ℓ1, . . . , ℓk] ∈ Lst(N), we let µ(ℓ) =
∑

k

i=1
(ℓi +1) and we enumerate the

lists by increasing µ(ℓ).
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2 Linear orders associated to a set of index sets

We define in this section the structure of linear orders associated to a set F of
index sets, F-orders for short.

2.1 Index sets

First we need a set F of index sets. An index set will be denoted by I, J , K, I ′,
I ′′, J ′, Ia, Ib, etc.

An index set is simply a set that will be used as a set of indices for the families
we shall consider. In the sequel a finitely enumerated subset of A is always a subset
of A defined à la Bishop by a map Nk → A. If A is discrete, a finitely enumerated
subset of A is a detachable subset.

Properties of the set F of index sets. We will assume that

• N and the finite sets Nk = {n ∈ N |n < k } ( k > 0) are elements of F;

• any finitely enumerated subset3 of an element of F is isomorphic4 to an
element of F;

• if J ∈ F, the set of finitely enumerated subsets of J is isomorphic to an
element of F;

• F is stable by disjoint unions indexed by F: we will denote by I+J a disjoint
union of I and J , and by

∑

i∈I Ji a disjoint union of the family (Ji)i∈I .

Disjoint unions are to be understood as direct sums in the category of sets.
The disjoint union J =

∑

i∈I Ji comes with a family ιℓ : Jℓ → J of injective maps
realising J as the direct sum of the Ji’s in the category of sets.

If we restrict ourselves to countable ordinals, we can take for F the set

F2 = {Nk | k ∈ N, k > 0 } ∪ {N}

with convenient operations for the set of finite subsets of an I ∈ F and for disjoint
unions of elements of F indexed by an element of F. Any other set F of index sets
will contain F2.

An F-indexed family of elements of E is a family (xi)i∈I where I ∈ F and the
xi’s ∈ E. The set of F-indexed families of elements of E is denoted by Fam(F, E).

We shall restrict the use of subscripts for ordinal variables to this meaning,
and use superscripts for all other uses.

3By definition this is a subobject given by a function Nk → F.
4In the category of sets.
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2.2 Axioms

A structure of F-order on a set (E,=) is given as (E,<,6, 0E, sup, s), where

• < and 6 are binary relations defined on (E,=);

• 0E is an element of E and we let E∗ = {α ∈ E | 0E < α };

• sup is a map from Fam(F, E∗) to E∗: taking as input an element (αi)i∈I of
Fam(F, E∗), it constructs an element of E∗ denoted by α = sup(αi)i∈I ;

• s is a unary map from E to E∗: taking as input an element β ∈ E, it
constructs an element of E∗ denoted by s(β).

Definition 2.1. In order to write axioms with finite sup’s we define sup(α, β) for
α, β ∈ E in the following way (using implicitly Axiom 15 ): sup(0E , α) = α =
sup(α, 0E); if α, β ∈ E∗, sup(α, β) is already defined.

These data are to satisfy the following axioms.

Axioms for F-orders.

1. α = β if and only if α 6 β and β 6 α (reflexivity and antisymmetry);

2. 0E 6 α;

3. if α < α then 0E = β (irreflexivity);

4. if α < β then α 6 β;

5. if α 6 β and β 6 γ, then α 6 γ (transitivity 1);

6. if α < β and β 6 γ, then α < γ (transitivity 2);

7. if α 6 β and β < γ, then α < γ (transitivity 3);

8. α < s(β) if and only if α 6 β (using Axiom 1 this gives α < s(α));

9. s(β) 6 α if and only if β < α;

10. if α < γ and β < γ, then sup(α, β) < γ;

11. if α < sup(α, β) then α < β;

12. if γ < α and α 6 sup(β, γ), then α 6 β;

13. for (αi)i∈I ∈ Fam(F, E∗) and β ∈ E we have (characteristic property of
sup)

αi 6 β for all i ∈ I if and only if sup(αi)i∈I 6 β;
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14. if γ < β for all γ < α, then α 6 β;

15. either α 6 0E or 0E < α.

The category of F-orders is defined by its morphisms

(E,<E ,6E , 0E, supE , sE) −→ (F,<F ,6F , 0F , supF , sF ),

which are maps from E to F preserving the structure (in the usual meaning).

Comments. 1) Let γ ∈ E∗ and (αn)n∈N such that αn = γ or αn = s(γ) for
each n. The element sup(αn)n∈N hesitates between γ and s(γ). Thus there is
no hope that the disjunction “α 6 β or β < α” be constructive for arbitrary
elements α, β 6= 0E. Consequently, we have introduced the sup map together
with its axioms in order to best describe in what sense the order can be
thought of as linear. Perhaps this is not optimal (reasonable axioms, satisfied
for the set Ord2 of ordinals of the second class constructed in Section 3,
might be missing).

2) The irreflexivity is given a form that, instead of stating a negation, allows
E to reduce to a singleton. This happens if and only if 0E = s(0E), which
implies 0E < 0E using Axiom 8 .

3) Axiom 15 expresses that {0E} is detachable. This contrasts with the fact
that elements other than 0E do not define detachable singletons. We have
defined sup on E∗ rather than on E in order to satisfy constructively the
disjunction of Axiom 15 .

4) The characteristic property of sup shows that this law satisfies idempotence
as well as generalised associativity and commutativity. ⋄

2.3 Some properties

Proposition and definition 2.2 (generalising Definition 2.1). For α1, . . . , αr ∈
E we let

sup(α1, . . . , αr)
def
=

{

0E if α1 = · · · = αr = 0E

the sup of the αk 6= 0E otherwise.

The characteristic property of sup is satisfied:

α1
6 β and . . . and αr

6 β if and only if sup(α1, . . . , αr) 6 β.

Fact 2.3. Let α, β be elements of E.

• s(α) < s(β) if and only if α < β.
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• s(α) 6 s(β) if and only if α 6 β.

