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Abstract. Simpson’s paradox, also known as the Yule-Simpson effect,
is a statistical paradox which plays a major role in causality modelling
and decision making. It may appear when marginalizing data: an effect
can be positive for all subgroups of a population, but it can be negative
when aggregating all the subgroups. This paper explores what happens
if data are considered in the framework of belief functions instead of clas-
sical probability theory. In particular, the co-occurrence of the paradox
with both the probabilistic approach and our belief function approach is
studied.
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1 Introduction

First relations about Simpson’s paradox, also known as the Yule-Simpson effect
or the reversal paradox, were discovered one century ago [12], and more studies
were published from the fifties [11]. It concerns statistical results that are very
strange to the common sense: the influence of one variable can be positive for
every subgroups of a population, but it may be negative for the whole population.
For instance a medical treatment can be effective when considering the gender
of patients, being effective for both males and females separately. But when
studying the population as a whole, when the gender is ignored by marginalizing
this variable, the treatment becomes inefficient. Real life examples are numerous.
In [12] several examples are given concerning batting averages in baseball, kidney
stone treatment, or the Berkeley sex bias case when studying the admittance at
this university depending on the gender of the applicants.

Simpson’s paradox plays a major role in causality modelling, when it is ig-
nored if a variable has an influence on the others, or not. Since it has been
shown that given a set of data involving several variables, any relation may be
reversed when marginalizing (see [7] for a graphical proof), Simpson’s paradox
has a direct role in the adjustment problem, when somebody tries to know what
variables have to be taken into account in order to obtain a model of the pro-
cess. A proposed solution to this paradox does not lie in the original data, but
involves extraneous information, provided by experts [9], called causal relations.
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So far Simpson’s paradox phenomenon has been described with probability
measures. However, in the last 40 years, other models of uncertainty have been
defined, and in particular belief functions. Introduced by Shafer [13], they have
wider and wider domains of application (see in particular [10, Appendix A]).

It would be interesting to know if such reversal of the decisions also occurs
with belief functions when marginalizations are involved. Through simulations,
a first inquiry into that question is presented in this paper.

This paper is organized as follows. A few details about the paradox are given
in Section 2 and basic concepts on belief functions are exposed in Section 3.
Then, in Section 4 is presented a belief function approach to handle data at the
origin of the paradox with an academic example. Then a Monte Carlo experiment
is provided in Section 5 to provide the (co) occurences of the paradox. Section 6
concludes this paper.

2 Simpson’s paradox

Introducing Simpson’s paradox may be done purely arithmetically with 8 num-
bers such that:

a/b < A/B (1)

c/d < C/D (2)

(a+ c)/(b+ d) <> (A+ C)/(B +D) (3)

In the last equation (Eq. 3), it is not known what terms is the biggest. In
other words, (Eq. 1) and (Eq. 2) are insufficient to deduce any order in (Eq. 3).

For example, the next relations [12] hold:
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(Eq. 3). (4)

When considering probabilities, these sets of inequalities can be seen as:

P (A | B,C) < P (A | B,C) (5)

P (A | B,C) < P (A | B,C) (6)

P (A | B) <> P (A | B) (7)

This is where Simpson’s paradox appears [9]: a property may be true in
every subgroups of a population while being false for the whole population (In
the previous example two subgroups corresponding to C and C are considered).

Real life examples of such discrepancies are numerous. They are even en-
countered in evolutionary games involving populations of rats and lemmings
[2,7]. Such an example [9,12] about a medical treatment is presented in Table 1.
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Table 1: Probabilities of success (S) and failure (F ) of a treatment knowing it
has been given (A) or not (B) when a male m is encountered versus a female f ,
a number of 700 cases being considered.

m f
A B A B

S 81/87 ' 0.93 234/270 ' 0.87 192/263 ' 0.73 55/80 ' 0.69

F 6/87 ' 0.07 36/270 ' 0.13 71/263 ' 0.27 25/80 ' 0.31

It can be observed that the treatment is effective when the variable Gender is
taken into account. Indeed:

P (S | A,m) ' .93 > P (S | B,m) ' .87 , (8)

P (S | A, f) ' .73 > P (S | B, f) ' .69 . (9)

However, when the gender is marginalized, for the whole population, no treat-
ment becomes a better option. Indeed, as it can be seen in Table 2, inequalities
are reversed:

P (S | A) ' .78 < P (S | B) ' .83 . (10)

Table 2: Probability of success and failure obtained from Table 2 when the gender
is marginalized.

