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Abstract: An iterative Extended Kalman Filter (EKF) approach is proposed to recover a regional set
of topographic heights composing an undersea volcanic mount by the successive combination of
large numbers of gravity measurements at sea surface using altimetry satellite-derived grids and
taking the error uncertainties into account. The integration of the non-linear Newtonian operators
versus the radial and angular distances (and its first derivatives) enables the estimation process
to accelerate and requires only few iterations, instead of summing Legendre polynomial series
or using noise-degraded 2D-FFT decomposition. To show the effectiveness of the EKF approach,
we apply it to the real case of the bathymetry around the Great Meteor seamount in the Atlantic
Ocean by combining only geoid height/free-air anomaly datasets and using ship-track soundings as
reference for validation. Topography of the Great Meteor seamounts structures are well-reconstructed,
especially when regional compensation is considered. Best solution gives a RMS equal to 400 m with
respect to the single beam depth observations and it is comparable to RMS obtained for ETOPO1 of
about 365 m. Larger discrepancies are located in the seamount flanks due to missing high-resolution
information for gradients. This approach can improve the knowledge of seafloor topography in
regions where few echo-sounder measurements are available.

Keywords: bathymetry; Kalman Filter; marine gravity anomalies; satellite altimetry

1. Introduction

Accurate knowledge of the Earth’s topography remains fundamental to understand
surface processes. Detailed mapping of the sea floor topography (or bathymetry) is essential
for studies in oceanography, biology, marine geology, natural disasters, airline crashes
over ocean [1] habitat loss and marine resources. In oceanography, currents and tides
physical characteristics are controlled by the shape of the seafloor as well as smaller-scale
topographic features like seamounts.

So far our knowledge of seafloor topography remains imprecise. The traditional
technique to map bathymetry is a tedious process made by research vessels equipped with
single or multibeam echo-sounders [2,3]. Using this traditional technique only less than
18% of the worldwide seafloor has been determined with a spatial resolution of about
1 km [2]. However, reaching a complete coverage of the ocean seabed at an horizontal
resolution of 100 m would take hundreds of years (as per one surveying boat) [4]. Moreover,
because of the geometry of the multibeam echo-sounders, the resolution and the accuracy
decreases with the increasing depth [5].

Remote Sens. 2022, 14, 169. https://doi.org/10.3390/rs14010169 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14010169
https://doi.org/10.3390/rs14010169
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-7007-3198
https://orcid.org/0000-0003-1750-2819
https://orcid.org/0000-0002-4661-8274
https://doi.org/10.3390/rs14010169
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14010169?type=check_update&version=2


Remote Sens. 2022, 14, 169 2 of 22

Radar altimeters aboard ERS-1 and GEOSAT satellites have measured the variations
of the gravity field over all the oceans with high accuracy and medium spatial resolution.
In March 1995, ERS-1 completed its dense (~8 km track spacing at the Equator) mapping of
the sea surface topography between the latitudes of 81.5◦ North and South. The data have
been combined and processed to form a global marine geoid or gravity grid [6,7]. In the
wavelength band from 15 to 200 km, gravity anomaly variations are strongly correlated
to sea floor topography, and thus, can be used for recovering topographic signals. The
basic theory for predicting sea floor topography from satellite altimeter measurements
is provided by [8], where the idea is to use sparse depth soundings to estimate the long
wavelengths and short wavelengths predicted from downward continued satellite gravity
measurements [9].

Bathymetric prediction was largely concerned with detecting uncharted seamounts
from their gravitational signature [10–12]. Filters for modelling have also been designed to
detect height and location of undersea structures along satellite radar altimeter tracks [13–15].
The first global bathymetric maps based on marine geoid (i.e., static sea surface) data were
published by [16] and [17]. Inversion of these satellite data to estimate the bathymetry
was initially performed along separate satellite tracks (1-D) using the so-called admit-
tance method [8,18–20]. Moreover, [21] and [22] computed 1-D fitting of synthetic topo-
graphical profiles along satellite tracks. Denser coverage of the oceans by the GEOSAT
(1985–1986) and ERS-1 (1994–1995) Geodetic Mission increased the horizontal resolution
to better than ~10 km anywhere. These new generation of data sets (either used alone
or merged with sparse echo soundings) have been inverted to compute 2-D estimates
of the bathymetry [7,9,23–27]. Reference [28] has reviewed the computation of sea floor
topography from altimetry and echo sounding data.

Most studies have been conducted in the Fourier domain where signal convolutions
are replaced by simple spectral products. Reduction of the infinite power series of the
density interface topography to gravity ratio, as proposed by [29], to the very first term
has often been used for simplification. However, as discussed by [30] and later by [31]
this truncation or linear assumption, severely underestimates the gravity to bathymetry
ratio at wavelengths greater than 50 km. In particular, the gravity signature of the single-
term predicted bathymetry computed with the Parker’s fully-developed series does not
reproduce the gravity data from which that bathymetry was initially derived. Nevertheless,
higher-order terms can be accounted in an iterative inversion process to estimate Fourier
coefficients of the sea floor topography [23,31].

