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We prove rate of convergence results for singular perturbations of Hamilton-Jacobi equations in unbounded spaces where the fast operator is linear, uniformly elliptic and has an Ornstein-Uhlenbeck-type drift. The slow operator is a fully nonlinear elliptic operator while the source term is assumed only locally Hölder continuous in both fast and slow variables. We obtain several rates of convergence according on the regularity of the source term.

INTRODUCTION

This paper is devoted to studying the limit behaviour as ǫ → 0 of nonlinear Hamilton-Jacobi equation of the form

u ε (x, y) + H x, D x u ε , D 2 xx u ε + 1 ε L y, D y u ε , D 2 y y u ε + f (x, y) = 0 in R n × R m ( 1 
)
where H is a degenerate elliptic Hamiltonian, f is a bounded locally Hölder continuous function and L is a linear operator L y, q, Y := -Tr τ(y)τ(y) T Y + b 0 (y) • q (see below for more precise assumptions). The study of the convergence as ǫ → 0 of the solutions u ǫ to the equation ( 1) is a singular perturbation problem in the whole space R n × R m . Singular perturbation problems for Hamilton-Jacobi equations have been thoroughly studied in the past years (see, for instance, [START_REF] Alvarez | Ergodicity, stabilization, and singular perturbations for Bellman-Isaacs equations[END_REF][START_REF] Kabanov | Two-scale stochastic systems[END_REF][START_REF] Naidu | Singular perturbations and time scales in control theory and applications: an overview[END_REF] and references therein); the description of the whole literature goes beyond the purpose of the present paper. The PDE-approach to these problems consists in characterizing the value function u ε as a solution to a fully nonlinear PDE as in (1) and identifying its limit as ε → 0 as the (unique) solution u of a limiting PDE. The theory of viscosity solution is the natural framework for this approach; we refer the reader to [START_REF] Bardi | Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations[END_REF][START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] for an overview on this notion of solutions. In this framework, the ideas and methods for singular perturbations stem from the ones for periodic homogenisation problems started with the seminal papers [START_REF] Evans | The perturbed test function method for viscosity solutions of nonlinear PDE[END_REF][START_REF] Evans | Periodic homogenisation of certain fully nonlinear partial differential equations[END_REF][START_REF] Lions | Homogeneization of Hamilton-Jacobi equations[END_REF]. According to this theory for singular perturbations, one expects that the solution to [START_REF] Alvarez | Viscosity solutions methods for singular perturbations in deterministic and stochastic control[END_REF] converges locally uniformly to the solution u to the effective problem

u + H x, D x u, D 2 xx u + λ(x) = 0, (2) 
where λ(x) is the ergodic constant of the cell problem L y, D y w, D 2 y y w

+ f (x, y) = λ(x) in R m (3) 
(incidentally, we mention that this equation also arises when the long time behaviour of the corresponding time dependent equation is examined). It is also well known (see for instance, [START_REF] Lions | Homogeneization of Hamilton-Jacobi equations[END_REF], [START_REF] Alvarez | Ergodicity, stabilization, and singular perturbations for Bellman-Isaacs equations[END_REF]Chapter 7], [START_REF] Ichihara | Recurrence and transience of optimal feedback processes associated with Bellman equations of ergodic type[END_REF]) that existence and uniqueness of the solution (w, λ) are issues to overcome. Hence, the first step is to solve problem (3), namely to prove that for each x ∈

R n there exists a couple (w, λ(x)), with w = w(y; x) such that problem (3) is fulfilled, λ(x) is uniquely determined and w(•; x) is uniquely determined up to an additive constant (in other words, there exists a unique w such that w(0; x) = 0). It is well-known that the operator L is the infinitesimal generator of the following stochastic system

d Y t = b 0 (Y t )d t + 2τ(Y t )dW t ,
where W t is a standard m-dimensional Brownian motion. Ergodicity of the process Y t is a key property that we need throughout the paper and which cannot be guaranteed by general diffusions τ and general drifts b 0 . For this reason we focus our attention on the case where ττ T is a positive definite matrix and the drift has the form b 0 (y) = αy + b(y), where τ and b are bounded, Lipschitz continuous, functions and α is a positive constant. Note that this situation encompasses the well-known Ornstein-Uhlenbeck process for the random motion of a particle under the influence of friction and several stochastic models for financial markets for which the periodic assumption is too restrictive (see [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF][START_REF] Bardi | Large deviations for some fast stochastic volatility models by viscosity methods[END_REF][START_REF] Fujita | Asymptotic Solutions of Viscous Hamilton-Jacobi Equations with Ornstein-Uhlenbeck Operator[END_REF][START_REF] Fouque | Derivatives in financial markets with stochastic volatility[END_REF][START_REF] Ghilli | Viscosity methods for large deviations estimates of multi scale stochastic processes[END_REF] and references therein). More specifically, under these assumptions, there exists a Lyapounov function for L , that is a function χ (take for example χ(y) = |y| 2 ) such that L y, D y χ, D 2 y y χ → +∞ as |y| → ∞

and a unique invariant measure µ for the process Y t . Moreover, by these properties, the solution (w, λ) to ( 3) is obtained as follows: w is the limit as δ → 0 of u δ (•)-u δ (0) where u δ = u δ (y) is the unique bounded solution to

δu δ + L y, D y w, D 2 y y w + f (x, y) = 0 in R m ( 5 
)
while λ is given by

λ(x) = lim δ→0 δu δ (0) = R m f (x, y) d µ(y) ( 6 
)
and µ is the invariant measure associated to process Y t .

We recall that in [START_REF] Ghilli | Viscosity methods for large deviations estimates of multi scale stochastic processes[END_REF] the first author obtained the convergence for a class of singular perturbation problems in the whole space when the drift of the fast variables is of Ornstein-Uhlenbeck type. More precisely, she tackled the case of more general H but with constant matrix τ and Lipschitz continuous source term in the cell problem. This result was extended in [START_REF] Mannucci | Singular Perturbations for a subelliptic operator[END_REF] to singular perturbations problems when the dynamics of the fast variables evolve in the whole space and L is a subelliptic operator and the source term is still Lipschitz continuous. We also mention that ergodic problems for viscous HJ equations with superlinear growth and inward-pointing drifts have been studied in [START_REF] Chasseigne | Ergodic problems for viscous Hamilton-Jacobi equations with inward drift[END_REF][START_REF] Cirant | On the solvability of some ergodic problems in R d[END_REF]. We refer the reader also to the paper [START_REF] Fujita | Asymptotic Solutions of Viscous Hamilton-Jacobi Equations with Ornstein-Uhlenbeck Operator[END_REF] for the connection with the long time behaviour of solutions of the Cauchy problem for semilinear parabolic equations with the Ornstein-Uhlenbeck operator in the whole R m .

On the other hand, Capuzzo Dolcetta and Ishii [START_REF] Dolcetta | On the rate of convergence in homogenization of Hamilton-Jacobi equations[END_REF] provided the first result on the rate of convergence (namely, an estimate of u ε -u ∞ ) for periodic homogenization of first order equations. Afterwards, their techniques were extended also to homogenization of second order equations, still under periodic assumption (see [START_REF] Camilli | On the convergence rate in multiscale homogenization of fully nonlinear elliptic problems[END_REF][START_REF] Camilli | Rates of convergence in periodic homogenization of fully nonlinear uniformly elliptic PDEs[END_REF][START_REF] Camilli | Homogenization and Vanishing Viscosity in Fully Nonlinear Elliptic Equations: Rate of Convergence Estimates[END_REF][START_REF] Kim | Higher order convergence rates in theory of homogenization: equations of non-divergence form[END_REF][START_REF] Marchi | Continuous dependence estimates for the ergodic problem of Bellman equation with an application to the rate of convergence for the homogenization problem[END_REF][START_REF] Rodriguez-Paredes | Rates of convergence in periodic homogenization of nonlocal Hamilton-Jacobi-Bellman equations[END_REF]; see also [START_REF] Caffarelli | Rates of convergence for the homogenization of fully nonlinear uniformly elliptic pde in random media[END_REF] for different techniques for the stationary ergodic case). However, up to our knowledge, no rate of convergence result for singular perturbation of second order HJ problems are available, even for the periodic case.

