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Abstract. This paper addresses the problems of learning from labelled
data contextual discounting and contextual reinforcement, two correction
schemes recently introduced in belief function theory. It shows that given
a particular error criterion based on the plausibility function, for each of
these two contextual correction schemes, there exists an optimal set of
contexts that ensures the minimization of the criterion and that finding
this minimum amounts to solving a constrained least-squares problem
with as many unknowns as the domain size of the variable of interest.
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1 Introduction

Classically, in belief function theory, the correction of the information provided
by a source concerning a variable of interest x defined on a finite domain X ,
is achieved using the discounting operation [9–11]. This operation admits one
parameter, a real β belonging to [0, 1], reflecting the degree of reliability of the
source of information [10, Section 5.7] [6, Section 2.5].

Discounting operation has been extended by Mercier et al. in [6], where it is
considered that one may have some knowledge about the reliability of a source,
conditionally on different subsets (contexts) of X , the set of contexts forming a
partition of X . This operation, called contextual discounting based on a coarsen-
ing, is controlled by a vector of parameters βA, each βA belonging to [0, 1] and
reflecting the degree of reliability of the source given context A ⊆ X (in other
words, knowing that the true value of x lies in A). In this same article [6, Section
5], following preceding work from Elouedi et al. for the classical discounting [4],
a computationally efficient method to automatically learn from labelled data the
parameters βA of a contextual discounting based on a coarsening, once a parti-
tion (a set of contexts) has been fixed, is also introduced; the idea is to find the
parameters values which minimize a measure of discrepancy between the ground
truth and the outputs of the source corrected according to the parameters val-
ues. This method is potentially useful to improve a source performance in, e.g.,
a classification application, as well as to discover its contextual reliability. How-
ever, the problem of finding the optimal partition of X for a given source was
left open.
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In [7], Mercier et al. have extended this contextual discounting based on a
coarsening to be applicable to any set of contexts (i.e., the set of contexts no
longer needs to form a partition of X ). This mechanism is therefore simply called
contextual discounting (CD). The contextual reinforcement (CR) of a source
is also introduced as the dual of CD. This new correction operation is also
controlled by a vector of parameters βA in [0, 1] associated with a set of subsets
(contexts) A of X . However, the interpretation of CR was not clear (it was
only known that CR amounts to the negation [3] of the CD of the negation of
the information provided by the source) and the problem of learning CD and
CR from labelled data was not tackled. Recently, in [8], Pichon et al. gave an
interpretation to CR: it amounts to assuming, for each context A, that the source
is truthful with mass βA, and that with mass (1− βA) it lies only when it tells
that the true value of x is in A; but the question of learning CD and CR from
data remained open.

In this paper, we address the problems of learning from labelled data contex-
tual discounting and contextual reinforcement, the former problem being only
partially addressed so far – its solution is restricted to the case where a set of
contexts has been fixed beforehand and where this set must also form a parti-
tion of X – and the latter problem not being addressed at all. Especially, we
show that given the discrepancy measure used in [6], there exists an optimal set
of contexts for the most general form of CD (the CD proposed in [7] and that
does not require the set of contexts to form a partition of X ) that ensures the
minimization of the measure, and that finding this minimum amounts to a com-
putationally simple optimization problem (a constrained least-squares problem
with K unknowns, K being the size of X ). Furthermore, we show that a similar
result holds for CR. In addition, an illustrative example of the proposed learning
of CD and CR is given. This example is also useful to make insightful additional
remarks on CD and CR, and in particular the potential superiority of the re-
cently introduced CR mechanism over CD, to improve a source performance.

This paper is organized as follows. Required basic concepts on belief functions
and contextual correction mechanisms are exposed in Section 2. Learning of CD
and of CR is formally studied in Section 3 and illustrated in Section 4, where
a comparison of CD and CR correction capacities is also presented. Finally,
Section 5 concludes the paper.

2 Belief functions and contextual correction mechanisms:
basic concepts and notations

2.1 Representation and combination of beliefs

The necessary background material on the representation and combination of
beliefs is given here.

Representation of beliefs A mass function (MF) represents an agent’s opin-
ion regarding a variable of interest x taking values in a finite domain X [9, 11].
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It is defined as a mapping m : 2X → [0, 1] verifying
∑
A⊆X m (A) = 1. The

negation m of a mass function m is defined as m(A) = m(A), ∀A ⊆ X .
A MF m defined by m(X ) = w and m(A) = 1 − w, with w ∈ [0, 1] and

A ⊂ X , can be conveniently noted Aw. Likewise a MF m such that m(∅) = v
and m(A) = 1− v, with v ∈ [0, 1], A ⊆ X , A 6= ∅, can be conveniently noted Av.