It remains not possible to combine gravity/geoid data to sparse in situ depth observa-
tions provide by ships for constraining the topographical solution in the Fourier domain,
so that the two types of data can only be processed separately. Instead of being included
in the inversion, the shipborne data are used to complete the bathymetry derived from
satellite altimetry [7,9,27,31]. In the data preparation, the ship-track soundings have to
be interpolated onto grids of regular sampling to be adapted for Fast Fourier Transform
(FFT) techniques. The « spectral » methods consist of inverting spectra of the gridded
gravity data directly by assuming no noise polluting these starting data, so the spectra of
the predicted bathymetric signals include the contribution of this noise. In addition, these
FFT methods require numerical stabilization [23,25] or low-pass filtering [7,9,27] to avoid
or, at least, minimize the development of unrealistic short-wavelength undulations.

In the case of vast oceanic areas, the number of observations is large, the non-
linear method developed by [32] and applied in the Atlantic Ocean by [33], around New
Zealand [26] and finally globally [24] consists of inverting matrices of huge dimensions,
and thus hardly applicable as itself. One of the strategies to decrease the dimensions of the
problem, was to decompose the studied oceanic area into overlapping small rectangular
cells covering the entire oceanic province, the inversion being made in each of these geo-
graphical cells of a few degree dimensions [24,26,33], but with the risk of spatial truncation
errors (i.e., loss of signals energy) limited by including ship-track soundings for constraints.
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Most recent studies have proposed to combine different gravity data using non-linear
least square method [34]. But dealing with matrix of large dimensions is required.

Here, we propose an alternative procedure to manage the dimensions of the inversion
problem better, by the use of the progressive Kalman Filtering-type assimilation of large
numbers of geoid height or free-air anomaly observations. The ship-track soundings are
used as a reference for validation and therefor are excluded from the inversion process.

The article is structured as follows: first, the derivation of the non-linear gravity op-
erators for direct modelling of gravity observations from a set of topography heights is
presented, as well as the Extended Kalman Filtering (EKF) procedure used for inversion of
only gravity information. Secondly, the data used in this study are described (gravimet-
ric observations, global bathymetric grids, ship-track soundings). Next, to demonstrate
the feasibility of the proposed method, the seafloor topography recovery is made using
simulated gravity data. Finally, our approach is applied to the well-known real case of the
tabular Great Meteor (GM) guyot [W27◦00′–W30◦00′; N28◦30′–N31◦30′] in the mid-Atlantic
Ocean [35,36].

2. Materials and Methods
2.1. Methodology
2.1.1. Forward Problem Using Radial Integrals

In this part, the theoretical expressions of the gravity quantities due to the presence of
an interface of irregular shape are derived. A four-layer model is considered in this study
(Figure 1) as proposed by [37]. We defined water density as ρw, seamount or load density as
ρh, sediments density ρs, crust density as ρc and mantle density as ρm. This is a simplified
model which allows considering different assumptions ρs = ρh or ρs = ρh = ρc.
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For a set of discrete j = 1 . . . M rock columns of constant density composing the
topography measured at an external observation point of index i, the total potential and
vertical gravity anomaly quantities are respectively [26,32]:

Vi =
M

∑
j=1

V(ri, hj, ϕij) = G(ρh − ρw)
M

∑
j=1

∆λj∆θj cos θj

[∼
ξ (ri, R + hj, ϕij)−

∼
ξ (ri, R, ϕij)

]
(1)

and

∆gi =
M
∑

j=1
∆g(ri, hj, hP

i , ϕij) = 2πG(ρh − ρw)

[∼
ζ (ri, R + hP

i , 0)−
∼
ζ (ri, R, 0)

]
+G(ρh − ρw)

M
∑

j = 1
i 6= j

∆λj∆θj cos θj

[∼
ζ (ri, R + hj, ϕij)−

∼
ζ (ri, R + hP

j , ϕij)

]
(2)

where ri is the radial distance between the geocenter and the observation point P, hi
P is the rock

column height below P (i.e., the thickness of the considered spherical cap is hi
P), R is the mean

Earth’s radius (R = 6371 km), G is the gravitational constant (G~6.667 × 10−11 m3·kg−1·s−2),
θj is the latitude, ∆λj and ∆θj are the dimensions of the mass element of index j in longitude
and latitude, respectively, and ϕij is the angular distance between the mass element and
the observation point P. The functions ξ and ζ are the estimated primitives of the radial
functions of potential and gravity anomalies and were defined by [32] (Appendix A). These
simple discrete forms are suitable to ease linear inversion of gravity data considering one
layer without compensation effects due to flexure w of the lithosphere in the context of
regional compensation (Figure 1).