Proof. Use Axioms 8 and 9 .

Fact 2.4. Axioms 10 to 12 and 14 are in fact equivalences:

10. α < γ and β < γ hold simultaneously if and only if sup(α, β) < γ;

11. α < sup(α, β) if and only if α < β;

12. if γ < α, then α 6 sup(β, γ) holds if and only if α 6 β;

14. α 6 β if and only if γ < β for all γ < α.

Proof. Use the transitivities and the characteristic property of sup.

Fact 2.5 (s commutes with finite sup’s, notation as in Proposition and defini-
tion 2.2).
We have sup(s(α), s(β)) = s(sup(α, β)). More generally, sup(s(α1), . . . , s(αr)) =
s(sup(α1, . . . , αr)).
In particular, if α1 < γ, . . . , αr < γ, then sup(α1, . . . , αr) < γ.

Proof. It suffices to prove s(sup(α, β)) = sup(s(α), s(β)). We have the following
chain of equivalences: s(sup(α, β)) 6 γ ⇐⇒ sup(α, β) < γ ⇐⇒ (α < γ and
β < γ) ⇐⇒ (s(α) 6 γ and s(β) 6 γ) ⇐⇒ sup(s(α), s(β)) 6 γ.

Proposition and definition 2.6 (definition of infinitary s and its characteristic
property). For any (αi)i∈J ∈ Fam(F, E), we define s(αi)i∈J = sup(s(αi))i∈J .
Then we get the following equivalence:

αi < β for all i ∈ J if and only if s(αi)i∈J 6 β.

Proof. Use Axioms 9 and 13 .

We write F ⊆f I in order to express that F is a finitely enumerated subset

of I.

Fact 2.7. Let α, β1, . . . , βm ∈ E.

1. Assume that α = s(αi)i∈J with (αi)i∈J ∈ Fam(F, E) and that αi < sup(β1,

. . . , βm) for all i ∈ J . Then α 6 sup(β1, . . . , βm).

2. Assume that βk = s((βk)i)i∈Jk
with ((βk)i)i∈Jk

∈ Fam(F, E) for k ∈ J1..mK.
Let F1 ⊆f J1, . . . , Fm ⊆f Jm not all be empty. If

α 6 sup((βk)j)k∈J1..mK, j∈Fk
,

then α < sup(β1, . . . , βm).
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Proof. 1. This is Proposition and definition 2.6.
2. Suppose e.g. that F1 is nonempty. Then α 6 sup((β1)j)j∈F1

< β1 6 sup(β1,

. . . , βm). The strict inequality comes from Fact 2.5 because all (β1)j ’s are < β1

by Proposition and definition 2.6.

3 Inductive construction of ordinals

In Sections 3 and 4, the set F of index sets is fixed but
often implied.

We shall define a set of ordinals Ord (more precisely OrdF) and we shall prove
that it is an initial object in the category of F-orders.

First we define a set ord of names for F-indexed ordinals by an inductive
definition. The simplest inductive definition of an infinite set is that of N: it
admits an element 0 and a successor map x 7→ s(x) : N → N. The inductive
definition of ord is very similar to that of N. In N each element is either 0 or
an s(x) for an x ∈ N. Similarly, in ord, each element is either 0 or the s of an
F-indexed family in ord; we denote by ord∗ the set of elements of this second
type.

Definition 3.1. The set ord (more precisely ordF) is defined in an inductive way:
it is to admit a distinguished element 0 and a map

s : Fam(F,ord) → ord.

N.b.: the only constraint in this inductive definition is that s be indeed a map
from Fam(F,ord) to ord.

An element of ord will be called [name of an] ordinal in the sequel.
When F = F2 we get the set of names of countable ordinals, denoted by ord2.

Remark 3.2. Each element α ∈ ord∗ is given with two data:

• the index set used in the definition of α: it will be denoted by Inα;

• the family χord(α, i)i∈Inα
of its definitional subordinals, i.e. the element of

Fam(F,ord) such that α = s(χord(α, i))i∈Inα
.

Thus the inductive definition of ord implies the existence of a map α 7→ Inα :
ord∗ → F and the existence of a dependent family (α, i) 7→ χord(α, i) which is
defined for α ∈ ord∗ and i ∈ Inα. In order to make the text more readable we will
perform a slight abuse of notation: we shall not mention the construction of the
dependent family χord, and the notation αi will be an abbreviation for χord(α, i).

With these conventions we may write α = s(αi)i∈Inα
. ⋄
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For α1, . . . , αr ∈ ord we define s(α1, . . . , αr) = s(αi)i∈J1..rK .

In particular, if α ∈ ord, its immediate successor s(α) is the element β =
s(βi)i∈Inβ

where Inβ = N1 = {0} and β0 = α. The sequence (m)m∈N in ord is

defined inductively by m+ 1 = s(m). Then we can define ω = s(n)n∈N .

In order to prove a property of α = s(αi)i∈Inα
, it is sufficient to prove the

property for each αi. In a similar way we can construct inductively a map whose
domain is ord, or define inductively a predicate on ord. This is stated precisely
in Fact 3.4.

3.1 Subordinals

Here is a correct inductive definition.

Definition 3.3. Let α = s(αi)i∈Inα
∈ ord∗. An element β of ord is a definitional

subordinal of α if β = αi for an i ∈ Inα: we write this β ⋖1 α. An element γ

is a subordinal of α if it is a definitional subordinal of α or a subordinal of a
definitional subordinal of α. We write this γ ⋖ α.

Thus 0 is the only element of ord which has no subordinal.

Fact 3.4. The relations ⋖1 and ⋖ on ord are well-founded.

Consequently there is no infinite branch in the tree of subordinals of an element
of ord, in the following sense.

Fact 3.5. A sequence (αj)j=1,2,... in ord, where each αj+1 is a subordinal of αj,
reaches in a finite number of steps αr = 0.