The main purpose of this paper is to obtain an estimate of the rate of convergence of u ε to u, namely an estimate of |u ε (x, y) -u(x)|. As a byproduct we deduce that u ε converges locally uniformly to u. Several intermediate steps for achieving these two purposes are new and, in our opinion, they have an independent interest; in particular, we shall obtain the following results: (i ) we establish the Hölder continuity of the solution to (5) independently of δ and of the ellipticity of ττ T (see Theorem 3.1), (i i ) we solve the cell problem (3) on the whole space R m with a source term f only locally Hölder continuous and with a noncostant matrix τ (see Proposition 3.2), (i i i ) we establish a continuous dependence result in x of the solution to (3) with w(0; x) = 0, namely and estimate for |w(•; x 1 ) -w(•; x 2 )| (see Proposition 3.5).

The main achievement of the present paper, stated in Theorem 3.7, is a rate of convergence results of u ǫ to u of the following type: under some compatibility condition between α and the coefficients of L (see assumption (H2) below), for every compact K of R m , there exists a constant K (independent of ǫ) such that for ǫ sufficiently small we have

|u ǫ (x, y) -u(x)| ≤ K ǫ log ǫ β 2 ∀(x, y) ∈ R n × K ,
where β ∈ (0, 1] is the Hölder exponent of the source f . We remark that, for τ and b constant, the compatibility assumption (H2) reduces to: α > 0; hence, our result applies to standard Ornstein-Uhlenbeck operators. Moreover, if the source f has separated variables, namely f (x, y) = h(x)g (y), we can drop assumption (H2) and we identify two subcases depending on the degree of regularity of the function h: in Theorem 4.3, for h Lipschitz, we prove that for ǫ sufficiently small it holds

|u ǫ (x, y) -u(x)| ≤ K ǫ log ǫ 1 2 ∀(x, y) ∈ R n × K ,
while in Theorem 4.5 for h ∈ C 2 (R n ) we prove that for ǫ sufficiently small it holds

|u ǫ (x, y) -u(x)| ≤ K ǫ log ǫ ∀(x, y) ∈ R n × K .
Our techniques will be in part inspired by the methods used for the rate of convergence in the periodic homogenization (see [START_REF] Camilli | On the convergence rate in multiscale homogenization of fully nonlinear elliptic problems[END_REF][START_REF] Camilli | Rates of convergence in periodic homogenization of fully nonlinear uniformly elliptic PDEs[END_REF][START_REF] Camilli | Homogenization and Vanishing Viscosity in Fully Nonlinear Elliptic Equations: Rate of Convergence Estimates[END_REF]) combined with the methods developed in [START_REF] Fujita | Asymptotic Solutions of Viscous Hamilton-Jacobi Equations with Ornstein-Uhlenbeck Operator[END_REF][START_REF] Ghilli | Viscosity methods for large deviations estimates of multi scale stochastic processes[END_REF] to solve singular perturbation problems in all the space. They strongly rely on the existence of a Lyapounov function, on a logarithmic growth of w in y and on the continuous dependence of w in x.

An illustrating case that we have in mind arises for stochastic optimal control problem: the operator H in (1) is of the following type

H(x, p, X ) = min u∈U -φ(x, u) • p -trace σ(x, u)σ T (x, u)X , ( 7 
)
where U is a compact metric set while φ and σ are bounded Lipschitz continuous functions.

In this case the unique bounded solution to equation ( 1) is characterized as the value function

u ε (x, y) = sup u∈U E +∞ 0 -e -t f (X t , Y t ) d t ,
where E denotes the expectation, U is the set of progressively measurable processes with values in U and (i )

d X t = φ(X t , u t )d t + 2σ(X t , u t )dW t , X 0 = x ∈ R n , (i i ) d Y t = 1 ε [αY t + b(Y t )] d t + 2 ε τ(Y t )dW t , Y 0 = y ∈ R m . ( 8 
)
In this case the value function u ǫ converges to the unique bounded solution u to the effective problem (2) which in turns can be expressed as the value function

u(x) = sup u∈U E +∞ 0 -e -t λ(X t ) d t
where the process X t still obeys to ( 8)-(i). In this example, as ε → 0, the dynamics do not depend any more on the fast variable Y and the cost f is replaced by λ which is its average with respect to the invariant measure µ, see [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF].

Another motivation for our study has been the papers [START_REF] Bardi | Large deviations for some fast stochastic volatility models by viscosity methods[END_REF][START_REF] Ghilli | Viscosity methods for large deviations estimates of multi scale stochastic processes[END_REF], where singular perturbations problems where studied for their applications to large deviations, pricing of options near maturity and asymptotic formula for implied volatility. Nevertheless we remark that the equations studied in [START_REF] Bardi | Large deviations for some fast stochastic volatility models by viscosity methods[END_REF][START_REF] Ghilli | Viscosity methods for large deviations estimates of multi scale stochastic processes[END_REF] are more general than ours: the study of more general singular perturbations problems (as the ones in [START_REF] Bardi | Large deviations for some fast stochastic volatility models by viscosity methods[END_REF][START_REF] Ghilli | Viscosity methods for large deviations estimates of multi scale stochastic processes[END_REF]) will be subject of future research.

The paper is structured as follows. In Section 2 we give the main assumptions and set some notations. In Section 3, for locally Hölder continuous cost f , we prove the local Hölder regularity of the solution of the approximating ergodic problem (5), we solve the ergodic problem (3) also obtaining a continuous dependence result for its solution w.r.t. x and, mainly, we establish the rate of convergence in Theorem 3.7. In Section 4 we consider the particular cases in which the cost f has separated variables and, depending on its regularity in x, we prove better rate of convergence (w.r.t. Theorem 3.7) in Theorem 4.3 and in Theorem 4.5.

STANDING ASSUMPTIONS AND NOTATIONS

Throughout this paper, unless otherwise explicitly stated, we shall assume the following (C ) The comparison principle holds for [START_REF] Alvarez | Viscosity solutions methods for singular perturbations in deterministic and stochastic control[END_REF]. (L) The operator L has the following form

L (y, q, Y ) := -tr τ(y)τ(y) T Y + αy • q + b(y) • q,
where τ has bounded Lipschitz continuous coefficients with Lipschitz constant L τ , b is bounded and Lipschitz continuous with Lipschitz constant L b and α > 0. Moreover we assume that ττ T is uniformly non degenerate, that is, there exists θ > 0 such that

ξτ(y)τ(y) T ξ T ≥ θ|ξ| 2 , ∀y ∈ R m , ξ ∈ R m . (9) 
(H) There exists C > 0 such that, for all

x, p ∈ R n , X , Y ∈ S n H(x, 0, 0) ≤ C , H x, p, X ≤ H x, p, Y for X ≥ Y , H x, p, X -H y, q, Y ≤ C |p -q| + |X -Y | +C |x -y| 1 + |p| + |X | .
(F ) The function f is continuous and bounded:

f ∞ ≤ C 1 .
The operator L is uniformly elliptic because of (9) while the operator H is only degenerate elliptic. We refer to [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] for an overview for comparison principle for these operator.

Example 1. Consider the case where H is the Hamiltonian associated to a stochastic optimal control problem as in [START_REF] Bardi | Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations[END_REF]. Assume that ψ(x, u) is bounded and Lipschitz continuous in x uniformly in u where ψ = φ, σ. Then assumptions (C ) and (H) are verified; see [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF].

Lemma 2.1.

There exists a unique bounded viscosity solution u ε to problem [START_REF] Alvarez | Viscosity solutions methods for singular perturbations in deterministic and stochastic control[END_REF]. Moreover there holds u ε ∞ ≤ C +C 1 .

Proof. We observe that the functions u ± = ±(C + C 1 ) are respectively a super-and a subsolution to problem (1). Hence, a standard application of Perron's method (see for instance [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]) ensures the existence of a viscosity solution u ε to problem (1) with u -≤ u ε ≤ u + . On the other hand, the comparison principle guarantees the uniqueness of the solution.