Similarly as the computation of topographic effects, we can write the potential created
by the regional compensation as [32]:

Vi
C =

M
∑

j=1
V(ri, wj, ϕij)

= G(ρs − ρc)
M
∑

j=1
∆λj∆θj cos θj

[∼
ξ (ri, R + wj, ϕij)−

∼
ξ (ri, R, ϕij)

]
+G(ρl − ρm)

M
∑

j=1
∆λj∆θj cos θj

[∼
ξ (ri, Rm + wj, ϕij)−

∼
ξ (ri, Rm, ϕij)

] (3)

and

∆gi
C =

M
∑

j=1
∆g(ri, wj, wi, ϕij)

= 2πG(ρs − ρc)

[∼
ζ (ri, R + wi, 0)−

∼
ζ (ri, R, 0)

]
+2πG(ρc − ρm)

[∼
ζ (ri, Rm + wi, 0)−

∼
ζ (ri, Rm, 0)

]
+G(ρc − ρs)

M
∑

j = 1
i 6= j

∆λj∆θj cos θj

[∼
ζ (ri, R + wj, ϕij)−

∼
ζ (ri, R, ϕij)

]

+G(ρc − ρm)
M
∑

j = 1
i 6= j

∆λj∆θj cos θj

[∼
ζ (ri, Rm + wj, ϕij)−

∼
ζ (ri, Rm, ϕij)

]
(4)

where wj is the deflection of the lithosphere deduced from the load given by [38,39]
(Appendix B) and depending upon the elastic thickness Te.
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The complete gravitational effects are computed by adding to Equations (1) and (2)
the signals of deflection at the external observation point P called Vi

C and ∆gi
C. The geoid

heights are derived from the disturbing potential T by considering Brun’s formula [40]:

N(r, ϕ) =
T(r, ϕ)

γ
(5)

where γ is the gravity acceleration (~9.81 m·s−2). It is worth noting that a regular discretiza-
tion is not required.

2.1.2. Extended Kalman Filter for Recovery Seafloor Topography

Kalman Filtering (KF) is an optimal estimation algorithm that uses the series of se-
quential measurements obtained at different epochs and containing statistical noise [41,42].
It produces estimates of unknown parameters that tend to be more accurate than those
based on a single set of measurements alone, by estimating joint probability distributions.
At epoch number k, the observation equation is:

zk = f (xk) + νk (6)

where xk is the vector that contains the unknown parameters, i.e., the topographic heights
to be recovered, and f represents one of the non-linear operators given by Equations (1) and
(2). νk is the observation noise which is assumed to be zero-mean Gaussian white noise [43]
with covariance matrix Rk, such as νk ~ N(0,Rk).

In the Extended Kalman Filter (EFK), the state transition ensured by the operator f
does not need to be linear, and that is the case for gravity data (see Equations (1) and (2)).
Besides, Fk is defined as the Jacobian matrix formed by the partial derivatives of f versus
each parameter xk at epoch k, i.e.,:

Fi
k =

∂ f (xk)

∂xi
k

(7)

Pk is the a priori error covariance matrix of variable xk. To describe the evolution of xk
in the estimation process, a model of propagation is built:

xk = Akxk−1 + ωk−1 (8)

where xk−1 is the state of xk at the previous time k − 1 and Ak is the projection matrix that
is imposed as the identity matrix to simplify. ωk−1 represents the process noise which is
assumed to be drawn from a zero-mean normal distribution with covariance matrix Qk−1,
i.e., ωk−1 ~ N(0,Qk−1).

The two successive steps of an EKF iteration are: (1) Prediction of a priori state
and associated error covariance (projection); (2) Innovation (or equivalently update or
correction).

EKF works recursively, iteration-by-iteration, and the information from geoid heights
or free-air anomaly data is cumulated to build and refine progressively the solution vector
xk containing the topographic heights. Schema of the iterative process is shown in Figure 2.
The detailed prediction and innovation steps of an EKF iteration are:
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heights from gravity data (geoid heights and free-air anomalies).

Prediction of a priori state and associated error covariance (projection):

xk = Akxk−1 + ωk−1 (9)

Pk = AkPk−1 AT
k + Qk−1 (10)

• Innovation (or equivalently update or correction):

Measurement pre-fit residuals:

yk = zk − f (xk) (11)

Pre-fit residual covariance:

Bk = Rk + FkPkFT
k (12)

Optimal Kalman gain:
Kk = PkFT

k B−1
k (13)

So that a posteriori state and covariance estimates are:

xnew
k = xk + Kkyk (14)

Pnew
k = (I − KkFk)Pk (15)

where I represents the identity matrix. Once the new solution vector xk
new and its error

matrix Pk
new are obtained (Equations (14) and (15)), they are injected in Equation (9) to start

a new iteration by considering a new flow of observations zk.