Remark that in order to perform a construction (or a proof) by ⋖1-induction
or by ⋖-induction, the case 0 has to be dealt with separately since it has no
subordinal. Nevertheless, we shall be able to avoid this case distinction until
considering ordinal arithmetic on page 23.

3.2 Definition of the sup law

Definition 3.6.

1. The law sup : Fam(F,ord∗) → ord∗ is defined in the following way.

Let (αj)j∈J be a family in ord∗ with J ∈ F.

If αj = s((αj)i)i∈Ij , then sup(αj)j∈J is the element ε = s(εk)k∈K where

• K is the disjoint union of the Ij ’s;

• (εk)k∈K is the family defined by εk = (αj)i if ιj(i) = k

11



(here ιj : Ij → K is the injective map from Ij to the disjoint union of the
Ij ’s).
We shall write sup(αj)j∈J1..rK = sup(α1, . . . , αr).

2. The sup of a finite family in ord is defined in the following way.

sup(α1, . . . , αr)
def
=

{

0 if α1 = · · · = αr = 0

the sup of the αk ∈ ord∗ otherwise.

We note that Item 2 is formally included in Item 1 if we adopt the convention
In0 = N0. However, this convention would not allow us to define an arbitrary
F-indexed sup in ord.

3.3 Definition of 6 and of <

The main job remains to be done, i.e. to define two binary relations 6 and < on
ord with the required properties, viz.

• the relation “α 6 β and β 6 α” has to be an equivalence relation (we shall
denote by Ord the quotient set);

• the relations6 and < and the maps sup and s have to descend to the quotient
(we shall not change their names);

• with these maps and relations, Ord has to be an F-order.

Moreover, since the map s: Fam(F,ord) → ord∗ is defined before the map
sup: Fam(F,ord∗) → ord∗, we have to verify in our construction that Proposition
and definition 2.6 is satisfied inOrd. This will be a consequence of Fact 3.11 below.

For our job, we define inductively two asymmetric relations between, on the
left side, an element of ord and, on the right side, a nonempty finitely enumerated
set of elements of ord, written as a list:

α 6 β1, . . . , βm and α < β1, . . . , βm (m > 1).

Conventions.

• The letters α, β, γ, ε, possibly with exponents, indices or primes, are used
for elements of ord.

• If α is an element of ord and if F is a finite list, possibly empty, in Inα, we
denote by αF the list of the αi’s with i in F .

The two relations are defined by simultaneous induction in the following way.

12



Particular cases involving 0 are avoided by using the convention In0 = N0.

α 6 β1, . . . , βm (m > 1) is defined as αi < β1, . . . , βm for all i ∈ Inα.

α < β1, . . . , βm (m > 1) is defined as there are F1 ⊆f Inβ1 , . . . , Fm ⊆f Inβm

not all empty with α 6 β1
F1
, . . . , βm

Fm
.

This definition is correct since elements of ord are inductively defined and the
pair of clauses is inductive.

Without the convention that In0 = N0, we would have had to include Fact 3.8
below in the definition. This convention is a little miracle allowing us to avoid a
case-by-case reasoning with respect to the disjunction “α = 0 or α ∈ ord∗” in the
proofs.

The meaning of the two relations is α 6 sup(β1, . . . , βm) and α < sup(β1,

. . . , βm).

Lemma 3.7. We have α < β1, . . . , βm if and only if α < sup(β1, . . . , βm).
Similarly, we have α 6 β1, . . . , βm if and only if α 6 sup(β1, . . . , βm).

Proof. Let us write

α ≺ β1, . . . , βm for α < sup(β1, . . . , βm),

α 4 β1, . . . , βm for α 6 sup(β1, . . . , βm).

Let ε = sup(β1, . . . , βm). Then α ≺ β1, . . . , βm if and only if α 6 εF with F

a nonempty finitely enumerated subset of the disjoint union K of the Inβj ’s and
εk = (βj)i if k is the image of i in K; letting Fj = F ∩ Inβj , not all Fj are
empty and this may be rewritten as α 6 β1

F1
, . . . , βm

Fm
. This holds if and only if

α < β1, . . . , βm.
We have α 4 β1, . . . , βm if and only if, for all i ∈ Inα, αi < ε, i.e. αi ≺

β1, . . . , βm, i.e. αi < β1, . . . , βm; this holds if and only if α 6 β1, . . . , βm.

The relation α =Ord β is defined as meaning “α 6 β and β 6 α”.
We shall show in Section 4 that the relation · =Ord · is an equivalence relation

and we shall define the set Ord as the quotient of ord by this relation.
Let us note that until Theorem 4.8, the symbol = between two elements of

ord is the equality in ord and has not the meaning of =Ord. Nevertheless, after
having shown that the relations and the laws of ord descend to the quotient Ord,
the statements with the symbol = will also work for the symbol =Ord.

3.4 Finite ordinals, bounded ordinals

We start with a few properties of 0.

13



Fact 3.8. Let m be an integer > 1, α, β1, . . . , βm ∈ ord, and γ ∈ ord∗. We have

1. 0 6 β1, . . . , βm;

2. 0 < γ, β2, . . . , βm;

3. α < 0, . . . , 0
︸ ︷︷ ︸

m times

is impossible.

Proof. This is straightforward from the definitions.

Remark 3.9. Axiom 15 will be valid in Ord because every element of ord is
given either as 0 or as an element γ ∈ ord∗, so that always 0 < γ by Item 2 of
Fact 3.8. ⋄

Fact 3.10. Let m,n ∈ N. Then

1. m 6 n if and only if m 6 n;

2. m < n if and only if m < n;

3. m 6 n and n < m are incompatible.

Proof. Concerning the direct implications in 1 and 2, we write n = m + r and
we do an induction on r. For the reverse implications, cases m = 0 and n = 0
are already known. Next we see that m+ 1 6 n+ 1 implies m 6 n, and that
m+ 1 < n+ 1 implies m < n. This allows us to conclude by induction on m.
Item 3 follows from items 1 and 2.