HÖLDER CONTINUOUS SOURCE TERM

In this section we assume the following hypotheses:

(H1) the function f is locally Hölder continuous in y (uniformly in x): there exist γ ∈ (0, 1] and

C 2 ∈ (0, ∞) such that | f (x, y 1 ) -f (x, y 2 )| ≤ C 2 |y 1 -y 2 | γ log 1 + |y 1 | 2 + log 1 + |y 2 | 2 + 1 ∀x ∈ R n , y 1 , y 2 ∈ R m ; (H2) the parameter α satisfies α > L b + L 2 τ (m + 2 -γ),
where L b and L τ are defined in (L); (H3) There exist two positive constants C 3 and β ∈ (0, 1] such that: for any x, x ∈ R n , the function

F (•) := f (x, •) -f ( x, •) fulfills |F (y 1 ) -F (y 2 )| ≤ |y 1 -y 2 | γ C 3 |x -x| β log 1 + |y 1 | 2 + log 1 + |y 2 | 2 + 1 ∀y 1 , y 2 ∈ R m ;
(H4) There exist two positive constants C 3 and β ∈ (0, 1] such that: for any x, x ∈ R n , the function

F (•) := f (x, •) -f ( x, •) fulfills F ∞ ≤ C 3 |x -x| β .
Remark 1. We remark that assumption (H2) covers the case of the standard Ornstein-Uhlenbeck operator, that is when τ and b are constant; actually in this case (H2) reduces to α > 0. However, in Section 4 we drop this assumption for the case of f (x, y) = h(x)g (y) Lipschitz continuous.

This section is organized as follows: in subsection 3.1 we analyse the cell problem while in subsection 3.2 we establish some properties of the effective problem. Finally subsection 3.3 contains our main result on the rate of convergence, Theorem 3.7. 

In order to study this problem, it is expedient to introduce the approximating cell problem

δu δ (y) + L y, D y u δ , D 2 y y u δ = F (y) in R m , (11) 
where, by assumptions (H1) and (F ), the source F satisfies

(F 1) ||F (•)|| ∞ ≤ K F , (F 2) |F (y 1 ) -F (y 2 )| ≤ C F |y 1 -y 2 | γ log 1 + |y 1 | 2 + log 1 + |y 2 | 2 + 1 , ∀y 1 , y 2 ∈ R m , for some constants K F ,C F > 0, γ ∈ (0, 1].
In the following theorem we prove the well-posedness of problem [START_REF] Caffarelli | Rates of convergence for the homogenization of fully nonlinear uniformly elliptic pde in random media[END_REF] and, mainly, a regularity estimate for its solution. This regularity property will be crucial in the proof of three results: (i ) the cell problem (10) has a solution w (see Proposition 3.2), (i i ) w has a logarithmic growth at infinity (see Lemma 3.4), (i i i ) a continuous dependence estimate of w with respect to x. The proof is postponed to Appendix A. Theorem 3.1. Assume (F 1), (F 2) and (H2). Then: i ) there exists a unique bounded (viscosity) solution u δ to problem [START_REF] Caffarelli | Rates of convergence for the homogenization of fully nonlinear uniformly elliptic pde in random media[END_REF]; moreover there holds:

δ u δ ∞ ≤ K F for any δ ∈ (0, 1]. i i ) the unique solution u δ found in point i ) satisfies |u δ (y 1 ) -u δ (y 2 )| ≤ K 1 |y 1 -y 2 | γ log 1 + |y 1 | 2 + log 1 + |y 2 | 2 + K 2 , ∀y 1 , y 2 ∈ R m ,
for some positive constants K 1 and K 2 which depend only on m,C F , γ, α, τ and b (and are independent of δ) and K 1 has a linear dependence in C F .

Remark 2. It is worth to observe that the uniform ellipticity (9) of L is not needed in the proof of Theorem 3.1.

We solve the cell problem in the following proposition.

Proposition 3.2. Assume (H1) and (H2). For any x ∈ R n fixed, there exists a unique ergodic constant λ(x) such that the cell problem (10) admits a unique corrector w = w(y; x)

∈ C 2 (R m ).
Moreover the ergodic constant is given by

λ(x) = R m f (x, y)d µ(y) ∀x ∈ R n , ( 12 
)
where µ is the unique invariant measure associated to L .

Proof. This proof relies on the same arguments of [24, Proposition 4.2 and Proposition 4.4] (see also [START_REF] Mannucci | Singular Perturbations for a subelliptic operator[END_REF]Theorem 3.9] for similar arguments); indeed, in [START_REF] Ghilli | Viscosity methods for large deviations estimates of multi scale stochastic processes[END_REF] assumption [24, (U )] is not needed in the resolution of the ergodic problem. For the sake of completeness, we shall only give the main ingredients. Fix x ∈ R n and set F (•) = f (x, •). Let u δ be the solution to [START_REF] Caffarelli | Rates of convergence for the homogenization of fully nonlinear uniformly elliptic pde in random media[END_REF]; the function

v δ (•) := u δ (•)-u δ (0) is a solution to δv δ (y) + L y, D y v δ , D 2 y y v δ + δu δ (0) = F (y) in R m .
Since v δ (0) = 0, Theorem 3.1-(ii) yields that the family {v δ } δ is uniformly locally bounded and uniformly locally Hölder continuous. By Ascoli-Arzela theorem (eventually passing to a subsequence that we still denote v δ ), as δ → 0 + , v δ (•) converges locally uniformly to some function w(•; x) while δv δ (•) converges to zero and δu δ (0) converges to some constant λ = λ(x). By stability results, the couple (w(•; x), λ(x)) is a viscosity solution to [START_REF] Barles | On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations[END_REF]. By [27, Theorem 1 and Theorem 2], w is also a distributional solution to [START_REF] Barles | On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations[END_REF]. Then the C 2 (R m )-regularity of w(•; x) stems from the uniform ellipticity (9) of L and the Hölder regularity of f in (H1) (e.g. see [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]Theorem 6.14]). The rest of the proof follows the same arguments of the aforementioned papers and we shall skip it.

We can now deduce some properties of the function λ(x).

Corollary 3.3. Besides the assumptions of Proposition 3.2, assume also (H4). Then, the function λ satisfies

λ ∞ ≤ C 1 , |λ(x) -λ( x)| ≤ C 3 |x -x| β ∀x, x ∈ R n
where C 1 , C 3 and β are the constants introduced respectively in (F ) and in (H4).

Proof. The former inequality is an immediate consequence of Theorem 3.1-(i). In order to establish the latter estimate, it suffices to use assumptions (F ) and (H4) and equation [START_REF] Camilli | On the convergence rate in multiscale homogenization of fully nonlinear elliptic problems[END_REF].

Remark 3. For more general situations, let us provide an alternative proof of Corollary 3.3 avoiding formula [START_REF] Camilli | On the convergence rate in multiscale homogenization of fully nonlinear elliptic problems[END_REF]. Let u δ and ūδ solve [START_REF] Caffarelli | Rates of convergence for the homogenization of fully nonlinear uniformly elliptic pde in random media[END_REF] with F (•) replaced with f (x, •) and respectively with f ( x, •). The functions u δ ±C 3 |x -x| β /δ are respectively a super-and a subsolution to [START_REF] Caffarelli | Rates of convergence for the homogenization of fully nonlinear uniformly elliptic pde in random media[END_REF].

The comparison principle entails:

δ u δ -ūδ ∞ ≤ C 3 |x-x| β .
Letting δ → 0, we get the statement.

Mainly by relying on the results of Theorem 3.1, we prove the following estimates on the solution of the cell problem (10) that will be crucial in the proof of the rate of convergence, stated in Theorem 3.7.

Lemma 3.4. Assume (H1) and (H2). Let w and χ be the solution to the cell problem [START_REF] Barles | On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations[END_REF] and respectively the Lyapounov function of (4). Then, there exists a constant C 5 > 0 such that

i) |w(y; x)| ≤ C 5 1 + log(1 + |y| 2 ) , ∀(x, y) ∈ R n × R m ; ii) |w(y; x)| -ηχ(y) ≤ C 5 logC 5 -C 5 log η + η, ∀(x, y) ∈ R n × R m .
Proof. (i). We note that the function g (y)

= C 5 (1 + log(1 + |y| 2 )
) is a supersolution to (11) at least for |y| sufficiently large (independently of δ) provided that C 5 is sufficiently large (independently of δ). The rest of the proof follows the same arguments of [24, Proposition 3.3] replacing [24, Lemma 3.5] with Theorem 3.1 (see also [START_REF] Mannucci | Singular Perturbations for a subelliptic operator[END_REF]Lemma 3.8] for similar arguments).

