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Résumé :
Récemment, une fondation axiomatique a été donnée à

la mesure du conflit entre fonctions de croyance. Dans ce
contexte, il a été montré que le conflit peut être évalué
par l’inconsistance résultant de leur combinaison con-
jonctive. Deux mesures de consistance entre fonctions
de croyance ont été définies, donnant ainsi deux mesures
de conflit. Dans ce papier, nous mettons en lumière que
ces mesures de consistance correspondent aux normes in-
finies des fonctions de plausibilité et de contour, offrant
ainsi une vue géométrique sur les mesures de conflit con-
sidérées. De plus, ce résultat nous permet de mettre en
évidence que la consistance d’une fonction de croyance
n’est rien d’autre que sa distance à l’état d’inconsistance
totale. Comme une conséquence directe, le conflit en-
tre fonctions de croyance est égal à un moins la distance
entre leur combinaison conjonctive et l’inconsistance to-
tale. Cela donne un nouveau regard sur l’utilisation de
distances pour mesurer le conflit.

Mots-clés :
Théorie de Dempster-Shafer, Fonctions de croyance,

Conflit, Consistance, Distance, Norme.

Abstract:
Recently, the measurement of conflict between belief

functions has been given an axiomatic foundation, re-
sulting in conflict being measured as the inconsistency
yielded by their conjunctive combination. Two measures
of consistency have been defined, giving two measures
of conflict. We bring to light that these measures of con-
sistency correspond to the infinity norms of the plausibil-
ity and contour functions, thus providing a norm-based
view on the considered conflict measures. Furthermore,
building on this geometric view, we lay bare that the con-
sistency of a belief function amounts to its distance to
the state of total inconsistency. The conflict between be-
lief functions is then shown to be equal to one minus the
distance between their conjunctive combination and to-
tal inconsistency. This sheds some new light on whether
distances are appropriate for conflict measurement.

Keywords:
Dempster-Shafer theory, Belief functions, Conflict,

Consistency, Distance, Norm.

1 Introduction

The detection of conflicting information is one
of the main indicators of anomalies. For
instance in maritime security, such detection
may reveal maritime anomalies such as vessels
deviating from normalcy (such as “off-route
vessels”, “too fast vessels”) and those possi-
bly spoofing the Automatic Identification Sys-
tem (AIS) signal to hide suspect behaviour [1]
(some vessels may hide their actual type, con-
ceal their current position, etc). In this con-
text, it is crucial to have conflict measures with
well defined properties and semantics, in order
to suit to specific anomalies.

As belief function theory [2] provides a rich un-
certainty representation extending both set and
probability theories, measuring and managing
conflict between belief functions has been an
important topic of research. Recently, conflict
quantification was given an axiomatic founda-
tion by Destercke and Burger [3], resulting in
a proposal to measure conflict between belief
functions as the inconsistency yielded by their
conjunctive combination. This latter work was
then extended by Pichon et al. [4] into a general
framework able to deal with conflicting sources
in a principled and meaningful manner.

Besides the axiomatic approach of [3], a no-
table alternative path to conflict measurement
has followed a geometric perspective, and es-
pecially has studied whether distances and an-
gles between belief functions, may be suited



to that purpose [5, 6]. However, as argued
recently in [3, 6], it seems that distances be-
tween belief functions may actually not be ad-
equate measures of their conflict, because they
do not satisfy desirable conflict measure proper-
ties such as insensitivity to refinement or impre-
cision monotonicity (see Section 2). Similarly,
it seems that angles are not totally satisfactory
as conflict measures [6].

In this paper, we bring together these two im-
portant lines of work on conflict – the axiomatic
and the geometric approaches – by proposing a
norm-based view on Destercke and Burger con-
flict measures, unveiled in Section 3. We elab-
orate on this view in Section 4, where we shed
some new light on the relation between conflict
and distance measures. Overall, these results in-
dicate that geometric concepts such as distances
may still be relevant when reasoning about con-
flict, and they open new perspectives, particu-
larly on conflict measurement, as discussed in
Section 5. Basic concepts of belief function the-
ory and results of [3], which are necessary for
the exposition of our contributions, are first re-
called in Section 2.