A (with treatment) B (no treatment)

S P11 = 273/350 ' 0.78 P12 = 289/350 ' 0.83

F P21 = 77/350 ' 0.22 P22 = 61/350 ' 0.17

Let us also note that changing numbers while keeping ratios constant, with
a/b = (αa)/(αb) and α free, may alter the paradox. Indeed ratios in (Eq. 1)
and (Eq. 2) are constant, as is the right term of (Eq. 3), but the left term of
the latter now depends on α. For example consider α = 10, then equation 4
becomes 10/50 < 2/8, 6/8 < 4/5 and 16/58 < 6/13, i.e, the opposite conclusion
is reached.

A solution proposed by Pearl [9] consists in using extraneous data, called
causal information, that are different from the raw data. Causal information
is the knowledge of the influences of some variables on some other ones. They
enable one to know if one must reason with the full contingency table, or the
reduced one. So the conclusions drawn from each table cannot be compared,
and so the paradox becomes impossible. However, causal information must be
provided by experts and therefore may be unavailable or difficult to obtain.
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3 Belief functions

This section recalls some basic concepts on belief functions which are used in
this paper.

3.1 Main functions

Let Ω = {ω1, . . . , ωn} be a finite set called the frame of discernment. The quan-
tity m(A) ∈ [0, 1] with A ⊆ Ω is the part of belief supporting A that, due to a
lack of information, cannot be given to any strict subset of A [14]. Mass function
m (or basic belief assignment) has to satisfy:∑

A⊆Ω

mΩ(A) = 1 . (11)

Throughout this article, 2Ω represents all the subsets of Ω. Plausibility
PlΩ(A) represents the total amount of belief that may be given to A with further
pieces of evidence:

PlΩ(A) =
∑

A∩B 6=∅

mΩ(B) . (12)

These functions are in one-to-one correspondence [13], so they are used in-
differently with the same term belief function. A set A such that m(A) > 0 is
called a focal element of m. The vacuous belief function is defined by m(Ω) = 1.
It represents the total lack of information.

3.2 Refinement, vacuous extension and marginalization

Let R be a mapping from 2Θ to 2Ω such that every singleton {θ}, with θ ∈ Θ is
mapped into one or several elements of Ω, and such that all images R({θ}) ⊆ Ω
form a partition of Ω. Such a mapping R is called a refining, Ω is called a
refinement of Θ and Θ is called a coarsening of Ω [13].

Any belief function mΘ defined on Θ can be extended to Ω. This operation is
called the vacuous extension of mΘ on Ω, it is denoted by mΘ↑Ω and is defined
by:

mΘ↑Ω(A) =

{
mΘ(B) if A = R(B)

0 otherwise
(13)

The coarsening operation is the opposite step. Starting from a belief function
defined on Ω, a belief function on Θ is defined trough a mapping R defined as
previously. The problem is that R is generally not an onto mapping: usually
there will be some focal elements of mΩ that are not the images of sets of Θ by
R. In this case Shafer [13, chapter 6, page 117] has introduced two envelopes,
called inner and outer reductions.
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The inner reduction (or lower envelop) Θ and the outer reduction (or upper
envelop) Θ are mappings respectively defined, from 2Ω to 2Θ, for all A ⊆ Ω by:

Θ(A) = {θ ∈ Θ, R({θ}) ⊆ A} , (14)

and
Θ(A) = {θ ∈ Θ, R({θ}) ∩A 6= ∅} . (15)

The inner reduction and outer reduction on Θ of a belief function mΩ defined
on Ω are then respectively given for all B ⊆ Θ by:

mΘ(B) =
∑

A⊆Ω, Θ(A)=B

mΩ(A) , (16)

and
mΘ(B) =

∑
A⊆Ω, Θ(A)=B

mΩ(A) . (17)

Conceptually, marginalization is a special case of coarsening whereΩ = X×Y
and either Θ = X or Θ = Y [13].

3.3 Pignistic transformation

Decisions from belief functions can be made using the pignistic transformation
BetP justified in [14,15] based on rationality requirements and axioms. It is
defined, for all ω of Ω, by:

BetPΩ({ω}) =
∑
ω∈A

mΩ(A)

| A | (1−m(∅))
. (18)

The converse operation of the pignistic rule has also been defined. It actu-
ally yields the least specific mass function whose pignistic transformation is the
probability measure PΩ [6]. Let mΩ

LSP (PΩ) denote this mass function. It has n

nested focal elements :

mΩ
LSP (PΩ)({ωi, . . . , ωn}) = (n− i+ 1)(pi − pi−1), ∀i ∈ {1, . . . , n}, (19)

with 0 < PΩ({ω1}) = p1 < . . . < pn and p0 = 0. If some pi are equal, the result
is the same whatever the order.