(ii). By point (i) and since χ(y) = |y| 2 , we immediately get that

|w(y; x)| -ηχ(y) ≤ C 5 1 + log(y 2 + 1) -η|y| 2 .
Since the maximum of the right-hand side is attained for y 2 = C 5 -η η , we get the statement. As a consequence of Theorem 3.1, we are able to prove the following results, that we need in the proof of the rate of convergence stated in Theorem 3.7. Note that point v) establishes a continuous dependence estimate of the ergodic corrector. Proposition 3.5. Assume (H1), (H2), (H3) and (H4). For any x and

x fixed in R n , set F (•) := f (x, •) -f ( x, •). The problem δU δ (y) + L y, D y U δ , D 2 y y U δ + F (y) = 0, in R m ( 13 
)
admits exactly one bounded solution. Moreover, the following properties hold true:

i) as δ → 0 + , {δU δ (0)} δ converges to λ(x) -λ( x); ii) For W δ (•) := U δ (•) -U δ (0)
, as δ → 0 + , the sequence {W δ } δ converges locally uniformly to w(•; x) -w(•; x), where w(•; x) and w(•; x) are respectively the solution to problem [START_REF] Barles | On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations[END_REF] and the solution to the same problem with x replaced by x; iii) for some constant C 4 independent of x, x and δ, there holds

U δ (y 1 ) -U δ (y 2 ) ≤ |y 1 -y 2 | γ C 4 |x -x| β log 1 + |y 1 | 2 + log 1 + |y 2 | 2 +C 4 ∀y 1 , y 2 ∈ R m ;
iv) for some constant C 4 independent of x and x, the function W (

•) := w(•; x)-w(•; x) fulfills W (y 1 ) -W (y 2 ) ≤ |y 1 -y 2 | γ C 4 |x -x| β log 1 + |y 1 | 2 + log 1 + |y 2 | 2 +C 4 ∀y 1 , y 2 ∈ R m ; v) the function W (•) introduced in point (iv) also fulfills W (y) ≤ C 6 |x -x| β [1 + log 1 + |y| 2 ] ∀y ∈ R m ,
for some constant C 6 independent of x and x.

Proof. We observe that the linearity of equation ( 13) entails that

U δ (•) = u δ (•; x)-u δ (•; x) where u δ (•; z) solves δu δ + L y, D y u δ , D 2 y y u δ + f (y; z) = 0.
By standard theory on ergodic problem, we deduce points i) and ii). Point iii) is an easy consequence of Theorem 3.1 ii) with

K F = C F = C 3 |x -x| β .
Point iv) follows from points ii) and iii). Point v) is obtained following the same arguments as those in the proof of Lemma 3.4 i), replacing the result in Theorem 3.1 ii) with point iii). Nevertheless, let us give some details in order to provide explicitly the dependence on |x-x|. We observe that, by assumption (H4), we have:

F ∞ ≤ C 3 |x -x| β .
Hence, there exist two constants C and R (independent of x and x) such that the function g (y) := CC 3 |x -x| β 1 + log 1 + |y| 2 is a supersolution to problem [START_REF] Caffarelli | Rates of convergence for the homogenization of fully nonlinear uniformly elliptic pde in random media[END_REF] in R m \ B(0, R). We observe that, by point iii), there holds max

B(0,R) U δ -U δ (0) ≤ C 4 |x -x| β R γ 2 log 1 + R 2 +C 4
and we conclude arguing as in [START_REF] Ghilli | Viscosity methods for large deviations estimates of multi scale stochastic processes[END_REF]Proposition 3.3] (see also [START_REF] Mannucci | Singular Perturbations for a subelliptic operator[END_REF]Lemma 3.8] for a similar argument). Proof. Assumption (C ) and Corollary 3.3 entail that the comparison principle applies to the effective problem [START_REF] Alvarez | Singular perturbations of nonlinear degenerate parabolic PDEs: a general convergence result[END_REF]. Following the same arguments as those in the proof of Lemma 2.1, we achieve the second part of the statement.

Rate of convergence.

In the following theorem we prove our main result.

Theorem 3.7. Assume (H1), (H2), (H3), (H4). Let u ǫ and u be respectively the solution to problem (1) and to the effective problem [START_REF] Alvarez | Singular perturbations of nonlinear degenerate parabolic PDEs: a general convergence result[END_REF]. For ǫ sufficiently small and for every compact K ⊂ R m there exists a constant K ≥ 0 such that

u ǫ (x, y) -u(x) ≤ K ǫ| log ǫ| β 2 ∀(x, y) ∈ R n × K
where β is the constant introduced in assumptions (H3) -(H4).

In order to prove Theorem 3.7, for ρ ∈ (0, 1), it is expedient to introduce the operators

H ρ (x, p, X ) = min ξ∈B ρ (x) H(ξ, p, X ) + λ(ξ) . ( 14 
)
The use of the operators H ρ is in the spirit of the approximated Hamiltonians introduced in [START_REF] Barles | On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations[END_REF] and in the shaking of coefficients method by Krylov (see [START_REF] Krylov | On the rate of convergence of finite-difference approximations for Bellman's equations with variable coefficients[END_REF]) and it was already applied in [START_REF] Camilli | On the convergence rate in multiscale homogenization of fully nonlinear elliptic problems[END_REF] in order to overcome the lack of uniform continuity of the Hamiltonian. We consider the approximated effective problem

u ρ (x) + H ρ x, D x u ρ , D 2 xx u ρ = 0; ( 15 
)
in the following Lemma, we gather some useful properties of this problem.

Lemma 3.8. Problem (15) admits exactly one bounded solution u ρ . Moreover, the sequence u ρ ρ converges locally uniformly to the solution u to (2) as ρ → 0.

Proof. We observe that assumptions (C ) and (L) and Corollary 3.3 ensure |H ρ (x, 0, 0)| ≤ C +C 1 and that the comparison principle holds for problem [START_REF] Dolcetta | On the rate of convergence in homogenization of Hamilton-Jacobi equations[END_REF]. By the same arguments of the proof of Lemma 2.1, there exists a unique bounded solution u ρ to problem (15) which moreover fulfills: u ρ ∞ ≤ C +C 1 for any ρ ∈ (0, 1). Moreover, since the sequence u ρ ρ is equibounded, invoking [7, Theorem V.1.7 or Corollary V.1.8] we get that u ρ converges locally uniformly to u as ρ → 0.

Before proving Theorem 3.7, we state the following proposition whose proof is postponed at the end of this section. Proposition 3.9. Assume (H1), (H2), (H3), (H4). Let u ǫ be the solution to the equation (1) and u ρ the solution to problem [START_REF] Dolcetta | On the rate of convergence in homogenization of Hamilton-Jacobi equations[END_REF]. For ǫ sufficiently small and for every compact K ⊂ R m , there exists K ≥ 0 (independent of ρ ∈ (0, 1)) such that:

u ǫ (x, y) -u ρ (x) ≤ K ǫ| log ǫ| β 2 ∀(x, y) ∈ R n × K ,
where β is the constant introduced in assumptions (H3) -(H4). Now we prove Theorem 3.7.

Proof of Theorem 3.7. By Lemma 3.8 and Proposition 3.9, as ρ → 0 + , we obtain that, for every compact K ⊂ R m , there exists K ≥ 0 (independent of ρ ∈ [0, 1)) such that:

u ǫ (x, y) -u(x) ≤ K ǫ| log ǫ| β 2 ∀(x, y) ∈ R n × K .
The other inequality of the statement is established in a similar manner so we omit the details of its proof and, for the sake of completeness, we just describe the main steps. For

H ρ (x, p, X ) = max ξ∈B ρ (x)
H(ξ, p, X ) + λ(ξ) , consider the problem

u ρ (x) + H ρ x, D x u ρ , D 2 xx u ρ = 0. ( 16 
)
By the same arguments as those in the proof of Lemma 3.8, we obtain that problem ( 16) has a unique bounded solution u ρ and that {u ρ } ρ converges locally uniformly to u as ρ → 0 + . Arguing as in the proof of Proposition 3.9, we obtain that for every compact K ⊂ R m , there exists K ≥ 0 (independent of ρ ∈ (0, 1)) such that:

u ǫ (x, y) -u ρ (x) ≥ K ǫ| log ǫ| β 2 ∀(x, y) ∈ R n × K .
Indeed, we observe that the function ψ(x, y) = u ǫ (x, y)-u ρ (x)-ǫw(y; x)+ǫηχ(y)+σ|x| 2 attains its global minimum at some point ( x, ȳ) and the analogous estimates to those of Lemma B.1 apply. Moreover we can apply ii) of Lemma 3.4 to estimate from below the function -w(y; x)+ ηχ(y). The rest of the computations follows similarly as above, using that u ρ is a subsolution of equation ( 16) and that u ǫ is a supersolution of (1).

Next we prove Proposition 3.9.