2 Belief functions and conflict: nec-
essary background

In this section, basic concepts of belief function
theory as well as the axiomatic approach to con-
flict measurement of Destercke and Burger [3]
are recalled.

2.1 Belief function theory

The theory of belief functions is a framework
for uncertainty modeling and reasoning. It was
originally introduced by Dempster [7, 8] in the
context of statistical inference, as a theory of
imprecise probabilities. It was extended by
Shafer [2] and Smets and Kennes [9] into a
model that could also handle subjective uncer-
tainty related to fixed quantities.

In this framework, uncertainty about an ill-
known variable x taking its values in a finite

domain X = {x1, ..., xK}, is represented by a
so-called mass function defined as a mapping
m : 2X → [0, 1] verifying

∑
A⊆X m (A) = 1.

Due to the two main views on this framework
recalled above, a mass function may be given
one of two interpretations, called respectively
imprecise probabilistic and singular in [3], de-
pending on what it is intended to model. Ac-
cordingly, the mass m(A) represents either the
amount of probability to be shared between ele-
ments of A without being assigned yet, by lack
of knowledge, or the probability of knowing
only that x ∈ A [10, 11]. Subsets A of X such
that m(A) > 0 are called focal sets of m, and
the set of focal sets is denoted by F . A mass
function having X as its only focal set is called
the vacuous mass function and represents total
ignorance. The set of all mass functions on X
is denoted byM.

An equivalent representation of a mass function
m is the plausibility function. It is defined by,
for all A ⊆ X ,

pl(A) =
∑

B∩A 6=∅

m(B). (1)

pl(A) may be interpreted as the expected possi-
bility of A with respect to m [11, 12], or equiv-
alently the expected consistency of A with m
since given information x ∈ B, A is possible if
and only ifA is consistent withB [12]. This lat-
ter interpretation is best seen when one rewrites
Equation (1) as:

pl(A) =
∑
B⊆X

φ(A ∩B)m(B), ∀A ⊆ X ,

where φ(C) is the consistency index of C ⊆ X
defined by φ(C) = 1 if C 6= ∅, and φ(C) = 0
otherwise, ∅ denoting the empty set. The plau-
sibility function restricted to the singletons of
X is the contour function π : X → [0, 1] such
that π(x) = pl({x}), for all x ∈ X .

One of the appeals of this theory is that it makes
it possible to combine multiple pieces of in-
formation about a variable. The most classi-
cal combination rule of the theory is Dempster’s



unnormalised rule [7], also known as conjunc-
tive rule. Let m1 and m2 be two mass func-
tions representing pieces of information about
x. Their combination by the conjunctive rule,
denoted by ∩©, results in the mass function
m1 ∩©2 defined by, for all A ⊆ X ,

m1 ∩©2(A) =
∑

B∩C=A

m1(B)m2(C),

This combination is appropriate when m1 and
m2 have been provided by two independent and
reliable sources.

2.2 Axiomatic approach to conflict mea-
surement

In [3], Destercke and Burger study how to
evaluate the consistency of a mass function.
They argue that the mass function m such that
m(∅) = 1, which will be denoted m∅ here-
after, represents a totally inconsistent informa-
tion state. They also consider two definitions of
a totally consistent mass function: m is proba-
bilistically consistent iff m(∅) = 0; m is logi-
cally consistent iff

⋂
A∈F A 6= ∅. Then, they de-

fine two consistency measures, which we name
in this paper A-consistency and x-consistency,
associated respectively to the two definitions of
a totally consistent mass function:

Definition 1. The A-consistency φA(m) of a
mass function m is the degree

φA(m) = 1−m(∅).

Definition 2. The x-consistency φx(m) of a
mass function m is the degree

φx(m) = max
x∈X

π(x).

In [3], these measures are not given any specific
name, and φA is denoted by φm and φx by φpl. It
will become clear in Section 3 why we change
these notations.

We have φA(m) ∈ [0, 1] and φx(m) ∈ [0, 1] for
any m ∈ M, and φA and φx reach their max-
imum and minimum when m is, respectively,

totally consistent and totally inconsistent. We
also have φA(m) ≥ φx(m) for any m ∈ M [3,
Lemma 2]. Moreover, as detailed in [3], φA
agrees with the imprecise probabilistic interpre-
tation of m, whereas φx agrees with its singular
interpretation (yet, φA may also be useful in a
singular interpretation).