2.2. Region of Study: Great Meteor Guyot

Discovered between 1925 and 1927 by the German research vessel Meteor, the Great
Meteor (GM) seamount is located at 29◦57′10.6′’N and 28◦35′31.3′’W in the southern part
of the Seewarte seamount chain on the Azores plateau (Figure 3). It is the largest guyot
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in the North Atlantic with a volume of 24,000 km3. The crust under the GM has an age of
85 million years deduced by the magnetic anomaly data (An34). It has a shallow and flat
summit ranging between 150 and 300 m below the sea level suggesting it may have emerged
in the past [36]. It is covered of 600 m-thick layer Isotopic K-Ar and Ar-Ar analysis of
dredged basalts on the top and the flanks of the GM provided ages of 10.7 and 16.3 million
years respectively. There are two small seamounts just southwest of GM lying at 3800 m
(Figure 3): the Little Meteor (LM) and the Closs seamount (CL), as from the official GEBCO
gazetteer [44].
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depth from −5311 m to −26 m.

Elastic thickness Te in this region has been largely studied [37] and the obtained value
is ~19 km.

2.3. Data
2.3.1. Geoid Height and Free-Air Anomaly Measurements

A regional grid of the geoid model EGM2008 computed by the GeoForschungsZen-
trum GFZ [45] is extracted over the GM seamount [N29◦–N31◦; W27◦–W30◦] by fixing the
grid sampling, e.g., 1/25◦. A full-degree resolution grid (maximum harmonic degree of
2190) i.e., with a maximal spatial resolution ~20 km as described by [40].

Vertical component of the gravity anomaly (free-air anomaly) was derived globally
from radar altimetry and made available by the DTU 2015 [46] with a one minute (1′)
spatial resolution. This spatial resolution is also reduced to 1/25◦ in our study. In fact, the
correlation between gravity anomalies and topography generally decreases under 20 km
of wavelengths due to satellite altimetry limitations [9]. Regional deep Earth signal, e.g.,
density contrast at Moho depth, is extracted from the geoid heights and free-air anomalies
using Generic Mapping Tools (GMT) function “grdtrend” [47]. The geoid height and free-air
anomaly grids to be inverted are plotted on Figure 4 and reveal the relevant gravitational
signatures of the GM, LM and CL seamounts with seafloor depth of a few meters (or
hundreds of mGal).
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2.3.2. Bathymetric Grids and Ocean Depth Surveys

For estimating the performance of the methodology, our solution is compared to the
global bathymetric models ETOPO1 [48,49] and GEBCO [50,51].

ETOPO 1 provides land and seafloor topography with a spatial resolution of 1 arc-
minute. This model is built using global and digital datasets including in situ depth
surveys.

The GEBCO grids are computed with a spatial resolution of 15 arc-second (~450 m)
using bathymetric grids and surveys from many data contributors around the world. In
this study the GEBCO2020 version is considered.

We have also used single beam depth observations provided by National Center for
Environmental Information [52] available in the GM region.

3. Results
3.1. Application to Simulated Data and Recovery Test

In this section, we will present the recovery tests concerning our approximations,
the methodology performance and the choice of inversion parameters. The accuracy of
the radial integral approximation in the forward problem is evaluated. Secondly the
independent recovery tests were made to choose the best inversion parameters (a priori
variance of observations errors, a priori variance of the topography heights) for each
gravity data type. Finally, we checked the contribution of a combined-data inversion
of different observations, geoid heights and free-air anomalies, in order to improve the
seafloor topography assessment.

3.1.1. Forward Problem: Validation of Non-Linear Operators

Simulated geoid height and gravity anomaly grids are used to check the validity
and the robustness of the proposed approach of recovery bathymetry. The corresponding
geoid height or free-air anomaly observed at sea surface are easily computed using the
operator defined in Equations (1) and (2) on regular grids. These operators are calculated
by the analytical radial integration and used in our inversion processing (see Equation (11)).
Then, it is important to analyze the accuracy of our approximation with respect to other
previous methods: (i) 2D FFT Parker method that corresponds to a planar approximation
(GMT function “gravfft”, [53]; (ii) tesseroids approach using Taylor expansion proposed
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by [54] for estimated geoid heights or the software developed by [55] for estimating free-air
anomalies.

The simple case of a 2500 m-amplitude conical non-compensated seamount of constant
density 2700 kg·m−3 lying under a seafloor depth of 5000 m and a water density of
1000 kg·m−3 is considered to compute gravitational effects (geoid heights and free-air
anomalies).

Figure 5 shows the results from different methodologies to estimate the gravitational
signal of such a seafloor structure. We notice that the discrepancies between planar (Parker)
and spherical approximations are significant, especially for the geoid height anomalies
~40 cm at the seamount peak and ~−40 cm at the seafloor level. Simulated anomalies
are in very good agreement with gravitational effects estimated by other methodologies
(differences are lesser than 1.5 cm and 1 mGal in absolute value). Large differences are
located around the seamount summit.
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ences (b); free-air anomalies (c) and differences (d).

3.1.2. Inverse Problem Analysis by EKF. Simulated Case

As the gravity observation errors are assumed to be spatially decorrelated, as previous
studies [32]:

Rk−1 = σ2
d I (16)

where σ2
d represents the variance of the observation errors. Obviously, the real altimeter

data are probably spatially correlated with no white noise. Further studies would need to
determine a realistic structure of matrix Rk−1. σd should take a realistic value representing
the true observation’s accuracy. The actual observations techniques ensure that geoid
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heights and free-air anomalies achieve an accuracy of ~5–10 cm [56] and 1–5 mGal [57],
respectively, then the values of 10 cm and 5 mGal are adopted for σd.