Proof of Proposition 3.9. We consider the function

ψ(x, y) = u ǫ (x, y) -u ρ (x) -ǫw(y; x) -ǫηχ(y) -σ|x| 2 , ( 17 
)
where ρ, ǫ, η, σ > 0 are sufficiently small and will be chosen later on. The function ψ attains its global maximum at some point ( x, ȳ). We introduce a new function

ψ(x, y) := u ǫ (x, y) -u ρ (x) -ǫw(y; x) -ǫηχ(y) -σ|x| 2 -c|x -x| 2 (18) 
for some c > 0 to be fixed later on. We observe that

ψ( x, y) = ψ( x, y). ( 19 
) Consider B( x, r ) × B 0, C ǫη := B ⊂ R n × R m
, where C > 0, r ∈ (0, 1) will be chosen later on. Let us emphasize that C will be chosen independent of ǫ, η, ρ and σ. We observe that for each (x, y) ∈ ∂B we have the following cases.

Case a: x ∈ ∂B( x, r ). We have

ψ(x, y) ≤ ψ(x, y) ∀(x, y) ∈ ∂B( x, r ) × B 0, C ǫη ( 20 
)
if and only if

cr 2 ≥ ǫ[w(y; x) -w(y; x)], ∀y ∈ B 0, C ǫη . ( 21 
)
We observe that Proposition 3.5-(v) ensures

|w(y; x) -w(y; x)| ≤ C 6 r β 1 + log 1 + |y| 2 ≤ C r β 1 + log(ǫη) ∀y ∈ B 0, C ǫη
for some C > 0 independent of ǫ, η, ρ and σ (because C will fulfill such independence). Hence, in order to have [START_REF] Evans | Periodic homogenisation of certain fully nonlinear partial differential equations[END_REF], it suffices to have

cr 2-β ≥ C ǫ 1 + log(ǫη) . ( 22 
)
We remark that our choice for r and c will fulfill this inequality. Therefore if the previous condition holds and using [START_REF] Da Lio | Uniqueness results for convex Hamilton-Jacobi equations under p > 1 growth conditions on data[END_REF], we have hence, since r ∈ (0, 1), it suffices to have

ψ(x, y) ≤ ψ(x, y) ≤ ψ( x, ȳ) = ψ( x, ȳ) ∀(x, y) ∈ ∂B( x, r ) × B 0, C ǫη . ( 23 
C 2 ≥ 4M + ǫC 5 1 + log 1 + C 2 ǫη + σ(2| x| + 1),
and recalling that by Lemma B.1 i) (with v = u ρ ), for ǫ sufficiently small and as σ → 0, we have

lim σ→0 σ| x| = 0, (25) 
we deduce that the previous inequality always holds for C large enough when σ and ǫ tend to zero (and, as we will choose, η = ǫ). (Note that, for η = ǫ sufficiently small and σ sufficiently small, we can choose C = 5M ). Therefore by [START_REF] Da Lio | Uniqueness results for convex Hamilton-Jacobi equations under p > 1 growth conditions on data[END_REF] and if the previous condition holds, we have

ψ(x, y) ≤ ψ( x, 0) ≤ ψ( x, ȳ) = ψ( x, ȳ) ∀(x, y) ∈ B( x, r ) × ∂B 0, C ǫη . ( 26 
)
In conclusion, we have ψ(x, y) ≤ ψ( x, ȳ), ∀(x, y) ∈ ∂B. [START_REF] Ishii | On the equivalence of two notions of weak solutions, viscosity solutions and distribution solutions[END_REF] For ǫ and σ small enough, by Lemma B.1 (with v = u ρ ), and for C enough large (it is enough to choose C = 13M), the point ( x, ȳ) belongs to B and consequently, the function ψ attains a (local) maximum at some point ( x, ỹ) ∈ B, namely the function

(x, y) → u ǫ (x, y) -u ρ (x) + ǫw(y; x) + ǫηχ(y) + σ|x| 2 + c|x -x| 2
attains a maximum at ( x, ỹ). Without loss of generality, we may assume that this maximum is strict and global. Indeed, otherwise, we can add to u ǫ some smooth function vanishing with its first and second derivatives at ( x, ỹ). For any τ ∈ (0, 1), we introduce the function

Ψ(x, y, ξ) = u ǫ (x, y) -u ρ (ξ) -ǫw(y; x) + ǫηχ(y) + σ|x| 2 + c|x -x| 2 + τ|x -ξ| 2 . ( 28 
)
By standard theory, we infer that the function Ψ attains a maximum at some point (x τ , y τ , ξ τ ) with x τ , ξ τ → x and y τ → ỹ as τ → ∞. We apply [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]Theorem 3.2] with

O 1 = R n × R m , O 2 = R n , u 1 = u ǫ , u 2 = -u ρ and φ(x, y, ξ) = ǫw(y; x) + ǫηχ(y) + σ|x| 2 + c|x -x| 2 + τ|x -ξ| 2 ;
for every ǭ ∈ (0, 1), there exist two matrices

X 1 = X xx X x y X yx X y y ∈ M n+m and X 2 ∈ M n such that 2σx τ + 2c(x τ -x) + 2τ(x τ -ξ τ ), ǫD y w(y τ ; x) + ǫηD y χ(y τ ) , X 1 ∈ J + (x τ ,y τ ) u ǫ (29) (2τ(x τ -ξ τ ), X 2 ) ∈ J - ξ τ u ρ (30) X 1 0 0 -X 2 ≤ A + ǭA 2 , with A = D 2 x,y,ξ φ(x τ , y τ , ξ τ ) (31) 
where J + (x τ ,y τ ) u ǫ , J - ξ τ u ρ and D 2 x,y,ξ φ denote respectively the superjet of u ǫ at (x τ , y τ ), the subjet of u ρ at ξ τ and the Hessian of φ with respect to the three variables (x, y, ξ). Moreover, testing [START_REF] Lions | Homogeneization of Hamilton-Jacobi equations[END_REF] with vectors of the form (v, 0, v ) and (0, w, 0), we get respectively

X xx -X 2 ≤ 2(σ + c)I + ǭ||A 2 ||I
and X y y ≤ ǫηD 2 y y χ(y τ ) + ǫD 2 y y w(y τ ; x) + ǭ||A 2 ||I . (32) Since u ǫ is a viscosity subsolution of equation [START_REF] Alvarez | Viscosity solutions methods for singular perturbations in deterministic and stochastic control[END_REF], by [START_REF] Kim | Higher order convergence rates in theory of homogenization: equations of non-divergence form[END_REF] we infer

0 ≥ u ǫ (x τ , y τ ) + H (x τ , 2σx τ + 2c(x τ -x) + 2τ(x τ -ξ τ ), X xx ) + 1 ǫ L y τ , ǫD y w(y τ ; x) + ǫηD y χ(y τ ), X y y + f (x τ , y τ ).
Note L is uniformly elliptic by definition and H is degenerate elliptic by assumption (H). Then, by [START_REF] Marchi | Continuous dependence estimates for the ergodic problem of Bellman equation with an application to the rate of convergence for the homogenization problem[END_REF], we get 

0 ≥ u ǫ (x τ , y τ ) + H x τ , 2σx τ + 2c(x τ -x) + 2τ(x τ -ξ τ ), X 2 + 2(σ + c)I + ǭ||A 2 ||I + 1 ǫ L y τ ,
; x) + f (x τ , y τ ) = λ( x) + f (x τ , y τ ) -f ( x, y τ ) = λ(x τ ) + [λ( x) -λ(x τ )] + f (x τ , y τ ) -f ( x, y τ ) .
By assumption (H4) and by Corollary 3.3, we have

f (x τ , y τ ) -f ( x, y τ ) ≥ -C 3 |x τ -x| β and λ( x) -λ(x τ ) ≥ -C 3 |x τ -x| β .
Replacing these relations into (33), we have

0 ≥ u ǫ (x τ , y τ ) + H x τ , 2σx τ + 2c(x τ -x) + 2τ(x τ -ξ τ ), X 2 + 2(σ + c)I + ǭ||A 2 ||I + λ(x τ ) + ηL y τ , D y χ(y τ ), D 2 y y χ(y τ ) + ǭ ǫ ||A 2 ||L (y τ , 0, I ) -2C 3 |x τ -x| β .
Using the linear growth of H w.r.t. to p and X (see assumption (H)) and the boundedness of the matrix τ (see assumption (L)), we obtain

0 ≥ u ǫ (x τ , y τ ) + H (x τ , 2τ(x τ -ξ τ ), X 2 ) + λ(x τ ) + ηL y τ , D y χ(y τ ), D 2 y y χ(y τ ) + -C σ|x τ | + c|x τ -x| + |x τ -x| β + σ + c + ǭ||A 2 || + ǭ ǫ ||A 2 || ,
for some constant C independent of τ, σ, ǫ, ǭ and ρ. Note that from now on, with some abuse of notation, we will denote by C different constants independent of τ, σ, ǫ, ǭ and ρ.