An element α ∈ ord is said to be finite if α =Ord m for an m ∈ N, bounded
if α 6 m for an m ∈ N. Bounded ordinals are much more complicated than finite
ordinals (see Examples 3.17 and 3.18).

In Section 3.7, we shall discuss what the relations 6 and < on the set ordF

become in classical mathematics.

3.5 First consequences

The following fact shows that the s law will satisfy the characteristic property
given in Proposition and definition 2.6 when we shall know that it descends to the
quotient Ord.

Fact 3.11 (sdef). We have α 6 β if and only if αi < β for all i ∈ Inα.

Proof. This property is tautological: this is the definition of α 6 β.

Similarly, the following fact shows that the sup law will satisfy the characteristic
property given in Axiom 13 when we shall know that it descends to the quotient
Ord.
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Fact 3.12 (supdef). Let (αj)j∈J be a family in ord∗ with J ∈ F, γ = sup(αj)j∈J ,
and β ∈ ord.
We have γ 6 β if and only if αj 6 β for all j ∈ J . In particular, sup(α, β) 6 β

if and only if α 6 β.

N.b.: the result is equally true for the sup of a finite family in ord.

Proof. This is another linguistic tautology. We have αj = s((αj)i)i∈Ij for an
Ij ∈ F. By the definition of γ and of 6, the inequality γ 6 β means that for
each j ∈ J and each i ∈ Ij we have (αj)i < β, i.e. that for each j ∈ J we have
αj 6 β.

The following fact shows that Axioms 8 and 9 will be valid when we shall
descend to the quotient Ord.

Fact 3.13. 1. ax8. We have α < s(β) if and only if α 6 β.

2. ax9. We have β < α if and only if s(β) 6 α

Proof. Recall that the element γ = s(β) is defined by Inγ = {0} and γ0 = β.

1. By definition, α < γ means that α 6 γF for a nonempty list F ⊆f {0}. This
forces F = [0] and γF = β.

2. By definition, γ 6 α means that γ0 < α, i.e. β < α.

Thus, better than equivalences, these are tautologies.

The following fact will allow us to shorten certain proofs by induction.

Fact 3.14.

a. We have an inequality α 6 β if and only if for each i ∈ Inα, there exists a
nonempty Fi ⊆f Inβ such that αi 6 βFi

.

b. We have an inequality α < β if and only if there exists a nonempty F ⊆f Inβ
such that for each i ∈ Inα we have αi < βF .

Proof. Straightforward from the definitions.

Now we leave behind tautological proofs and turn to inductive proofs.
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Fact 3.15.

• weakening. If α 6 β1, . . . , βm, then for each β we have α 6 β, β1, . . . , βm.

• contraction. If α 6 β1, β1, β2, . . . , βm then α 6 β1, β2, . . . , βm.

• The same properties hold with < instead of 6.

Proof. Use induction applying the definitions.

The following lemma is a corollary of Fact 3.14. Item 1 (resp. 2 ) will imply
that the s (resp. sup) map descends to the quotient in Ord (resp. Ord∗). Item 3
will imply that the relations 6 and = are reflexive in Ord; Items 5 and 7 will
imply Axioms 3 and 14 for Ord.

Lemma 3.16.

1. s0. Let α, β ∈ ord with Inα = Inβ and αi 6 βi for all i ∈ Inα. Then α 6 β.

2. sup0. Let α, β ∈ ord∗ with Inα = Inβ and αi 6 βi for all i ∈ Inα. Then

sup(αi)i∈Inα
6 sup(βi)i∈Inβ

.

The result works also for the sup of a finite family in ord.

3. rfl. For all α ∈ ord, we have α 6 α. A fortiori, α 6 α, β1, . . . , βm.

4. s1. For all α ∈ ord∗ and all i ∈ Inα, we have αi < α. A fortiori, αi <

α, β1, . . . , βm.

5. irfl. For all α ∈ ord, α < α is impossible.

6. α < s(α).

7. ax14. If γ < β for all γ < α, then α 6 β.

Proof. 1 . Straightforward from Fact 3.14a. We take F = {i}.

2 . Let γ = sup(αi)i∈Inα
and ǫ = sup(βi)i∈Inβ

. By Fact 3.14a, for each j ∈ Inαi

there exists a nonempty Fi,j ⊆f Inβi
with (αi)j 6 (βi)Fi,j

; Fi,j is a fortiori in the
disjoint union of the Inβi

’s, so that (αi)j < ǫ by definition of ǫ. By definition,
αi 6 ǫ, so that by Fact 3.12 γ 6 ǫ.

3 . By induction: we use Fact 3.14a, we take F = {i} and α 6 α reduces to
αi 6 αi.

4 . By induction: we use Fact 3.14b, we take F = {i} and αi < α reduces to
(αi)j < αi.

5 . By induction: we use Fact 3.14b, we take F = {i} and “α < α is impossible”
reduces to: “αi < αi is impossible”.
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6 . Apply s1 to β = s(α).

7 . If α = 0, the conclusion is clear. If α = s(αi)i∈I , as αi < α for each i ∈ Inα
(Item 4 ), the hypothesis that γ < β for all γ < α shows that αi < β for all i ∈ Inα.
We conclude by Fact 3.11 that α 6 β.

3.6 Ordinals and limited principles of omniscience

Example 3.17. Let (vn)n∈N be a sequence in {0, 1} which takes at most once the
value 1. The lesser limited principle of omniscience LLPO says that we have

∃k ∈ {0, 1} ∀n (vn = 1 ⇒ n ≡ k mod 2). (∗)

From such a sequence (vn)n∈N let us define ε, ε1 and ε2 ∈ ord in the following
way:

ε = s(vn)n∈N, ε1 = s(v2m)m∈N, ε2 = s(v2m+1)m∈N.