4 Inferring decisions from contingency tables with belief
functions

4.1 Proposed approach outline

The whole approach used in this article is summarized in Figure 1.
From initial data on a 3 binary variables contingency table Ω = X × Y ×Z,

a probability measure P̂Ω is estimated. From the same data a belief function
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Data on Ω =
X × Y × Z

P̂Ω P̂Θ

m̂Ω = mΩ
LSP (P̂Ω)

mΘ

mΘ

betPΘ

betP
Θ

Simpson’s paradox?

[P̂Ω with P̂Θ?, P̂Ω with betPΘ?, P̂Ω with betP
Θ

?]

Fig. 1: Comparison of the Simpson’s paradox when using probabilities and the
proposed approach based on belief functions.

m̂Ω = mΩ
LSP (P̂Ω)

is estimated as the least specific belief function whose pignistic

transformation gives P̂Ω . It is obtained using Equation 19.

Then the probability measure P̂Ω and the belief function m̂Ω are marginal-
ized on Θ = X × Y .

With belief functions, two reductions for this marginalization are considered:
the inner reduction mΘ of m̂Ω (Eq. 16) and the outer reduction mΘ of m̂Ω

(Eq. 17).

Finally, decisions based on the full contingency table are compared to deci-
sions taken on the reduced space Θ to detect Simpson’s paradoxes.

4.2 An academic example

In this section, an example is given to illustrate the approach with the inner
reduction. Values in Tables 1 and 2 are used again.

Let us consider the spaces Ω = {S, F} × {A,B} × {m, f} and Θ = {S, F} ×
{A,B} when the variable gender is marginalized.

In Table 3 are sorted out the numbers of cases of Table 1 to compute the
least specific belief isopignistic to P̂Ω .
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Table 3: Computing P̂Ω from Table 1.

Singleton P̂Ω

FAm = (F,A,m) 6
700
' .01 = p1

FBf 25
700
' .04 = p2

FBm 36
700
' .05 = p3

SBf 55
700
' .08 = p4

FAf 71
700
' .10 = p5

SAm 81
700
' .12 = p6

SAf 192
700
' .27 = p7

SBm 234
700
' .33 = p8

Using Equation 19, the least specific belief m̂Ω obtained from Table 3 can be
computed:

mΩ
LSP (P̂ )

(Ω) = 8p1 = x1

mΩ
LSP (P̂ )

(Ω \ {FAm}) = 7(p2 − p1) = x2

mΩ
LSP (P̂ )

(Ω \ {FBf, FAm}) = 6(p3 − p2) = x3

mΩ
LSP (P̂ )

(Ω \ {FBm,FBf, FAm}) = 5(p4 − p3) = x4

mΩ
LSP (P̂ )

({SBm,SAf, SAm,FAf}) = 4(p5 − p4) = x5

mΩ
LSP (P̂ )

({SBm,SAf, SAm}) = 3(p6 − p5) = x6

mΩ
LSP (P̂ )

({SBm,SAf}) = 2(p7 − p6) = x7

mΩ
LSP (P̂ )

({SBm}) = p8 − p7 = x8

(20)

Mapping Θ (Eq. 14) of Θ = {S, F} × {A,B} is defined by:

Θ(Ω) = {SA, SB, FA,FB}
Θ(Ω \ FAm) = {SA, SB, FB}
Θ(Ω \ {FBf, FAm}) = {SA, SB}
Θ(Ω \ {FBm,FBf, FAm}) = {SA, SB}
Θ({SBm,SAf, SAm,FAf}) = {SA}
Θ({SBm,SAf, SAm}) = {SA}
Θ({SBm,SAf}) = ∅
Θ({SBm}) = ∅

(21)



8 François Delmotte, David Mercier, and Frédéric Pichon

So the inner reduction mΘ of m̂Ω on the space Θ is given by (Eq. 16):

mΘ :



{SA, SB, FA,FB} 7→ x1

{SA, SB, FB} 7→ x2

{SA, SB} 7→ x3 + x4

{SA} 7→ x5 + x6

∅ 7→ x7 + x8

(22)

and pignistic values are the followings (Eq. 18):

BetPΘ({SA}) = k(x1

4 + x2

3 + x3+x4

2 + x5 + x6) ' 0.51

BetPΘ({SB}) = k(x1

4 + x2

3 + x3+x4

2 ) ' 0.31

BetPΘ({FA}) = k(x1

4 ) ' 0.03

BetPΘ({FB}) = k(x1

4 + x2

3 ) ' 0.15 ,

(23)

with k = 1
1−x7−x8

.