Since u ρ is a supersolution to [START_REF] Dolcetta | On the rate of convergence in homogenization of Hamilton-Jacobi equations[END_REF], by [START_REF] Krylov | On the rate of convergence of finite-difference approximations for Bellman's equations with variable coefficients[END_REF], we have u ρ (ξ τ ) + H ρ (ξ τ , 2τ(x τ -ξ τ ), X 2 ) ≥ 0. We recall that ξ τ → x and x τ → x as τ → ∞; hence, for τ sufficiently small, by the definition of H ρ in ( 14), we have

H ρ (ξ τ , 2τ(x τ -ξ τ ), X 2 ) ≤ H(x τ , 2τ(x τ -ξ τ ), X 2 ) + λ(x τ ). ( 34 
)
By the last three inequalities, we get

0 ≥ u ǫ (x τ , y τ ) -u ρ (ξ τ ) + ηL y τ , D y χ(y τ ), D 2 y y χ(y τ ) + -C σ|x τ | + c|x τ -x| + |x τ -x| β + σ + c + ǭ||A 2 || + ǭ ǫ ||A 2 || .
Passing to the limit as ǭ → 0 + and recalling that C does not depend on ǭ, we obtain

0 ≥ u ǫ (x τ , y τ ) -u ρ (ξ τ ) + ηL y τ , D y χ(y τ ), D 2 y y χ(y τ ) -C σ|x τ | + c|x τ -x| + σ + c + | x -x τ | β .
Now passing to the limit as τ → ∞ and recalling that C is independent of τ and that x τ → x, y τ → ỹ and ξ τ → x as τ → +∞, we get

0 ≥ u ǫ ( x, ỹ) -u ρ ( x) + ηL ỹ, D y χ( ỹ), D 2 y y χ( ỹ) -C σ| x| + c| x -x| + σ + c + | x -x| β ,
and since | x -x| ≤ r , we obtain

u ǫ ( x, ỹ) -u ρ ( x) ≤ C σ(| x| + 1) + cr + c + r β -ηL ỹ, D y χ( ỹ), D 2 y y χ( ỹ) . ( 35 
)
Note that, by ( 4), there exists L > 0 such that

-ηL ỹ, D y χ( ỹ), D 2 y y χ( ỹ) ≤ -η L. ( 36 
)
Moreover for every (x, y) ∈ R n × R m , there holds ψ(x, y) ≤ ψ( x, ȳ) = ψ( x, ȳ) ≤ ψ( x, ỹ). Namely, by using the previous relation, ( 35), [START_REF] Safonov | On the classical solution of nonlinear elliptic equations of second order[END_REF] and Lemma 3.4-(ii), we have

u ǫ (x, y) -u ρ (x) -ǫw(y; x) -ǫηχ(y) -σ|x| 2 ≤ u ǫ ( x, ỹ) -u ρ ( x) -ǫw( ỹ; x) -ǫηχ( ỹ ) -σ| x| 2 -c| x -x| 2 ≤ C σ(| x| + 1) + cr + c + r β -η L + ǫ C 5 logC 5 -C 5 log η + η . ( 37 
)
By [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] we deduce

lim σ→0 σ| x| ≤ lim σ→0 [σ| x| + σ| x -x|] = lim σ→0 σ| x -x| ≤ r lim σ→0 σ = 0. ( 38 
)
Letting σ → 0 in [START_REF] Trudinger | On regularity and existence of viscosity solutions of nonlinear second order, elliptic equations. Partial differential equations and the Calculus of variations: Essays in Honour of Ennio de Giorgi[END_REF], by [START_REF] Rodriguez-Paredes | Rates of convergence in periodic homogenization of nonlocal Hamilton-Jacobi-Bellman equations[END_REF], and choosing η = ǫ, we obtain

u ǫ (x, y) -u ρ (x) ≤ ǫ w(y; x) + ǫχ(y) +C cr + c + r β + ǫ + ǫ log ǫ + ǫ 2 .
Since we must choose c and r so to fulfill [START_REF] Fujita | Asymptotic Solutions of Viscous Hamilton-Jacobi Equations with Ornstein-Uhlenbeck Operator[END_REF], we take

c = r β = C ǫ 1 + 2 log ǫ β 2
and we get

u ǫ (x, y) -u ρ (x) ≤ ǫ w(y; x) + ǫχ(y) +C ǫ 1 + log ǫ β 2 ≤ ǫ max K |w| + ǫ max K |χ| +C ǫ(1 + | log ǫ|) β 2 ;
hence, we obtain the statement where K depends on C , max K |w|, max K |χ|.

Remark 4.

In fact, we proved that there exists a positive constant K such that

u ǫ (x, y) -u ρ (x) ≤ K [ǫ(1 + | log ǫ|)] β 2 + ǫ log(1 + |y| 2 ) + ǫ 2 |y| 2 ∀(x, y) ∈ R n × R m .

PARTICULAR CASES

In this Section we assume the following hypotheses (LF) the source term has separated variables: f (x, y) = h(x)g (y) with g bounded, and Lipschitz continuous; (HF) h is bounded, h ∞ ≤ C 1 , and Lipschitz continuous with Lipschitz constant L h .

Note that assumption (H2) is no more required. Under these hypotheses, we obtain the same rate of convergence as in Theorem 3.7 with β = 1 but without requiring (H2): see Theorem 4.3 below. Moreover, for h ∈ C 2 , we get a better rate of convergence: see Theorem 4.5 below.

As in Section 3, we first tackle the cell problem (10) because we need the uniqueness of its solution (w, λ) = (w(y; x), λ(x)), the sublinear growth of w(•; x), some regularity of λ and a continuous dependence estimate of w in x. These properties are established in the following statements; note that the results of Section 3 do not apply because they rely on Theorem 3.1 which requires assumption (H2). Proposition 4.1. Assume (LF ) and (HF ). For any x ∈ R n fixed, there exists a unique λ(x) such that [START_REF] Barles | On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations[END_REF] has a unique solution. The unique solution of (10) is given by w(y; x) = h(x)w * (y),

where (w * , λ 1 ) ∈ C 2 (R m ) × R is the unique solution to the cell problem L y, D y w * , D 2 y y w * + g (y) = λ 1 , w * (0) = 0 in R m . ( 39 
)
Moreover there holds

λ(x) = h(x)λ 1 = h(x) R m g (y)d µ(y) ∀x ∈ R n , ( 40 
)
where µ is the unique invariant measure associated to L .

Proof. The proof follows the same arguments of Proposition 3.2, replacing Theorem 3.1 with [24, Proposition 5.2].

The following estimates are analogous to those of Lemma 3.4. We omit the proof since it is analogous to that of Lemma 3.4, just replacing Theorem 3.1 with [24, Proposition 5.2]. Lemma 4.2. Assume (LF ) and (HF ). Let w * be the solution to (39). Then i) there exists a C 5 > 0 such that

|w * (y)| ≤ C 5 1 + log(y 2 + 1) ∀y ∈ R m ;
ii) Let C 1 and C 5 be the constants defined respectively in (HF ) and in point i). Let χ be the Lyapounov function of (4). Then there holds

|h(x)w * (y)| -ηχ(y) ≤ C 1 C 5 logC 1 C 5 -C 1 C 5 log η + η ∀(x, y) ∈ R n × R m .
Remark 5. By the same arguments of the proof of Lemma 3.6, we obtain that the effective problem (2) admits exactly one bounded solution u which moreover fulfills:

u ∞ ≤ C +C 1 ||g || ∞ .
4.1. Lipschitz source term with separated variables. We can now establish an estimate of the rate of convergence when the cost is Lipschitz continuous and has separated variables.