Then we have ε 6 sup(ε1, ε2). But ε 6 ε1 gives k = 0 in (∗) and ε 6 ε2 gives
k = 1 in (∗). Thus, the disjunction ε 6 ε1 or ε 6 ε2 has no constructive proof:
assuming the disjunction for an arbitrary (vn) would imply LLPO.

Example 3.18. Let (un)n∈N be a nondecreasing sequence in {0, 1}. The limited
principle of omniscience LPO says that such a sequence is eventually constant:

∃n ∈ N ∀m ∈ N, um 6 un. (∗)

From such a sequence (un)n∈N let us define ε and ε′ ∈ ord in the following way:

ε = s(un)n∈N, ε′ = s(un + 1)n∈N.

We notice that the strict inequality ε < ε′ is equivalent (using Facts 3.10 and 3.14
and Lemma 3.7) to

∃n ∈ N ∀m ∈ N, um < un + 1,

which is the same thing as (∗). In fact, ε hesitates between 1 and 2, ε′ hesitates
between 2 and 3, and the inequality ε < ε′ is valid if we assume LPO. But
asserting ε < ε′ for all sequences (un) implies LPO in constructive mathematics.
Here we see that hesitating between 1 and 2 for an infinite sequence has the same
flavour as hesitating (in a classical setting) between bounded and unbounded for
an infinite sequence of natural numbers: adding 1 to each term of the sequence
increases strictly the sup only if the sequence is bounded.

3.7 In classical mathematics

Proposition 3.19 shows that the law of excluded middle (LEM) simplifies and/or
obscures dramatically the structure of the set ordF with respect to the relations <
and 6.
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Proposition 3.19. Assume LEM . Then for α, β ∈ ord, we have α 6 β or
β < α. Moreover, if β < α, there exists an i ∈ Inα such that β 6 αi.

Proof. We prove by simultaneous induction the two following properties.

“α 6 β or β < α” and “β 6 α or α < β”.

By induction hypothesis, we have for all i ∈ Inα and all j ∈ Inβ, “α 6 βj or
βj < α”, and also “β 6 αi or αi < β”.
The first disjunction implies by LEM that either βj < α for all j ∈ Inβ or there is
j ∈ Inβ such that α 6 βj . In the first case, we have β 6 α by definition of · 6 · · ·.
In the second case, we have α < β by definition of · < · · ·, with for F ⊆f Inβ the
list [j].
The symmetric reasoning yields the second disjunction.

N.b.: for countable ordinals, the limited principle of omniscience (LPO) suffices
to prove the proposition.

Corollary 3.20. Assume LEM . Any ordinal α 6= 0 is either an immediate
successor or the sup of the ordinals γ < α.

Proof. Consider α = s(αi)i∈Inα
and compare α with sup(αi)i∈Inα

. The details are
left to the reader.

Corollary 3.21. Assume LEM . Any bounded ordinal is finite.

Proof. Left to the reader: use Fact 3.13.

4 Fundamental results

4.1 OrdF is an initial object in the category of F-orders

Lemma 4.1. For α1, . . . , αr in ord ( r > 1), we have

sup(αj)j∈J1..rK < s(αj)j∈J1..rK.

Proof. Let us show e.g. that ǫ = sup(α, β) < γ = s(α, β). We have Inǫ = Inα+Inβ,
with ǫk = αi if ι1(i) = k, and ǫk = βj if ι2(j) = k. We have Inγ = {1, 2} with
γ1 = α and γ2 = β. We apply Fact 3.14b with F = {1, 2}. For an arbitrary k in
Inǫ, we have ǫk < α, β since ǫk is αi or βj and, by s1, we have αi < α (a fortiori
αi < α, β) and βj < β (a fortiori βj < α, β).

Let us note that the preceding proof relies on the fact that the definitions of 6
and < have been given with lists on the right hand side.

Lemma 4.2 (transitivities). 1. trans1. If α 6 β1, . . . , βm and, for each j ∈
J1..mK, βj 6 γ1, . . . , γr, then α 6 γ1, . . . , γr.
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2. trans2. If α < β1, . . . , βm and, for each j ∈ J1..mK, βj 6 γ1, . . . , γr,
then α < γ1, . . . , γr.

3. trans3. If α 6 β1, . . . , βm and, for each j ∈ J1..mK, βj < γ1, . . . , γr,
then α < γ1, . . . , γr.

As particular cases, Axioms 5 to 7 will be valid when we shall descend to the
quotient Ord:

• if α 6 β and β 6 γ then α 6 γ;

• if α < β and β 6 γ then α < γ;

• if α 6 β and β < γ then α < γ.

Proof. The three transitivities are being proved by simultaneous induction.

In order to prove trans1, we note that the hypothesis means that we have αi <

β1, . . . , βm for all i ∈ Inα. Let us fix such an i. We use trans2 with this αi instead
of α and we get αi < γ1, . . . , γr. Since this works for all i ∈ Inα, this gives the
desired conclusion α 6 γ1, . . . , γr.

In order to prove trans2, we note that the hypothesis implies that there are
Gj ⊆f Inβj not all empty such that α 6 β1

G1
, . . . , βm

Gm
. We have also for j ∈ J1..mK

and for all h ∈ Inβj , βj
h < γ1, . . . , γr. A fortiori, this is true for the h’s ∈ Gj . We

use trans3 with these β
j
h’s instead of the βj ’s. This gives the desired conclusion

α < γ1, . . . , γr.

In order to prove trans3, we note that the hypothesis implies (by weakening) that
there are Fk ⊆f Inγk not all empty such that βj 6 γ1

F1
, . . . , γr

Fr
for j ∈ J1..mK.

This time we use trans1 with the γk
ℓ ’s instead of the γk’s and we deduce that

α 6 γ1
F1
, . . . , γr

Fr
, which implies α < γ1, . . . , γr.

The following lemma shows that when descending to the quotient, Axiom 4
will be valid in Ord.