The topographic solution to be recovered is defined as a set of juxtaposed rock columns
of unknown heights. The starting a priori covariance of the topographic heights is of
Hirvonen-type [58,59]:

Pk−1=0 =
σ2

m

1 + (ϕ/ϕ0)
2 (17)

where σ2
m is the a priori variance of the topographic heights (i.e., the elements of the

unknown vector xk−1 to fit), φ is the angular distance between these topographic heights,
and ϕ0 is the angular length of decorrelation. The analysis of φ0 by [32] has demonstrated
that the best inversion results are obtained for φ0 = 0.2◦. Preliminary numerical tests have
confirmed that topography recovery is optimal for this value of 0.2◦. The elements of this
matrix Pk will evolve during the EKF estimation process.

The accuracy of the method to the a priori σm needs to be checked. The a priori stan-
dard deviation of topographic heights, σm, varies between 50 and 3000 m. The absolute error
of the difference between the input model (a 2500 m-amplitude conical non-compensated
seamount) and the solution (estimated topography derived from simulated geoid height
and gravity anomaly observations) are considered as an indicator of the accuracy to this
parameter. Numerical tests show that, as expected, this growth parameter σm has to be
large enough to accelerate the convergence to a stable solution in the case of “cold start”
conditions (the first iteration topography is initiated as 0 m everywhere). A rule-of –thumb
is that σm takes values greater than 2500 m (Figure 6), i.e., greater than the expected max-
imum height. Geoid height data inversion shows a quicker convergence than free-air
anomaly inversion. In fact, at iteration 20, the errors obtained for the solution derived
from the geoid heights inversion with respect to the reference bathymetry, range between
12 to 30 m as σm decrease from 3000 m to 500 m and the worst result is ~190 m of error
for a σm = 50 m. For the case of the solution estimated using free-air anomalies, the same
conclusion is found but errors are larger, for σm > 500 m the errors are ~170 m. The con-
vergence stability is obtained around 10 iterations. In consequence, for the next recovery
tests, the first 10 iterations are retained. A white noise is also added for simulating the
influence of noisy observations with amplitudes of 10 cm for the geoid heights, and 5 mGal
for free-air anomalies. Evidently, topography recovery quality decrease with the noise
level. The topography of the seamount is found with an RMS of around 50 m after 10
iterations (Figure 7). Geoid height inversion is more affected by noise fluctuations and up
to 2 iterations noise propagation remains important causing an unrealistic variations on
the seabed of ±500 m (Figure 7b) when the seamount peak is well reconstructed with a
maximum value of 2500 m. In order to prove the performance of EKF, the solution derived
from the combined inversion geoid heights/free-air anomalies is computed.

Results show lower absolute error and RMS, which is interpreted as a better recon-
struction of the seamount and a minimization of noise propagation after three iterations
(RMS < 100 m and absolute error < 300 m; Figure 7a). The observed oscillations of the
seafloor for combined inversion geoid heights/free-air anomalies have weaker amplitude
±100 m (Figure 7b) and the seamount peak is also well reconstructed with a minimum
water depth of ~2500 m like for geoid height inversion. In the seafloor plain no oscillation
is observed when no white noise is added.
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Finally, we perform numerical tests including compensation effects due to flexure of
the lithosphere (see Figure 1). The synthetic gravity observations are computed considering
increasing Te values (5 km, 10 km, and 20 km). We set constant Young modulus and
Poisson’s ratio values of 7·1010 N·m−2 and 0.25 [37], respectively. Moho depth is set to
6 km, as expected for a mature oceanic crust [60]. In the case of the no noisy data, we
also obtain the typical decrease for recovery error versus the iteration number, where a
couple of iterations are efficient enough to reach a stable solution. However, convergence
to the reference bathymetry is slowed down in comparison with the non-compensated
case, and the seamount amplitude is underestimated after 10 iterations. The RMS reaches
150–200 m for both types of input gravity data. When realistic amplitudes of noise (10 cm
and 5 mGal respectively) are considered (Figure 8), free-air anomaly inversion gives less
error of recovery (RMS range between 150–200 m) than geoid height inversion (RMS of
300 m). Numerical tests show that the combined inversion accelerates the convergence
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(Figure 8 a) with a reduction of absolute error of 25% in the case of Te = 5 km, and of 15%
in the case of Te = 10 km with respect to only geoid height (or free-air anomaly) inversions.
In the optimal case of Te = 20 km, the RMS of the combined inversion and the only free-air
anomaly inversion are similar, RMS of 150 m (Figure 8b). However, when the two types
of data are combined, the profile of the estimated bathymetry show an improvement in
recovering of the seamount summit (reference peak 2500 m; only free-air anomaly inversion
peak at 2271 m; combined inversion gives a more realistic peak with a value of 2453 m close
to the reference).
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3.2. Inversion of a Real Case