A MF m is in one-to-one correspondence with a plausibility function pl,
a commonality function q and an implicability function b, which are respec-
tively defined by: pl(A) =

∑
B∩A 6=∅m(B), q(A) =

∑
A⊆Bm(B) and b(A) =∑

B⊆Am(B), for all A ⊆ X .

Combination Two MF m1 and m2 can be combined using the conjunctive rule
of combination [11] denoted by ∩© and defined by:

(m1 ∩©m2)(A) =
∑

B∩C=A

m1(B) ·m2(C), ∀A ⊆ X . (1)

Numerous combination rules exist [12] to merge mass functions. The other com-
bination of particular interest in this paper is the disjunctive rule of combination
∪© [3, 10] defined by replacing the symbol ∩ in (1) by ∪.

Let us also recall that if m = m1 ∩©m2, the corresponding commonality func-
tions verify q = q1 · q2, and if m = m1 ∪©m2, the corresponding implicability
functions verify b = b1 · b2.

2.2 Contextual discounting and reinforcement of a belief function

Throughout this paper, mS is a MF defined on X , provided by a source S, and
A is a set of subsets (contexts) of X .

Contextual discounting (CD) The contextual discounting [6–8] of mS is the
MF m defined, with βA ∈ [0, 1], ∀A ∈ A, by:

m = mS ∪©A∈AAβA
. (2)

The classical discounting [9, 10] is retrieved when A is composed of just one
element which is the whole domain X :

m = mS ∪©Xβ = β mS + (1− β)mX , (3)

with mX defined by mX (X ) = 1.
In practice, βA represents the proportion of mS(B) which remains on B, and

(1−βA) represents the part of mS(B) transferred to B∪A, ∀A ∈ A and ∀B ⊆ X .

Contextual reinforcement (CR) The contextual reinforcement [7, 8] of mS

is the MF m defined, with βA ∈ [0, 1], ∀A ∈ A, by:

m = mS ∩©A∈AA
βA . (4)

In practice, βA represents the fraction of mS(B) remaining on B, and (1−βA)
the part of mS(B) transferred to B ∩A, ∀A ∈ A and ∀B ⊆ X .
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3 Learning CD and CR from labelled data

3.1 Description of the learning process

In this section, we study how to automatically learn CD and CR from:

1. A training set describing the outputs of a source (expressed in the form of a
MF) regarding the classes in X = {x1, . . . , xK} of n objects oi, i ∈ {1, . . . , n}
(A small illustrative example is given in Section 4 in Table 2);

2. And a measure of discrepancy to be minimized between the corrections of
the mass functions provided by the source and the reality.

In this paper, the following measure of discrepancy between the corrected
information and the ground truth has been chosen:

Epl(β) =

n∑
i=1

K∑
k=1

(pl{oi}({xk})− δi,k)2 , (5)

where ∀i ∈ {1, . . . , n}, pl{oi} is the plausibility function obtained from a con-
textual correction of the output mS of the source with a vector of coefficients
β ∈ [0, 1]|A|. The binary variable δi,k indicates the class of oi as follows: ∀i ∈
{1, . . . , n}, ∀k ∈ {1, . . . ,K}, δi,k = 1 if object oi belongs to the class xk, and
δi,k = 0 otherwise.

Our choice to use measure Epl (5) is mostly based on the fact that, as it
will be seen in Propositions 2 and 4, its minimization has the advantage to yield
constrained least-squares problems, which can be solved efficiently. Moreover,
it was the one used in the approach proposed in [6], which we are clearly ex-
tending with this current work. At last, using the plausibility on singletons is in
accordance with the Shafer [9] and Smets [11] singular [2] interpretation of be-
lief functions, which is adopted in this paper. However, we may note that other
measures of discrepancy could be used, e.g., a measure based on the pignistic
probability [11] or on a distance measure [5], but then it is not guaranteed that
their minimization can be performed efficiently.

3.2 Learning CD

Plausibilities on the singletons after having applied CD on a MF mS provided
by a source are given by next proposition.

Proposition 1. Let m = mS ∪©A∈AAβA
, βA ∈ [0, 1], ∀A ∈ A, be the CD of a

MF mS. The plausibility function associated with m is defined for all x ∈ X by:

pl({x}) = 1− (1− plS({x}))
∏

A∈A,x∈A
βA . (6)

Proof. See Appendix A.1
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Next proposition indicates that the minimization of Epl when CD has been
applied, is obtained using the vector β composed of the K parameters β{xk},
which means the parameters associated with the singletons of X . Moreover the
minimization of Epl using this vector constitutes a constrained least-squares
problem which can then be solved efficiently using standard algorithms.