Lemma 4.3 (ax4). Let α, β1, . . . , βm ∈ ord. If α < β1, . . . , βm, then α 6

β1, . . . , βm.

Proof. Proof by induction on α. We have α < β1, . . . , βm if and only if we can find
Fk ⊆f Inβk not all empty such that, for each i ∈ Inα, we have αi 6 β1

F1
, . . . , βm

Fm
.

Let us fix an i ∈ Inα. For j ∈ Fk, we have βk
j < βk, and by weakening βk

j <

β1, . . . , βm. By trans3, we get αi < β1, . . . , βm. Finally, since this is true for all
i ∈ Inα, we have α 6 β1, . . . , βm.

The following fact shows that Axiom 10 will be valid when we shall descend
to the quotient Ord.
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Lemma 4.4 (ax10). If α < γ and β < γ, then sup(α, β) < γ.

Proof. By definition, we have s(α, β) 6 γ. Lemma 4.1 gives sup(α, β) < s(α, β).
By transitivity, we get sup(α, β) < γ.

Lemma 4.5. Let n be a positive integer and α1, . . . , αn ∈ ord. It is impossible
that, for each i ∈ J1..nK, we have αi < α1, . . . , αn.

Proof. By induction. Using weakening, the hypothesis to be proven impossible
gives finite lists

F1 ⊆f Inα1
, . . . , Fn ⊆f Inαn

,

not all empty, such that

αi
6 α1

F1
, . . . , αn

Fn
for i ∈ J1..mK.

In particular for j ∈ Fi (if Fi is nonempty) we have

αi
j < α1

F1
, . . . , αn

Fn
.

This reduces to the hypothesis with the nonempty list α1
F1
, . . . , αn

Fn
instead of the

list α1, . . . , αn.

Lemma 4.6. Let α1, . . . , αn, β1, . . . , βm ∈ ord (n,m > 1).

1. If αi < α1, . . . , αn, β1, . . . , βm for i ∈ J1..nK, then αi < β1, . . . , βm for
each i.

2. Let F1 ⊆f Inα1
, . . . , Fn ⊆f Inαn

. If αi 6 α1
F1
, . . . , αn

Fn
, β1, . . . , βm for

i ∈ J1..nK, then αi 6 β1, . . . , βm for each i.

Proof. 1. The hypothesis yields finite lists

F1 ⊆f Inα1 , . . . , Fn ⊆f Inαn , G1 ⊆f Inβ1 , . . . , Gm ⊆f Inβm ,

not all empty, such that

αi
6 α1

F1
, . . . , αn

Fn
, β1

G1
, . . . , βm

Gm
for i ∈ J1..nK. (∗)

Thus we have for i ∈ J1..nK and j ∈ Inαi

αi
j < α1

F1
, . . . , αi

Fi
, . . . , αn

Fn
, β1

G1
, . . . , βm

Gm
.

Let us fix i and j: a fortiori, with F ′

i = Fi ∪ {j}

αi
j < α1

F1
, . . . , αi

F ′

i
, . . . , αn

Fn
, β1

G1
, . . . , βm

Gm
.
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We have also by weakening, for k ∈ J1..nK and ℓ ∈ Fk

αk
ℓ < α1

F1
, . . . , αi

F ′

i
, . . . , αn

Fn
, β1

G1
, . . . , βm

Gm
.

Thus by induction αi
j < β1

G1
, . . . , βm

Gm
. Since j is arbitrary, we get αi 6 β1

G1
,

. . . , βm
Gm

. This gives the desired conclusion, αi < β1, . . . , βm, if at least one list Gk

is nonempty, for an arbitrary i ∈ J1..nK. If this is not the case, (∗) yields αi 6

α1
F1
, . . . , αn

Fn
for i ∈ J1..nK, with lists Fi not all empty. By definition, this implies

αi < α1, . . . , αn for i ∈ J1..nK, which is impossible by Lemma 4.5.

2. We have for i ∈ J1..nK and j ∈ Inαi

αi
j < α1

F1
, . . . , αi

Fi
, . . . , αn

Fn
, β1, . . . , βm.

Let us fix i and j: a fortiori, with F ′

i = Fi ∪ {j},

αi
j < α1

F1
, . . . , αi

F ′

i
, . . . , αn

Fn
, β1, . . . , βm.

We have also by weakening, for k ∈ J1..nK and ℓ ∈ Fk

αk
ℓ < α1

F1
, . . . , αi

F ′

i
, . . . , αn

Fn
, β1, . . . , βm.

Item 1 then yields αi
j < β1, . . . , βm. As j is arbitrary, we get what we wanted:

αi 6 β1, . . . , βm for an arbitrary i ∈ J1..nK.

The following fact shows that Axioms 11 and 12 will be valid when we shall
descend to the quotient Ord.

Lemma 4.7.

1. ax11. If α < sup(α, β), then α < β;

2. ax12. If γ < α and α 6 sup(β, γ), then α 6 β.

Proof. 1. Assume α < sup(α, β). Lemma 3.7 gives α < α, β. Item 1 of Lemma 4.6
gives α < β.

2. Assume γ < α and α 6 sup(β, γ). The first hypothesis gives γ 6 αF for a
nonempty F ⊆f Inα. The second hypothesis gives α 6 γ, β (by Lemma 3.7). By
transitivity we have α 6 αF , β. Item 2 of Lemma 4.6 gives α 6 β.

Theorem 4.8. We have constructed Ord as an F-order.

Proof. Using rfl and trans1, we first show that the equality is indeed an equiv-
alence relation, and then that the relation 6 descends to the quotient in Ord.

Similarly, trans2 and trans3 imply that the relation < descends to the quotient
in Ord.
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The sup map descends to the quotient by Lemma 3.16, Item 2 .

The unary s map descends to the quotient by Fact 3.13.