For further demonstration, the method of EKF prediction is now challenged to recover
the more complicated shape of a real undersea relief. For this purpose, the example of
a huge tabular topography that has been widely discussed by many authors [35,36,61],
so that available historical datasets, e.g., ship-track soundings, is used for validating the
EKF solution obtained from geoid height and free-air anomaly inversion. Accurate depth
data over GM seamount are not included in our seafloor topography computation, as they
are used as a reference and compared to the solutions obtained by EKF. As estimated in
previous works [36,60] load density is considered 2700 kg·m−3 in this region, crust density
is 2900 kg·m−3 and mantle density is 3350 kg·m−3. The sediment thickness is considered
negligible [62]. To take the regional compensation effects into account the elastic thickness
Te is fixed at 19 km [37]. Mean ocean depth is assumed to be 4150 m in the Great Meteor
region. A priori inversion parameters are set to σm = 4000 m, σd = 10 cm for geoid heights
and σd = 5 mGal for free-air anomalies.

Figure 9 presents the bathymetric solutions provided by the EKF inversion (INV)
using geoid heights (GEOID), free-air anomaly data (FAA) and as well as their combination
(GEOID + FAA), respectively. The structures of the GM seamount are almost perfectly
reconstructed if we consider that we used only satellite data and no ship-track information.
This is very important for a worldwide reconstruction of the seafloor where few ship-track
data exist.
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Structures of other small undersea features are also well distinguished in the EKF
solution and the LM and CL are identified (Figure 9). Besides the associated a posteriori
maps of uncertainties, the solutions in Figure 9 reveal the development of edge effects
especially in the geoid height inversion. Extension of these edge effects represents only
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twice or three times the sampling rate. For this reason, a larger region around the GM is
considered for computing the topography. The rapid convergence of the geoid inversion
(as see in Section 3.1.2) allows us to stop the estimation process at the second iteration in
order to reduce edge effects. In fact, these effects quickly increase after two iterations giving
a noisier solution. In addition, when the regional compensation is taken into account, the
edge effects are propagated to the seabed, as this is well represented by the large formal
errors obtained at seabed larger than 450 m.

In the case of the combined inversion, the EKF solution may benefit from long-
wavelength component from geoid height anomalies (proportional to r−1) and shorter
wavelength component brought by the free-air anomalies that depend upon r−2. Geoid
heights are used to estimate the initial bathymetry after two iterations and free-air anoma-
lies complete the solution up to 10 iterations.

The free-air anomaly inversion yields errors of 50–150 m at the seabed, and lesser than
30 m around the seamounts. The combined inversion of different gravity data type produces
similar formal errors or a posteriori uncertainties. Figure 10 shows the difference between
the EKF estimates bathymetry and global bathymetric models ETOPO-1 and GEBCO.
Amplitudes of seafloor topography solutions are very realistic compared to the ones
extracted from ETOPO-1 and GEBCO grids that include the sparse depth measurements
and digitalized level curves. Weak differences are of 50 m or less located at the top of the
GM. The combination of two types of data (geoid heights/free-air anomalies) leads to low
errors at the intermediate spatial wavelengths. However, some important differences of
±400 m still exist at long-wavelengths indicating an inaccurate reference seabed depth
variability. Larger discrepancies (>1400 m) are located at seamounts flanks that are gradient
areas and come from missing information at short-wavelengths. It is well-known that
these signals are better reconstructed when the echo-sounder ship-track observations are
available and included in the estimate [32].

In addition, Figure 11 shows the difference with respect to ship-track bathymetric
observations. The function “grdtrack” of GMT [47] is used to derive these differences. We
notice the good reconstruction of the GM shape especially at the top of this seamount with
differences of 40 m or less, representing 28% of the surface. As expected, larger differences
are in the mountain flanks due to missing high resolution information and some over large
differences are observed in the seafloor area and are due to the oscillations associated to
the edge effects.

Table 1 shows the statistical analysis of the differences between global bathymetric
grids, the EKF seafloor topography solutions (uncompensated and compensated cases)
and the measured ship-track soundings considered as a reference. The RMS strongly
decreases when compensation effects are taken into account, i.e., 400–450 m, compared to
the uncompensated case, i.e., 540–565 m. Moreover, the seafloor topography derived from
a combined inversion of geoid heights and free-air anomalies gives slightly better results
and remains comparable to the RMS of global bathymetric grids, especially for ETOPO-1.
For GEBCO, the RMS is lower, about 323 m, because this grid already contains seafloor
depth information at a higher spatial resolution.
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Table 1. Values of Global Bathymetric Models minus ship-track soundings and EKF solutions minus
ship-track soundings. Units are meters.