Theorem 4.3. Assume (LF ) and (HF ). Let u ǫ and u be the solution to equation (1) and respectively to [START_REF] Alvarez | Singular perturbations of nonlinear degenerate parabolic PDEs: a general convergence result[END_REF]. For ǫ sufficiently small and for every compact K ⊂ R m there exists a constant K ≥ 0 such that u ǫ (x, y) -u(x) ≤ K ǫ| log ǫ|

1 2 ∀(x, y) ∈ R n × K .
As in subsection 3.3, in order to prove Theorem 4.3, it is expedient to study the approximated effective problems [START_REF] Dolcetta | On the rate of convergence in homogenization of Hamilton-Jacobi equations[END_REF]. We first state the following Proposition whose proof is postponed after the proof of Theorem 4.3. Proposition 4.4. Assume (LF ) and (HF ). Let u ǫ and u ρ be the solution to the equation (1) and respectively to [START_REF] Dolcetta | On the rate of convergence in homogenization of Hamilton-Jacobi equations[END_REF]. Then, for ǫ sufficiently small and for every compact K ⊂ R m , there exists K ≥ 0 (independent of ρ ∈ (0, 1)) such that: 

u ǫ (x, y) -u ρ (x) ≤ K ǫ| log ǫ| 1 2 ∀(x, y) ∈ R n × K .
u ǫ (x, y) -u(x) ≤ K ǫ| log ǫ| 1 2 ∀(x, y) ∈ R n × K .
The other inequality is established in a similar manner as in the proof of Theorem 3.7.

Proof of Proposition 4.4. The proof follows the same steps of the proof of Proposition 3.9, with the main difference that in the place of w(y; x) we have now h(x)w * (y), and that now we can rely on the Lipschitz regularity of h. We shall give some details for completeness of exposition.

We consider the function ψ(x, y) defined in [START_REF] Cirant | On the solvability of some ergodic problems in R d[END_REF] where in the place of w(y; x) we have now h(x)w * (y). The function ψ attains its global maximum at some point ( x, ȳ) and the results of Lemma B.1 (with v = u ρ ) hold. We introduce the function ψ defined in [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] where in the place of w(y; x) we have now h(x)w * (y) and c > 0 is to be fixed later. We proceed as in the proof of Proposition 3.9. We have [START_REF] Da Lio | Uniqueness results for convex Hamilton-Jacobi equations under p > 1 growth conditions on data[END_REF] and Case a and Case b.

Case a: x ∈ ∂B( x, r ). Note that ( 20) is equivalent to

cr 2 ≥ ǫw * (y)[h(x) -h( x)], ∀y ∈ B 0, C ǫη .
By using the Lipschitz regularity of h, Lemma 4.2 i), that y ∈ B 0, C ǫη and taking ǫ, η enough small, we get that it suffices to have

cr ≥ C ǫ 1 + | log(ǫη)| , (41) 
where C > 0 depends on L h and C 5 . Therefore if (41) holds, we have [START_REF] Fouque | Derivatives in financial markets with stochastic volatility[END_REF].

Case b: y ∈ ∂B 0, C ǫη . To have [START_REF] Ghilli | Viscosity methods for large deviations estimates of multi scale stochastic processes[END_REF], it suffices to have

C 2 ≥ 4M + ǫC 1 C 5 1 + log 1 + C 2 ǫη + σ(2| x| + 1) (42) 
and as in the proof of Proposition 3.9, the previous inequality is always true for C large enough when σ and ǫ tend to zero (and, as we will choose, η = ǫ). Therefore by (42), we have [START_REF] Ichihara | Recurrence and transience of optimal feedback processes associated with Bellman equations of ergodic type[END_REF].

In any case, we have [START_REF] Ishii | On the equivalence of two notions of weak solutions, viscosity solutions and distribution solutions[END_REF]. Hence the function ψ attains a (local) maximum at some point ( x, ỹ) ∈ B. Without loss of generality, we may assume that this maximum is strict and global.

Again by replacing w(y; x) with h(x)w * (y), for any τ ∈ (0, 1), we introduce Ψ as in ( 28) and denote the maximum point of Ψ by (x τ , y τ , ξ τ ) with x τ , ξ τ → x and y τ → ỹ as τ → ∞. As before, by [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]Theorem 3.2] for every ǭ ∈ (0, 1), there exist two matrices X 1 ∈ M n+m , X 2 ∈ M n such that: [START_REF] Kim | Higher order convergence rates in theory of homogenization: equations of non-divergence form[END_REF] holds with ǫD y w(y τ ; x) replaced by ǫh( x)D y w * (y τ ), [START_REF] Krylov | On the rate of convergence of finite-difference approximations for Bellman's equations with variable coefficients[END_REF] holds and (32) holds with ǫD 2 y y w(y τ ; x) replaced by ǫh( x)D 2 y y w * (y τ ). Since u ǫ is a subsolution of (1), we deduce

0 ≥ u ǫ (x τ , y τ ) + H (x τ , 2σx τ + 2c(x τ -x) + 2τ(x τ -ξ τ ), X xx ) + 1 ǫ L y τ , ǫh( x)D y w * (y τ ) + ǫηD y χ(y τ ), X y y + h(x τ )g (y τ ). ( 43 
)
By the same passages as in the proof of Proposition 3.9, and using that (39) implies

h( x)L (y τ , D y w * (y τ ), D 2 y y w * (y τ )) + h( x)g (y τ ) = h( x)λ 1 , we get 0 ≥ u ǫ (x τ , y τ ) + H (x τ , 2τ(x τ -ξ τ ), X 2 ) + h(x τ )λ 1 + ηL y τ , D y χ(y τ ), D 2 y y χ(y τ ) + -C σ|x τ | + c|x τ -x| + σ + c + ǭ||A 2 || + ǭ ǫ ||A 2 || + [h( x) -h(x τ )] λ 1 + [h(x τ ) -h( x)] g (y τ ), (44) 
for some constant C independent of τ, σ, ǫ, ǭ, ρ. From now on, with some abuse of notation, we will use the same symbol C for updates of a constant C independent of τ, σ, ǫ, ǭ, ρ. Since u ρ is a supersolution to [START_REF] Dolcetta | On the rate of convergence in homogenization of Hamilton-Jacobi equations[END_REF] and ξ τ → x and x τ → x as τ → 0 + and then, for τ sufficiently small, we have [START_REF] Mannucci | Singular Perturbations for a subelliptic operator[END_REF] with h(x τ )λ 1 in the place of λ(x τ ), we deduce

0 ≥ u ǫ (x τ , y τ ) -u ρ (ξ τ ) + ηL y τ , D y χ(y τ ), D 2 y y χ(y τ ) -C σ|x τ | + c|x τ -x| + σ + c + ǭ||A 2 || + ǭ ǫ ||A 2 || -|h( x) -h(x τ )| |λ 1 | + |g (y τ )| .
The Lipschitz continuity of h, the boundedness of g stated in (LF ) and (HF ) and (40) yield

|h( x) -h(x τ )| |λ 1 | + |g (y τ )| ≤ 2L h ||g || ∞ | x -x τ |.
By the last two inequalities, we get

0 ≥ u ǫ (x τ , y τ ) -u ρ (ξ τ ) + ηL y τ , D y χ(y τ ), D 2 y y χ(y τ ) -C σ(|x τ | + 1) + (c + 1)|x τ -x| + c + ǭ||A 2 || + ǭ ǫ ||A 2 || .
The rest of the proof is very similar to the proof of Proposition 3.9. We pass to the limit in the previous inequality first as ǭ → 0 + , then as τ → 0 + (recalling that C does not depend on ǭ and τ), we use x τ → x, y τ → ỹ and ξ τ → x ad τ → +∞, | x -x| ≤ r and [START_REF] Safonov | On the classical solution of nonlinear elliptic equations of second order[END_REF]. The estimate obtained is used in [START_REF] Trudinger | On regularity and existence of viscosity solutions of nonlinear second order, elliptic equations. Partial differential equations and the Calculus of variations: Essays in Honour of Ennio de Giorgi[END_REF] with Lemma 4.2 ii) and letting σ → 0 and choosing η = ǫ, we obtain

u ǫ (x, y) -u ρ (x) ≤ ǫ h(x)w * (y) + ǫχ(y) +C cr + c + r + ǫ + ǫ| log ǫ| + ǫ 2 .
Recalling (41), we take

c = r = C ǫ(1 + 2| log ǫ|) 1 2
and we get

u ǫ (x, y) -u ρ (x) ≤ ǫ h(x)w * (y) + ǫχ(y) +C ǫ(1 + | log ǫ|) 1 2 ≤ ǫ C 1 max K |w * | + ǫ max K |χ| +C ǫ(1 + | log ǫ|) 1 2
and we conclude the statement for K depending on C ,C 1 , max K |w * |, max K |χ|.