It remains to note that Axioms 1 to 15 of F-orders have been proved above.
See, respectively: Lemma 3.16 (Item 3 ); Fact 3.8 (Item 1 ); Lemma 3.16 (Item 5 );
Lemma 4.3; Lemma 4.2; Fact 3.13; Lemma 4.4; Lemma 4.7; Fact 3.12; Lemma 3.16
(Item 7 ); Remark 3.9.

The following theorem generalises Fact 3.10.

Theorem 4.9. The set Ord is not reduced to a point. More precisely:

• for all α, β ∈ Ord, β 6 α and α < β are incompatible;

• the map n 7→ n : N → Ord is injective (m < n if and only if m < n).

• for all α ∈ Ord and n > m in N, it is impossible that s(n)(α) =Ord s(m)(α);

Proof. The first item is a consequence of irfl and of trans2. The rest follows.

Theorem 4.10. Ord is an initial object in the category of F-orders.

Sketch of proof. The structure is purely algebraic and in order to construct Ord,
we have only used the axioms of the structure.
In fact, let us consider an object (E,<E ,6E, 0E , supE , sE) in the category. Ele-
ments of ord do have their copies in E. Furthermore, the relations · < · · · and
· 6 · · · defined in ord are valid in E by Fact 2.7 if interpreted in E with finite
sup’s on the right hand side (as we may by Lemma 3.7). This implies that there
is a unique morphism from Ord to E in the category.

4.2 More properties

Proposition 4.11. The binary relation < on Ord is well-founded.

Proof. This is a direct consequence of Fact 3.4.

Lemma 4.12 (weak forms of the disjunction “α 6 β or β < α”). Let r > 1
and α, β1, . . . , βr, γ ∈ ord.

1. If α 6 β and β < α, γ1, . . . , γr, then β < γ1, . . . , γr.

2. If β < α and α 6 β, γ1, . . . , γr, then α 6 γ1, . . . , γr.

Proof. Introduce γ = sup(γ1, . . . , γr). Using Lemma 3.7, both items reduce to
already established properties.

Definition 4.13. An element β = s(βi)i∈Inβ
∈ ord is said to be filtering if for

each F ⊆f Inβ there exists j ∈ Inβ such that sup(βi)i∈F 6 βj .
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Lemma 4.14. For each α ∈ ord, there exists β ∈ ord such that α =Ord β and β

is filtering.

Proof. If α = s(αi)i∈J , we let K be the set of finitely enumerated subsets of J ,
and for F ⊆f J we let βF = sup(αj)j∈F . Then β =Ord s(βF )F∈K .

4.3 Elementary ordinal arithmetic

(Sequential) addition

The sequential addition α + β (α followed by β: addition is not commutative) is
defined by induction on β:

α+ 0 = α and α+ β = s(α + βj)j∈Inβ
if β = s(βj)j∈Inβ

∈ ord∗.

This formula works only for the case Inβ 6= N0: it would yield α + 0 = 0 for
Inβ = N0.

We also have α+ β = sup((α+ βj) + 1)j∈Inβ
if Inβ 6= N0.

The following properties can be proved by induction:

• if α 6 α′ and β 6 β′, then α+ β 6 α′ + β′;

• (α+ β) + γ = α+ (β + γ);

• α+ 0 = 0 + α = α;

• α+ β 6 α+ γ if and only if β 6 γ;

• α+ β < α+ γ if and only if β < γ;

• α = 1 + α if and only if ω 6 α;

• if α 6 γ, then there is β such that γ = α+ β;

• if α < γ, then there is β 6= 0 such that γ = α+ β.

Sequential sum

Let J ∈ F and consider a well-founded linear order relation ≺ on J with a de-
tachable minimal element 0J . Let (βj)j∈J be an element of Fam(J,ord). The
≺-indexed sequential sum

∑

j≺ℓ β
j is defined by induction on ℓ ∈ (J,≺):

∑

j≺0J
βj = 0J and

∑

j≺ℓ
βj = sup

((∑

j≺k
βj

)
+ βk

)

k≺ℓ
if 0J ≺ ℓ.

We show by induction on ≺ that, given two families (βj)j∈J and (γj)j∈J such that
βj 6 γj for all j ∈ J , we have

∑

j≺ℓ β
j 6

∑

j≺ℓ γ
j for all ℓ ∈ J . This construction

descends therefore to the quotient Ord.
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Remark 4.15. This construction allows us to define a map ordBr
2 → ord2, where

ordBr
2 is the set of names of Brouwer ordinals. See Troelstra [1969] and Brouwer

[1918, 1926]. Troelstra only treats countable Brouwer ordinals.

Multiplication

We define α · β by induction on β ∈ ord:

α · 0 = 0 and α · β = sup(α · βj + α)j∈Inβ
if β = s(βj)j∈Inβ

∈ ord∗.

The following properties can be proved by induction:

• if α 6 α′ and β 6 β′, then α · β 6 α′ · β′;

• (α · β) · γ = α · (β · γ);

• α · 1 = 1 · α = α;

• α · (β + γ) = (α · β) + (α · γ);

• if 1 6 α, then α · β 6 α · γ if and only if β 6 γ;

• if 1 6 α, then α · β < α · γ if and only if β < γ.

Exponentiation

We define αβ by induction on β ∈ ord:

α0 = 1 and αβ = sup(αβj · α)j∈Inβ
if β = s(βj)j∈Inβ

∈ ord∗.

Ackermann

It is possible to continue this elementary arithmetic à la Ackermann. We define by
induction an ordinal Ack(α, β, γ) that we get by iterating γ times the preceding
map, initialised at α, i.e. more precisely,

Ack(α, β, 0) = α+ β

Ack(α, 0, γ) = α if γ ∈ ord∗

Ack(α, β, γ) = sup
(
sup(Ack(α,Ack(α, βj , γ), γk))j∈Inβ

)

k∈Inγ

if β = s(βj)j∈Inβ
and γ = s(γk)k∈Inγ

.