Besides, the authors introduce five properties
that a measure of conflict κ(m1,m2) between
two mass functions m1 and m2 provided by
two independent1 sources, should satisfy (fur-
ther details on the motivations of these require-
ments can be found in [3]):

• Property 1 - Extreme conflict values:
κ(m1,m2) = 0 if and only if m1 and m2

are non-conflicting and κ(m1,m2) = 1 if
and only if m1 and m2 are totally conflict-
ing;

• Property 2 - Symmetry: κ(m1,m2) =
κ(m2,m1);

• Property 3 - Imprecision monotonicity: if
m1 is a specialisation [13] of m′1, then
κ(m′1,m2) ≤ κ(m1,m2);

• Property 4 - Ignorance is bliss: if m2 is
vacuous, then κ(m2,m1) = 1− φ(m1);

• Property 5 - Insensitivity to refinement: If
ρ is a refinement function from Ω into Θ,
define the refined mass assignment m1 as
mρ(1), such that, for any focal elementE ∈
F1, we have m1(E) = mρ(1)(ρ(E)). Then,
κ(m1,m2) = κ(mρ(1),m2).

In particular, Property 3 states that the con-
flict should not increase as the imprecision (de-
fined in terms of specialisation [13]) of a mass
function increases. Property 4 states that the
vacuous mass function should not conflict with

1The study in [3] is actually more general and con-
siders the whole spectrum from unknown dependence to
known dependence. For clarity of presentation we do
not tackle these more general situations in this paper, al-
though we note that our results can easily be extended to
this more general case.



any other mass function. Property 5 states that
the refinement of a mass function should not
change its conflict value with any other mass
function.

They further introduce two measures of con-
flict, which satisfy Properties 1-5 and that we
name in this paper A-conflict and x-conflict:

Definition 3. The A-conflict κA(m1,m2) be-
tween two mass functions m1 and m2 is the
degree κA(m1,m2) = 1 − φA(m1 ∩©2) =
m1 ∩©2(∅).

Definition 4. The x-conflict κx(m1,m2) be-
tween two mass functions m1 and m2 is the
degree κx(m1,m2) = 1 − φx(m1 ∩©2) = 1 −
maxx∈X π1 ∩©2(x).

More precisely, two formal versions of Property
1, corresponding to two2 different definitions of
the notion of non-conflict, are considered in [3]:
one is satisfied by κA and the other one by κx.

Measures κA and κx evaluate basically the in-
consistency (in terms of φA and φx respectively)
resulting from the conjunctive combination of
two mass functions. Let us finally stress that
κA(m1,m2) is nothing but the classical measure
of conflict m1 ∩©2(∅).

3 Norm-based view on conflict

In this section, the notion of norm of belief
functions is first recalled. Then, it is used to
propose a geometric perspective on the conflict
measures presented in the previous section.

3.1 Norms of belief functions

Let EX denote the Cartesian space R2K spanned
by the set of vectors {eA, A ⊆ X}. Any
vector v of EX can then be written as v =∑

A⊆X vAeA, with vA ∈ R the coordinate of
v along dimension eA. A mass function m

2In the case of independent sources, two out of the
three different definitions of non-conflict in [3] are equiv-
alent.

may then be represented as the vector m of EX
such that vA = m(A). Similarly, a plausibil-
ity function pl may be represented by the vector
pl =

∑
A⊆X pl(A)eA, with its plausibility val-

ues pl(A) as coordinates of pl.

Let us also denote by Ex the K-dimensional
subspace of EX spanned by the set {ex, x ∈ X}
of singleton vectors. Then, the contour func-
tion π associated to a mass function m may be
represented by the vector π =

∑
x∈X π(x)ex of

Ex.

The Lp-norm ‖v‖p of a vector v =∑
1≤i≤N viei belonging to the Cartesian space

RN spanned by the set of vectors {ei, 1 ≤ i ≤
N} is defined as

‖v‖p =

( ∑
1≤i≤N

|vi|p
) 1

p

. (2)

Of particular interest in this paper is the case
where p = ∞ (called infinity norm here-
after), for which Eq. (2) reduces to ‖v‖∞ =
max1≤i≤N |vi|.