So BetP (S | A) ' .51
.51+.03 ' 0.95 and BetP (S | B) ' 0.68, and unlike the

probability case (Eq. 10) BetP (S | A) > BetP (S | B), which leads to the same
decision as the one obtained on the whole space {S, F}×{A,B}×{m, f} (Eq. 8
and 9).

In this example, there is no longer a Simpson’s paradox when considering
belief functions and the inner reduction. However, as shown in next section,
the paradox may also occur with belief functions, depending on the reduction,
and without being triggered necessarily in the same time as with a Bayesian
approach.

5 Numerical simulations

In this section, the results of the following experiment are given:

– 108 contingency tables of 3 binary variables composed of numbers defined
randomly in the interval [1, 103] are built. Frequencies about the paradox
are then observed for the three approaches: probability case, belief functions
with inner and outer reduction cases.

– the preceding point is repeated 10 times in order to obtain mean values and
variances of the obtained frequencies.

Table 4 provides the mean and standard deviation values obtained for the
eight frequencies of the paradox triggering in the experiment. Each frequency cor-
responds to a case of appearance considering the probability approach (Proba)
and the approaches with belief functions marginalized with the inner and outer
reductions (Inner, Outer). A “1” means a paradox.

A first remark when looking at these results is that Simpson’s paradox can
be triggered for the three approaches, and all combinations of occurrences are
possible.
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Table 4: Appearance frequencies of Simpson’s paradox over 108 contingency
tables composed of numbers randomly chosen between 1 and 1000. “1” means
a paradox. The first number is the mean value, the second one the standard
deviation

Proba = 0 Proba = 1
Outer = 0 Outer = 1 Outer = 0 Outer = 1

Inner = 0 94% 3.77% 0.04% 0.9%
0.003% 0.0012% 1.5.10−4% 7.10−4%

Inner = 1 1.2% 0.004% 0.013% 0.0046%
0.0014% 9.10−5% 1.4.10−4% 9.10−5%

In most cases (94%), the paradox is absent for all the approaches.
Simpson’s paradox occurs in this experiment for the probability approach

with a 0.9576% frequency1 (0.04 + 0.9 + 0.013 + 0.0046) which is lower than for
the other cases (inner and outer reductions).

At last it can be observed that the chance (0.9%) of observing a paradox for
both the probabilistic and outer reduction approaches, is much more important
than that of observing a paradox for the inner reduction approach with any
or both of the other approaches. Taking into account the marginal chances of
observing a paradox for each approach, we may further remark that the proba-
bilistic approach is actually somewhat included in the outer reduction approach
(when a paradox is observed for the probabilistic approach, a paradox will in gen-
eral be observed for the outer reduction), whereas the inner reduction approach
is almost disjoint from the other ones.

6 Conclusion and discussion

In this article, similarly to the probability case, frequencies of appearance of
Simpson’s paradox have been studied with belief functions. The marginalization
step is shown to impact it, since the inner and outer reductions have different
behaviours. It has been shown than a paradox can occur in each approach and
each combination of approaches.

To complete this study, instead of the least specific isopignistic belief func-
tion, it might be interesting to investigate on other estimators since they may
yield different results than those obtained with consonant beliefs. Indeed, for in-
stance, the Bayesian belief function identified to the probability measure, leads
to different conclusions than those based on consonant beliefs.

Another parameter that influences the paradox is the decision rule. In this
paper the pignistic rule is used. But other decision rules exist, and among them

1 the same frequency was valued at 1.67% in another experiment [8]. In this article, the
experiment is based on 7 independent proportions, the eight one summing up to one.
This discrepancy between the two results may be due to the fact that proportions
may shift the triggering of the paradox, as recalled in the penultimate paragraph of
Section 2.



10 François Delmotte, David Mercier, and Frédéric Pichon

the maximum of plausibility emerges. However, the analysis of the full decision
chain based on this rule is more complex (for instance, differences between de-
cisions obtained under this rule and under the pignistic rule already appear on
the set Ω) and is left for further work .

Lastly, it would be interesting to investigate whether causality as addressed
in belief function theory [1], could bring a solution to the paradox, as is in the
probabilistic case.
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