Proposition 2. The minimization of Epl with CD is obtained using the vector
β = (β{xk}, k ∈ {1, . . . ,K}) and constitutes a constrained least-squares problem
as (5) can then be rewritten as:

Epl(β) = ‖Qβ − d‖2 with Q =

 diag(pl1 − 1)
...

diag(pln − 1)

 and d =

 δ1 − 1
...

δn − 1

 , (7)

with diag(v) a square diagonal matrix with the elements of vector v on the
main diagonal, and with pli = (plS{oi}({x1}), . . . , plS{oi}({xK}))T , and δi =
(δi,1, . . . , δi,K)T the column vector of 0-1 class indicator variables for object oi.

Proof. See Appendix A.2

This answers a prospect given in [6] concerning the study of the set of contexts
which yields the best possible value for the measure of discrepancy Epl. The
answer given here is that there will be no smaller value reachable for Epl than
the one obtained with the set of the singletons of X with associated coefficients
β = (β{xk}, k ∈ {1, . . . ,K}).

3.3 Learning CR

Plausibilities on the singletons after having applied CR are given in next propo-
sition.

Proposition 3. Let m = mS ∩©A∈AA
βA , βA ∈ [0, 1], ∀A ∈ A, be the CR of a

MF mS. The plausibility function associated with m is defined for all x ∈ X by:

pl({x}) = plS({x})
∏

A∈A,x 6∈A

βA . (8)

Proof. See Appendix A.3

Proposition 4. The minimization of Epl with CR is obtained using the vector
β = (β{xk}, k ∈ {1, . . . ,K}) and constitutes a constrained least-squares problem

as (5) can then be written as:

Epl(β) = ‖Pβ − δ‖2, with P =

 diag(pl1)
...

diag(pln)

 and δ =

 δ1...
δn

 , (9)

with the same notations as in Proposition 2.

Proof. See Appendix A.4
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4 CD and CR learnings: comments and illustration

4.1 CD and CR respective correction capacities

The differences between CD and CR concerning their respective plausibilities
ranges on singletons after having been applied are briefly discussed here.

With CD, as pl({xk}) = 1 − (1 − plS({xk}))β{xk} for each k ∈ X , k ∈
{1, . . . ,K}, with β{xk} varying in [0, 1], pl({xk}) can take any values in the
interval [plS({x}), 1]. It means that with CD the value on each singleton plS({x})
can be shifted as close to 1 as required, in other words weakened as required.

In contrast, with CR, as pl({xk}) = plS({xk})β{xk} for each xk ∈ X , k ∈
{1, . . . ,K}, pl({xk}) can take any values in [0, plS({xk})] with β{xk} varying

from 0 to 1. With CR, the value of the plausibility on each singleton can then be
carried as close to 0 as necessary. In other words, CR strengthens the information
provided by the source by decreasing the plausibilities on certain singletons.

The following example illustrates these different capacities of adjustment to
the reality on simple scenarios for CD and CR.

Example 1. Let us suppose that X = {a, b, c} and, without lack of generality,
that the ground truth is a.

Let us suppose that a source n◦1 outputs a mass mS({b, c}) = 1 which means
that plS({a}) = 0 and plS({b}) = plS({c}) = 1. To bring closer source n◦1 output
and the reality: CD can increase plS({a}) to 1; CR can decrease plS({b}) to 0
and plS({c}) to 0.

This example is taken again in Table 1, and two more situations are con-
sidered: a source n◦2 giving mS({c}) = 1, that is plS({a}) = plS({b}) = 0 and
plS({c}) = 1 and a source n◦3 giving mS({a, b}) = 1, that means plS({a}) =
plS({b}) = 1 and plS({c}) = 0.

Table 1. Attainable plausibilities with CD and CR for three sources outputs.

Ground Source CD CR Source CD CR Source CD CR
truth n◦1 n◦2 n◦3

pl({a}) 1 0 1 0 0 1 0 1 1 1
pl({b}) 0 1 1 0 0 0 0 1 1 0
pl({c}) 0 1 1 0 1 1 0 0 0 0

CD: Epl = 2 CD: Epl = 1 CD: Epl = 1
CR: Epl = 1 CR: Epl = 1 CR: Epl = 0

As it can be observed in Table 1, CD can improve only one value of plausi-
bility: the plausibility on the ground truth by increasing it as close as possible
to 1, whereas CR can improve all the other plausibility values (all except the
one associated with the ground truth) by decreasing them as near as possible to
0. CR has then more degrees of flexibility to improve the plausibility output of
the source. Situations where CD can be of more help than CR, are in particular
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those where all the plausibilities on singletons which are not the ground truth
are equal to zero, for example: plS({b}) = plS({c}) = 0 and plS({a}) = 0.5,
which means mS({a}) = 0.5 and mS(∅) = 0.5.