In the following, we consider the L∞-norms of
pl and π:

‖pl‖∞ = max
A⊆X

pl(A), (3)

‖π‖∞ = max
x∈X

π(x). (4)

In the next section, we will detail how these two
norms can be related to consistency and conflict
measures.

3.2 Consistency and conflict in terms of in-
finity norms

The relation between the ∞-norm of the con-
tour function (4) and the x-consistency measure
(Def. 2) is obvious from their respective defini-
tion. We have indeed for any m ∈M,

φx(m) = ‖π‖∞. (5)

Similarly, we can easily see that there exists a
simple relation between the x-conflict between



belief functions (Def. 4) and the∞-norm of the
contour function of their conjunctive combina-
tion: we have, for any m1 ∈M and m2 ∈M,

κx(m1,m2) = 1− ‖π1 ∩©2‖∞. (6)

Interestingly, similar relations as Eqs. (5)
and (6) can be obtained between the ∞-norm
of the plausibility function (3) and the A-
consistency and A-conflict measures (Def. 1
and 3 respectively). To obtain these relations,
it suffices to remark that for any m ∈M,

1−m(∅) = pl(X ) = max
A⊆X

pl(A), (7)

and thus

φA(m) = max
A⊆X

pl(A). (8)

The A-consistency of m amounts thus to its
maximum expected consistency with respect to
all subsetsA ofX . In contrast, its x-consistency
amounts to its maximum expected consistency
with respect to all elements x of X : This ex-
plains the use of the indices A and x in the no-
tations φA and φx and in the associated names
for the measures. From (8), it is then straight-
forward to obtain:

φA(m) = ‖pl‖∞, (9)
κA(m1,m2) = 1− ‖pl1 ∩©2‖∞. (10)

In sum, the consistency of a mass function can
be written as a norm, and the conflict between
belief functions amounts to 1 minus the norm of
their conjunctive combination.

Let us remark that Eq. (7) leads to a nice writ-
ing of total consistency in terms of the infinity
norms of the plausibility and contour functions:

Remark 1. A mass function m is logically
consistent iff maxx∈X π(x) = 1 (i.e., if
‖π‖∞ = 1) and probabilistically consistent
iff maxA⊆X pl(A) = 1 (i.e., if ‖pl‖∞ = 1).
Indeed, from [3, Lemma 1], m is logically
consistent iff ∃x ∈ X such that π(x) = 1,
which is equivalent to maxx∈X π(x) = 1. Fur-
thermore, m is probabilistically consistent iff
m(∅) = 0, which is equivalent to pl(X ) =
maxA⊆X pl(A) = 1.

3.3 Related work

To the best of our knowledge, this constitutes
the first3 geometric view on the conflict mea-
sures studied in [3]. However, there is at least
one piece of work where the notions of incon-
sistency and norm have already been related.
Indeed, George and Pal [14] introduced a mea-
sure denoted TC(m) and defined, for any m ∈
M such that m(∅) = 0, by

TC(m) =
∑
A⊆X

m(A)
∑
B⊆X

m(B) (1− J(A,B))

where J(A,B) is the Jaccard index defined by
J(A,B) = |A∩B|

|A∪B| . They presented TC(m) as a
measure of total “conflict” inm, where their no-
tion of conflict actually pertains to a form of in-
consistency between focal sets inm, and specif-
ically a refined form of inconsistency based on
Jacquard indices. Indeed, J(A,B) is classi-
cally interpreted as a measure of similarity be-
tween sets A and B, yet it can also be seen
as a refined consistency degree since we have,
for any A 6= ∅ and B 6= ∅, J(A,B) = 0 iff
φ(A ∩ B) = 0, J(A,B) > 0 iff φ(A ∩ B) = 1
and in particular J(A,B)=1 iff A = B.

Now, let J be the matrix of Jaccard indices
J(A,B). Because J is positive definite [15], the
quantity

√
m′Jm is then the Euclidean norm

(p = 2) of m in the space EX endowed with
the inner product v1

′Jv2 for any vectors v1 and
v2 of EX , and we have [16]:

TC(m) = 1−m′Jm.

In other words, the measure of George and Pal,
which evaluates a form of inconsistency in m,
can be expressed in terms of a particular norm
of m.