Model Type Used to Compute Diff. MAX MIN MEAN RMS

Global grids ETOPO1 4681.8 −1858.6 −12.5 364.5
GEBCO 4634.1 −1866.83 13.5 323.5

EKF solution
uncompensated case

GEOID 4069.8 −2328.8 −295.2 540.3
FAA 3974.7 −2503.1 −298.8 543.3

COMB 3809.4 −2472.0 −374.8 565.4

EKF solution
Compensated case

GEOID 4649.9 −2168.9 22.7 402.9
FAA 4924.5 −1892.5 200.9 445.8

COMB 4586.7 −2137.2 −28.4 401.8

Finally, EKF method enables to invert data onto irregularly-sampled grids and thus
can reduce to half the number of the parameters (rocks columns) and consequently the
computation time. Numerical tests have displayed a gain factor in computation time of
about 3. We have used the irregularly-sampled grid shown in Figure 12 to invert the
seafloor topography over the GM. Inversion results are shown in Figure 13. If we compare
the difference between the combined inversion (GEOID+ FAA) regularly sampled versus
bathymetry from ship-track soundings (Figure 11) and combined inversion irregularly
sampled versus bathymetry from ship-track soundings (Figure 13a), the resulting maps
have a similar shape of the differences which are concentrated in areas of strong topographic
gradient. The RMS obtained for the regularly and irregularly sampled cases is similar with
a value of ~401.9 m (see Table 1 and Figure 13b).
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4. Discussion and Conclusions

We have proposed an improved approach based on iterative integration of continuous
incoming gravity and geoid data by using an iterative EKF prediction to recover a regional
set of topographic heights to characterize seafloor topography and apply it successfully
for deriving oceanic areas without ship-track information. The matrix expression of the
method offers the possibility of combining different types of data with various accuracy
in input such as geoid heights and free-air anomalies. Compared to previous studies, the
non-linear operators related to gravity quantities have been refined and numerically tested.
The improvements of the inversion method that makes the inversion process faster are:
(i) the use of a progressive integration of data by the EKF to deal with large numbers of
observations, and (ii) the possibility to use irregular geographical grids (that could be
Delaunay decomposition strategies) to reduce the number of parameters (or topographic
heights) to determine and have the benefit of higher resolution in regions of real interest.



Remote Sens. 2022, 14, 169 18 of 22

Complementary geophysical information such as elastic thickness, sediment thickness and
densities have been included in our EKF inversion scheme. The method has been tested
by inverting simulated gravity data corresponding to an idealistic conical seamount, and
the RMS is of 50 m if these starting data have a ~10 cm of uncertainty on the geoid heights
or ~5 mGal in terms of free-air anomalies. Undersea reliefs in the GM region have been
fully retrieved from gravity data with an RMS of 400 m. This error remains acceptable
since it is comparable to the difference between global bathymetric models combined
with echo-sounders observations. Large differences are located in regions of important
gradient due to missing high resolution information. Long-wavelengths still need to be
constrained by independent observations of seafloor depth which generate in our case an
offset of ~50 m. The GM top structure and depth are well estimated with discrepancies of
less than 40 m with respect to the depth measurements observed along ship-tracks. This
discrepancies could come from the choice of the densities values, the determination of Te
or a combination of these factors.

In conclusion, we have shown that it is possible to reconstruct the topography of the
seabed with a very comparable accuracy using only gravity data. This should allow us to
reconstruct the topography of large ocean trenches and in areas that are not covered by
acoustically-measured water depth.
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Appendix A

In the geocentric reference frame, the coordinates of the observation point P are x,
y and z, and the coordinates of a material element M of mass dm are u, v and w. The
corresponding geographical coordinates of these two points are longitudes, latitudes and
the radial distances (λ, θ, r) and (ξ ′, η′, r′), respectively. Then, dm is expressed as:

dm = ∆ρ∆λ∆θ cos θr′2dr′ (A1)

with ∆ρ = ρinf− ρsup while ∆λ and ∆θ are the dimensions of the mass element in longitude
and latitude respectively, the two layers densities ρinf and ρsup.

The gravitational potential dV created by this element of mass observed at P is:

dV =
Gdm

d(P, M)
(A2)

where G is the gravitational constant (~6.667 × 10−11 m3kg−1s−2) and the denominator is
the Cartesian distance between the points P and M:

d(P, M) =

√
(x− u)2 + (y− v)2 + (z− w)2 =

√
r2 + r′2 − 2rr′ cos ϕ(P, M) (A3)
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and considering ϕ(P,M) as the angular distance between these two points. Equation (A2)
becomes:

dV =
G∆ρ∆λ∆θ cos θr′2dr′√

r2 + r′2 − 2rr′ cos ϕ
(A4)

The radial component of the gravity anomaly is then:

d∆g =
G∆ρ∆λ∆θ cos θr′2dr′

(r2 + r′2 − 2rr′ cos ϕ)

r′ cos ϕ− r√
r2 + r′2 − 2rr′ cos ϕ

(A5)

So the two functions to be integrated versus the radial distance r in order to evaluate
the gravity effects of a complete rock column are:

ξ(r, r′, ϕ) =
r′2√

r2 + r′2 − 2rr′ cos ϕ
(A6)

for the gravitational potential, and:

ζ(r, r′, ϕ) =
r′2(r′ cos ϕ− r)

(r2 + r′2 − 2rr′ cos ϕ)3/2 (A7)

for the radial component of the gravity anomaly.
In other words, the potential and gravity anomalies created by a single rock column

with constant density anomaly ρ h − ρ w, which is limited by the distances R (Earth’s radius)
and R + h, where h is the rock column height, are, respectively:

V(r, h, ϕ) = G(ρh − ρw)∆λ∆θ cos θ
∫ R+h

R
ξ(r, r′, ϕ)dr′ (A8)

and:

∆g(r, h, ϕ) = G(ρh − ρw)∆λ∆θ cos θ
∫ R+h

R
ζ(r, r′, ϕ)dr′ (A9)

Neglecting the constant values of integration, we estimate the primitives of the radial
functions given by Equations (A6) and (A7). For cos φ = 0, we are below the computation
point P then:

∼
ξ (r, r′, 0) = −1

2
r′2 − rr′ − r2 log(r− r′) (A10)

Else if cos ϕ 6=1:

∼
ξ (r, r′, ϕ) =

1
2

[
r2(3 cos2 ϕ− 1) log(

√
r2 + r′2 − 2rr′ cos ϕ− r cos ϕ + r′)

+(3r cos ϕ + r′)
√

r2 + r′2 − 2rr′ cos ϕ

]
(A11)

Thus, for a single rock column, Equation (A8) is written as:

V(r, h, ϕ) = G(ρh − ρw)∆λ∆θ cos θ[
∼
ξ (r, R + h, ϕ)−

∼
ξ (r, R, ϕ)] (A12)

In the case of the gravity anomaly, we divide our integration domain to obtain the
topographical correction with respect to the gravitational effect of spherical cap of constant
thickness.
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When cos φ = 1, the observation point M is just below the computation point P. Then,
the gravitational effect of the spherical cap is computed as defined in [63]:

∆g(r, h, hP, 0) = G(ρh − ρw)
∫ R+hP

R

∫ ϕc
0

∫ 2π
0

r′2 sin ϕ′(r−r′ cos ϕ′)
(r2+r′2−2rr′ cos ϕ′)3/2 dλdϕ′dr′

= 2πG(ρh − ρw)
R+hP∫

R

[
r′2(r−r′ cos ϕc)

r2(r2+r′2−2rr′ cos ϕc)
+ r′2

r2

]
dr′

= 2πG(ρh − ρw)
[
ζ̃(r, R + hP, 0)− ζ̃(r, R, 0)

] (A13)

The estimated primitive is:

ζ̃(r, r′, 0) = 2πG(ρh − ρw)
1
r2

[
1
3

√
r2 + r′2 − 2rr′ cos ϕc

(
r2(3 cos2 ϕc − 2

)
+ rr′ cos ϕc + r′2

)
+r3 cos ϕc

(
cos2 ϕc + 1

)
log
(√

r2 + r′2 − 2rr′ cos ϕc − r cos ϕc + r′
)
+ r′3

3

] (A14)

where φc is the truncation angle of value 1.5 degrees (i.e., around 167 km), hP is the rock
column height below the computation point P, i.e., the thickness of the considered spherical
cap is hP.

For cos φ 6= 1, we obtain the gravity anomalies due to topographical effects:

∆g(r, h, hP, ϕ) = G(ρh − ρw)∆λ∆θ cos θ[
∼
ζ (r, R + h, ϕ)−

∼
ζ (r, R + hP, ϕ)] (A15)

where the obtained primitive is:

∼
ζ (r, r′, cos ϕ) = (6 cos2 ϕ−1)rr′−cos ϕ(r′2+3r2)√

r2+r′2−2rr′ cos ϕ

+r(1− 3 cos ϕ) log(
√

r2 + r′2 − 2rr′ cos ϕ− r cos ϕ + r′)
(A16)

Appendix B

In the context of regional compensation, we remind that the deflection due to a load h
is expressed as: [

D∇4 + γ(ρm − ρs)
]
w = −γ(ρh − ρw)h (A17)

where the flexural rigidity D is:

D =
ET3

e
12(1− ν2)

(A18)

D depends of Young’ s modulus (E), Poisson radius ν and the elastic thickness (Te). Using
the solution of Equation (A17) given by [38], we obtain the expression of the deflection due
to the discrete topographic decomposition hj with j = 1, . . . .,M as proposed by [32]:

wi =
(ρh − ρw)R2

π(ρm − ρs)α2

M

∑
j=1

Kei

(√
2ϕij

α

)
∆λj∆θj cos(θj)hj (A19)

with Kei the zero-order Kelvin-Bessel function [39].
This expression is linearly dependent of topography. α is the flexural parameter

defined by:

α =

(
4D

γ(ρm − ρc)

) 1

4

(A20)

If α = 0, then Airy-type compensation is obtained:

wi = hi
(ρc − ρw)

(ρm − ρc)
(A21)
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