4.2 An illustrative example

Inspired from [4] and [6, Section 5], we consider the following small example of
target recognition illustrated in Table 2.

Example 2. Two sensors are in charge of recognizing flying objects which can be
airplanes (a), helicopters (h) or rockets (r). Data are composed of 4 known ob-
jects on which two sensors have expressed their outputs as MF on X = {a, h, r}.

Table 2. Ouputs of two sensors regarding the classes of 4 objects which can be airplanes
(a), helicopters (h) or rockets (r). Data come from [4, Table 1].

{a} {h} {r} {a, h} {a, r} {h, r} X Ground
truth

Sensor 1

mS1{o1} 0 0 0.5 0 0 0.3 0.2 a
mS1{o2} 0 0.5 0.2 0 0 0 0.3 h
mS1{o3} 0 0.4 0 0 0.6 0 0 a
mS1{o4} 0 0 0 0 0.6 0.4 0 r

Sensor 2

mS2{o1} 0 0 0 0.7 0 0 0.3 a
mS2{o2} 0.3 0 0 0.4 0 0 0.3 h
mS2{o3} 0.2 0 0 0 0 0.6 0.2 a
mS2{o4} 0 0 0 0 0 1 0 r

Results of the minimization of Epl for CD and CR are summarized in Table 3
for both sensors 1 and 2. Let us recall that β = (β{a}, β{h}, β{r}) for CD, and β =
(β{a}, β{b}, β{c}) for CR with different meanings for each correction mechanism.

Table 3. Results for the minimization of Epl with the data in Table 2 for each con-
textual correction mechanism for both sensors 1 and 2.

Contextual correction Sensor 1 Sensor 2

CD
β = (0.76, 1.00, 1.00) β = (0.74, 1.00, 1.00)
Epl(β) = 3.39 Epl(β) = 4.81

CR
β = (0.94, 0.66, 0.38) β = (0.65, 0.22, 0.55)
Epl(β) = 2.33 Epl(β) = 2.39

For CD it can be observed that β{h} = β{r} = 1 for both sensors, which
means that both sensors are reliable to detect objects h and r. There is no
need to transfer a portion of mass mS(B) to B ∪ {h} or B ∪ {r} with B ⊆ X
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(1 − β{h} = 1 − β{r} = 0). It is not the case for objects of type a which cause
problems for both sensors, sensor 1 being slightly more reliable.

Minimizing Epl with CR confirms that both sensors are more truthful to
recognize objects h and r as β{a} = 0.94 > β{h} > β{r} for sensor 1 and β{a} =

0.65 for sensor 2. In terms of mass transfers, there is less need to transfer a
portion of mass mS(B) to B ∩ {a} = B ∩ {h, r} (1 − 0.94 = 0.06 for sensor 1,
and 1− 0.65 = 0.35 for sensor 2) than to B ∩ {h} = B ∩ {a, r} (0.34 for sensor
1, and 0.78 for sensor 2) or B ∩ {r} = B ∩ {a, h} (0.62 for sensor 1, and 0.45 for
sensor 2). With these data, CR also permits to obtain lower values for Epl than
those reached with CD, which confirms the advantages of CR over CD exposed
in Section 4.1 and in Example 1 concerning the minimization of Epl.

4.3 On the absence of link between learning CR and CD

Even if CR and CD are related (CR amounts to the negation of the CD of the
negation of the information provided by the source [7]), CR and CD parameters
minimizing Epl (5) cannot be deduced analytically from each other.

Let us consider next example which is a slight modification of example 2.

Example 3. By modifying in Table 2, MF mS1
{o1} by mS1

{o1}({r}) = 0.5282,
mS1
{o1}({h, r}) = 0.3 and mS1

{o1}(X ) = 0.1718 (information coming from
Sensor 1 is slightly deteriorated, the truth being a), learning of CD parameters for
sensors 1 and 2 yields the same vector β = (0.74, 1.00, 1.00), while the learning of
CR parameters yields β = (0.92, 0.68, 0.38) for sensor 1 and β = (0.65, 0.22, 0.55)
for sensor 2.

Example 3 shows that knowing the vector β minimizing Epl for CD does not
imply knowing the vector β minimizing Epl for CR.