4 Relating distances and conflict

As recalled in the introduction, distances be-
tween belief functions have been investigated

3In [5], κA has been previously written under the form
of an inner product although not satisfying the properties
of an inner product.



as a means to evaluate their conflict, yet re-
cent works have argued against it. Nonetheless,
based on our preceding results relating norms
and conflict, we will show in this section that
some distances can be related to the κA and κx
conflict measures.

4.1 Norm-induced distances

The Lp-norm induces a distance dp(v1,v2) be-
tween any two vectors v1 and v2 of RN , de-
fined as the Lp-norm of their difference, i.e.,
dp(v1,v2) = ‖v1 − v2‖p.

This family of distances gives rise to the
Minkowski family of evidential distances, when
applied to belief functions [5]. We are particu-
larly interested in this paper by those distances
relying on the plausibility and contour functions
(in which case they are, respectively, a metric
and a pseudo-metric [17]) and the case p = ∞.
They are defined as follows, for any mass func-
tions m1 and m2:

dpl,∞(m1,m2) = ‖pl1 − pl2‖∞,
dπ,∞(m1,m2) = ‖π1 − π2‖∞.

4.2 Consistency and conflict in terms of dis-
tances to inconsistency

Let us first relate the consistency measures φA
and φx to the above distances.

Proposition 1. For any m ∈M, we have

φA(m) = dpl,∞(m,m∅), (11)
φx(m) = dπ,∞(m,m∅). (12)

Proof. Eq. (11) follows from (9) and
dpl,∞(m,m∅) = ‖pl − pl∅‖∞ = ‖pl‖∞.
Eq. (12) follows from (5) and dπ,∞(m,m∅) =
‖π − π∅‖∞ = ‖π‖∞.

In short, this proposition shows that the con-
sistency of a mass function is nothing but its
distance to the totally inconsistent knowledge
state. Accordingly, the more a mass function

m is “far” from total inconsistency, the more it
is considered consistent, which makes sense. It
may be worth noting that the proposition holds
because pl∅ and π∅ are null vectors in spaces
EX and Ex respectively, and coincide thus with
the origins of these spaces.

This result may be exploited to easily show
the following relation between conflict and dis-
tance.

Proposition 2. For anym1 ∈M andm2 ∈M,
we have

κA(m1,m2) = 1− dpl,∞(m1 ∩©m2,m∅),

κx(m1,m2) = 1− dπ,∞(m1 ∩©m2,m∅).

Informally, the conflict between m1 and m2

amounts to 1 minus the distance between their
conjunctive combination and the totally incon-
sistent knowledge state. This brings a new el-
ement to the discussion on whether distances
may be appropriate for conflict measurement.

5 Conclusions

A geometric perspective on a recent axiomatic
approach to conflict measurement was pro-
posed. It was brought to light that Destercke
and Burger consistency measures are the infin-
ity norms of the plausibility and contour func-
tions – which echoed a previously established
relation between a particular norm of a belief
function and the measure of George and Pal.
This allowed us to rewrite the conflict mea-
sures associated to these consistency measures
in terms of infinity norms. The same result was
also used to show that the consistency of a mass
function is formally equal to its distance to the
state of total inconsistency, which corresponds
to the origin of the plausibility space. This led
us in turn to lay bare a relation between conflict
and distance.

Beyond their simplicity, the results presented in
this paper open new perspectives on the mea-
surement of conflict and distances between be-
lief functions, as well as on the use of norms



within this theory. This norm-based view of
conflict allows us to explore in future works the
natural generalisation to other values for the pa-
rameter p of the Lp-norm, as well as other trans-
formations of the mass function than the plausi-
bility or contour function ones. Special atten-
tion will be given to the semantics of the re-
sulting norms. The extension of our results to
other combination operators than the conjunc-
tive rule, that is those induced by other relia-
bility or dependence assumptions (such as the
disjunctive rule [13] or the conjunctive combi-
nation under unknown dependence [3]), may be
considered as well, although this can formally
easily be done. Finally, it seems also worth
studying more deeply the links between consis-
tency measures, distances and informational or-
derings – the former two being related in this
paper, the latter two in [17], and the former and
latter in [4].
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