In particular, ε0 = Ack(ω, ω, 1).
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5 Countable ordinals

5.1 First steps

As previously indicated, we get countable ordinals when we choose as set of index
sets

F2 = {Nk | k ∈ N, k > 0 } ∪ {N}

with convenient operations for the set of finite subsets of an I ∈ F2 and for disjoint
unions. We write ord2 and Ord2 for ordF2

and OrdF2
. Thus Ord2 is the set of

ordinals of the second class and ord2 is a set of names for elements of Ord2.

Lemma 5.1. Any countable ordinal is the s of a nondecreasing sequence of count-
able ordinals.

Proof. This is Lemma 4.14.

Proposition 5.2. Assume LPO. Then, for α, β ∈ Ord, we have α 6 β or
β < α.

Proof. Proceed as for Proposition 3.19, in the countable case.

5.2 Comparison with Martin-Löf ordinals

We present a variation of the theory of ordinals in the book Notes on Constructive
Mathematics [Martin-Löf, 1970, Chapter 3]. We write “variation” since Martin-
Löf’s theory is formulated in the framework of Markov’s recursive mathematics,
while we take as primitive intuitionistic logic with generalised inductive definitions,
as does the work Heyting [1961] (the fact that this setting can provide a more
elegant treatment than the one in recursive mathematics is stressed in Kreisel’s
review of this work).

5.2.1 Martin-Löf ’s formal system

In this system, ordinals are described inductively: if we have a finite or infinite
sequence of ordinals u = u0, . . . , un, . . . (maybe empty), then s(u) is an ordinal.

The (classical) semantics of this operation is the following: to (αn) sequence of
ordinals we associate the supremum of the sequence of the successors of the αn’s.

In particular 0 is defined as s(u), where u is the empty sequence.
We write simply s(a) for s(u), where u is the sequence with one element u0 = a.
In constructive mathematics, the set of all such ordinals is an example of a

nondiscrete set.
As stated in the introduction, to any ordinal a we associate, by induction on a, a

tree Tree(a): Tree(a) always contains the empty sequence, and Tree(s(u)) contains
n⁀ σ if σ is in Tree(un).
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This set Tree(a) does not contain any infinite branch: if f is a numerical func-
tion we can always find n such that [f(0), . . . , f(n− 1)] is not in Tree(a). This is
proved directly by induction on a. In other words, the tree Tree(a) is well-founded.
The fact that we get in this way all well-founded trees is the content of Brouwer’s
bar theorem, which holds neither in Bishop’s set theory nor in dependent type
theory. This follows from the fact that both systems have an interpretation in
recursive mathematics, while the bar theorem does not hold in recursive mathe-
matics, as shown by an example due to Kleene [Kleene and Vesley, 1965].

We define next what an atomic formula is: a formula of the form a < b or
a 6 b.

Finally, we can define when a sequent Γ is provable, where Γ is a finite set of
atomic formulae. The formulation is quite elegant!

Γ, a 6 un

Γ, a < s(u)

· · · Γ, un < b · · ·

Γ, s(u) 6 b

Note that there is a direct proof of 0 6 b by the second rule.

The intuitive meaning of a sequent is the classical disjunction of the atomic
formulae it contains.

Martin-Löf shows that we can prove for instance a < b, b 6 a by induction on b

and a. He also shows that the following rule is admissible by induction on a:

Γ, a < a

Γ

which implies in particular that a < a is not provable.

Let us give an example of such proofs by induction.

Lemma 5.3. The sequents a 6 a and a < s(a) are provable for all a.

Proof. We prove a 6 a by induction on a. If a = s(u) we have to show un < s(u)
for all n, which follows from un 6 un, which holds by induction.

It follows that we have a < s(a) by the first derivation rule.

5.2.2 Comparison with our system

Let us explain now why this definition does not coincide with ours by giving an
example of the form a < b which is provable in this sequent calculus but implies
LPO in our system.

Let us return to Example 3.18: define a = s(u), where u is a nondecreasing
sequence (un) of 0’s and 1’s, and b = s(v), where v is the sequence (vn), vn = un+1.

Lemma 5.4. a < b is provable.
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Proof. We have to prove a < s(v).
By the second rule, it is enough to show a < s(v), a 6 v0. And for this we have

to show un < v0, a < s(v) for all n. We fix n and we show un < v0, a < s(v).
If we do have un < v0 = s(u0) this is fine. Note that we can test whether or

not un < v0 holds or not since both un and v0 are of the form 0 or 1 or 2.
Otherwise we get explicitly n such that un > s(u0) and we have then um 6 un

and so um < vn for all m. We can prove un < v0, a < s(v) by un < v0, a 6 vn
which holds since un < v0, um < vn holds for all m.

Note that we prove a < s(v) by proving a < s(v), a 6 v0, and we have to “keep”
a < s(v): maybe a 6 v0 does not hold (it may happen that the sequence (un) takes
the value 1 and v0 = 1).

In Example 3.18, we note that a < b implies LPO in our system. Therefore, in
the set OrdML

2 of Martin-Löf ordinals, the equality is coarser than in the set Ord2,
though both are based on the set ord2.

References

Nicolas Bourbaki. Elements of mathematics: theory of sets. Hermann, Paris and
Addison-Wesley, Reading, 1968. Translated from the French. 2

L. E. J. Brouwer. Begründung der Mengenlehre unabhängig vom logischen Satz
vom ausgeschlossenen Dritten. Erster Teil: Allgemeine Mengenlehre. Verh. Ned-
erl. Akad. Wetensch. Afd. Natuurk, Sect. I, 12(5):3–43, 1918. 24

L. E. J. Brouwer. Zur Begründung der intuitionistischen Mathematik. III. Math.
Ann., 96:451–488, 1926. https://eudml.org/doc/159181. 3, 24

Alonzo Church. The constructive second number class. Bull. Amer. Math. Soc.,
44(4):224–232, 1938. doi:10.1090/S0002-9904-1938-06720-1. 3
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