5 Conclusion

In this paper, we have studied the learning of CD and of CR from labelled data,
given a measure of discrepancy based on the plausibility function. We have shown
that for each of these two contextual correction schemes, there exists an optimal
set of contexts that ensures the minimization of the measure and that finding
this minimum amounts to solving a constrained least-squares problem with K
unknowns. These results can find applications in at least two domains: learning
the biases of a source of information (what are the characteristics of a source?)
and in source tuning (how to tune a source to obtain the best performances?).
Future work will consist in exploiting these mechanisms in more complex appli-
cations and investigating the tuning of the combination of several sources.
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A Appendices

A.1 Proof of Proposition 1

As m = mS ∪©A∈AAβA
, CD is given in terms of implicability functions by:

b = bS
∏
A∈A bβA

with bβA
(B) = 1 if A ⊆ B, βA otherwise, for all B ⊆ X . Thus,

for all B ⊆ X : b(B) = bS(B)
∏
A∈A,A 6⊆B βA, and consequently, for all x ∈ X :

pl({x}) = 1− b({x}) = 1− bS({x})
∏

A∈A,A 6⊆{x}

βA

= 1− bS({x})
∏

A∈A,x∈A
βA = 1− (1− plS({x}))

∏
A∈A,x∈A

βA .

A.2 Proof of Proposition 2

From Proposition 1, after having applied CD on mS , the discrepancy measure
Epl (5) can be written: Epl(β) =

∑K
k=1Epl(β, xk), with for all k ∈ {1, . . . ,K}:

Epl(β, xk) :=

n∑
i=1

1− (1− plS{oi}({xk}))
∏

A∈A,xk∈A
βA

− δi,k
2

. (10)
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As Epl(β, xk) ≥ 0 for all k ∈ {1, . . . ,K}, the minimum value of Epl(β) is
obtained when each Epl(β, xk) reaches its minimum.

Besides, as all coefficients βA belong to [0, 1], for each xk, k ∈ {1, . . . ,K}, the
product

∏
A∈A,xk∈A βA of coefficients βA in Epl(β, xk) (10) also belongs to [0, 1]

and can be denoted by a variable βk ∈ [0, 1]. Hence, for each k ∈ {1, . . . ,K}, the
minimum of Epl(β, xk) is reached for a particular value of βk.

Now, we can remark that each coefficient β{xk} ∈ [0, 1], k ∈ {1, . . . ,K}, only
appears in the expression of Epl(β, xk) (10), k ∈ {1, . . . ,K}. Hence, choosing
βk = β{xk} for all k (which means choosing A composed of the set of singletons
of X ) constitutes then a solution, i.e., a set of contexts for which the minimum
value of Epl(β) is reached.

Each value of Epl is then reachable using the vector β of coefficients βk :=
β{xk}, k ∈ {1, . . . ,K}, and as already mentioned in [6, Section 5.1], the com-
putation of the coefficient β with CD based on the singletons is a constrained
least-squares problem. Indeed, for all k ∈ {1, . . . ,K}, and for all i ∈ {1, . . . , n}:

pl{oi}({xk})− δi,k = 1− (1− plS{oi}({xk}))βk − δi,k (11)

= (plS{oi}({xk})− 1)βk − (δi,k − 1) . (12)

Then (5) can be rewritten as (7).

A.3 Proof of Proposition 3

As m = mS ∩©A∈AA
βA , the CR is determined in terms of commonality functions

by q = qS
∏
A∈A q

βA with qβA(B) = 1 if B ⊆ A, βA otherwise, for all B ⊆ X .
Then, for all B ⊆ X : q(B) = qS(B)

∏
A∈A,B 6⊆A βA, which means that after

having applied CR, plausibilities on singletons are defined, for all x ∈ X , by:

pl({x}) = q({x}) = qS({x})
∏

A∈A,x 6∈A

βA = plS({x})
∏

A∈A,x 6∈A

βA

A.4 Proof of Proposition 4

From Proposition 3, for each k ∈ {1, . . . ,K}, coefficient β{xk} takes its values in

[0, 1] and only appears in pl(xk) when a CR has been applied. Then, with the
same reasoning as for the CD case, the minimum value of Epl with CR can be
reached using the set of contexts {xk = X \ {xk}, k ∈ {1, . . . ,K}}.

The minimization of Epl with CR based on the vector β = (βk := β{xk}, k ∈
{1, . . . ,K}) is also a constrained least-squares problem as (5) can be writ-
ten as (9) (as ∀k ∈ {1, . . . ,K} and ∀i ∈ {1, . . . , n}, pl{oi}({xk}) − δi,k =
plS{oi}({xk})βk − δi,k).