4.2.

Smooth source term with separated variables. In this subsection, besides assumption (LF ), we replace condition (HF ) with the stronger condition

(HC ) h ∈ C 2 (R n ) with h C 2 := h ∞ + D x h ∞ + D 2 xx h ∞ ≤ C 1 .
Under these hypotheses, in the following Theorem we obtain a better rate of convergence. The proof is similar and in part simpler than that of Theorem 4.3; we only write the proof of Proposition 4.6 which is the counterpart of Proposition 3.9 in this case. Theorem 4.5. Assume (LF ) and (HC ). Let u ǫ and u be the solution to [START_REF] Alvarez | Viscosity solutions methods for singular perturbations in deterministic and stochastic control[END_REF] and respectively to [START_REF] Alvarez | Singular perturbations of nonlinear degenerate parabolic PDEs: a general convergence result[END_REF]. Then, for ǫ sufficiently small and for every compact K ⊂ R m , there exists a constant K such that

u ǫ (x, y) -u(x) ≤ K ǫ| log(ǫ)| ∀(x, y) ∈ R n × K .
Proposition 4.6. Assume (LF ) and (HC ). Let u ǫ and u ρ be the solution to [START_REF] Alvarez | Viscosity solutions methods for singular perturbations in deterministic and stochastic control[END_REF] and respectively to [START_REF] Dolcetta | On the rate of convergence in homogenization of Hamilton-Jacobi equations[END_REF]. For ǫ sufficiently small and for every compact K ⊂ R m , there exists a constant K such that

u ǫ (x, y) -u ρ (x) ≤ K ǫ| log(ǫ)| ∀(x, y) ∈ R n × K .
Proof. The function ψ defined in the proof of Proposition 4.4 has a maximum point at ( x, ȳ). The proof follows the same steps as the proof of Proposition 4.4, with the main difference that now, since h is smooth in x, we do not need to localize ψ around x (hence there is no need to define the function ψ) and the term c|x -x| 2 is no more present. Now, for τ ∈ (0, 1), we introduce the function

Ψ(x, y, ξ) = u ǫ (x, y) -u ρ (ξ) -ǫh(x)w * (y) + ǫηχ(y) + σ|x| 2 + τ|x -ξ| 2
which has a maximum point in (x τ , y τ , ξ τ ) with x τ , ξ τ → x and y τ → ȳ as τ → ∞. We proceed as in the proof of Proposition 4.4. By [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]Theorem 3.2] we get that, for every ǭ ∈ (0, 1), there exist two matrices X 1 ∈ M n+m , X 2 ∈ M n such that relation [START_REF] Krylov | On the rate of convergence of finite-difference approximations for Bellman's equations with variable coefficients[END_REF] holds while relations ( 29) and (32) become respectively

2σx τ + ǫD x h(x τ )w * (y τ ) + 2τ(x τ -ξ τ ), ǫh(x τ )D y w * (y τ ) + ǫηD y χ(y τ ) , X 1 ∈ J + (x τ ,y τ ) u ǫ X xx -X 2 ≤ ǫD 2 xx h(x τ )w * (y τ ) + 2σI + ǭ||A 2 ||I X y y ≤ ǫηD 2
y y χ(y τ ) + ǫh(x τ )D 2 y y w * (y τ ) + ǭ||A 2 ||I . Since u ǫ is a subsolution of equation ( 1), we infer

0 ≥ u ǫ (x τ , y τ ) + H x τ , 2σx τ + ǫD x h(x τ )w * (y τ ) + 2τ(x τ -ξ τ ), X xx + 1 ǫ L y τ , ǫh(x τ )D y w * (y τ ) + ǫηD y χ(y τ ), X y y + h(x τ )g (y τ ).
Similarly to the proof of Proposition 3.9 and since (39) implies

h(x τ )L y τ , D y w * (y τ ), D 2 y y w * (y τ ) + h(x τ )g (y τ ) = h(x τ )λ 1 ,
by using (HC ), we get 0 ≥ u ǫ (x τ , y τ ) + H (x τ , 2τ(x τ -ξ τ ), X 2 ) + h(x τ )λ 1 + ηL y τ , D y χ(y τ ), D 2 y y χ(y τ )

-CC 1 ǫ|w * (y τ )| -C σ|x τ | + σ + ǭ||A 2 || + ǭ ǫ ||A 2 || ,
for some constant C independent of τ, σ, ǫ, ǭ, ρ. In the following, by some abuse of notation, we will use the same symbol C for different constants independent of τ, σ, ǫ, ǭ, ρ.

The rest of the proof is the same as in the proof of Proposition 4.4. We pass to the limit first as ǭ → 0 + , then as τ → 0 + (recall that C is independent of ǭ and τ), we use x τ → x, y τ → ȳ and ξ τ → x as τ → ∞. Recall that ( x, ȳ) is a global maximum point for Ψ(x, y). For η = ǫ, using (36), taking the limit σ → 0, (and again σ| x| → 0) and using Lemma 4.2 ii), we get

u ǫ (x, y) -u ρ (x) ≤ ǫ(h(x)w * (y) + ǫχ(y)) + ǫ C 1 C 5 logC 1 C 5 -log ǫ + ǫ +CC 1 ǫ|w * ( ȳ)| -ǫ L.
Moreover, since for ǫ enough small, by Lemma B.1 ii) (with v = u ρ ), ȳ belongs to some ball (whose radius depends only on ǫ and η, but not on σ and ρ), we may assume that, as σ → 0 + , ȳ converge to some ỹ with

| ỹ| ≤ 13M ǫ . ( 45 
)
Therefore, by Lemma 4.2 i) and (45), we have

|w * ( ỹ)| ≤ C 5 1 + log(1 + | ỹ| 2 ) ≤ C 5 1 + log 1 + 13M ǫ 2 ≤ C -2 logǫ.
By the last two inequalities we have for every compact

K ⊂ R m u ǫ (x, y) -u ρ (x) ≤ ǫ(h(x)w * (y) + ǫχ(y)) + ǫ C 1 C 5 logC 1 C 5 + | log ǫ| + ǫ +CC 1 ǫ C + 2| log ǫ| ≤ ǫ C 1 max K |w * | + ǫ max K |χ| +CC 1 ǫ(1 + | log ǫ|),
and we conclude the statement for K depending on C ,C 1 , max K |w * |, max K |χ|.

Appendices

A. PROOF OF THEOREM 3.1

Proof. (i). This claim follows by standard theory (see [START_REF] Arisawa | On ergodic stochastic control[END_REF]Theorem II.1]; see also [START_REF] Mannucci | Singular Perturbations for a subelliptic operator[END_REF]Lemma 3.5] for a similar argument). However, for the sake of completeness, we provide the main features. We note that u ± := ± F ∞ /δ are respectively a super-and a subsolution to problem [START_REF] Caffarelli | Rates of convergence for the homogenization of fully nonlinear uniformly elliptic pde in random media[END_REF]. Hence, applying Perron's method, we infer the existence of a solution u δ with u -≤ u δ ≤ u + . Note that since F ∞ ≤ K F we have that u δ ∞ ≤ K F δ , namely for each δ ∈ (0, 1) the solution u δ is bounded.

(ii). Adapting the arguments of [START_REF] Fujita | Asymptotic Solutions of Viscous Hamilton-Jacobi Equations with Ornstein-Uhlenbeck Operator[END_REF]Theorem 4.3], we introduce:

w δ (x, y) := u δ (x) -u δ (y) g (x, y) := K 1 d + d 2 + |x -y| γ log(1 + |x| 2 ) + log(1 + |y| 2 ) + K 2 .
We want to prove the following statement. There exist K 1 , K 2 > 0, both independent of δ, such that for all δ ∈ (0, 1), for d sufficiently small (depending on δ), there holds

w δ (x, y) ≤ g (x, y) ∀(x, y) ∈ R m × R m .
Assume for the moment that the claim is true. Hence for any δ > 0, for d sufficiently small, we have

w δ (x, y) ≤ K 1 d + d 2 + |x -y| γ log(1 + |x| 2 ) + log(1 + |y| 2 ) + K 2
and letting d → 0 + we obtain

u δ (x) -u δ (y) ≤ K 1 |x -y| γ log(1 + |x| 2 ) + log(1 + |y| 2 ) + K 2
which is equivalent to the statement by arbitrariness of x and y. It remains to prove the claim. We argue by contradiction assuming sup

R m ×R m (w δ -g ) > 0.
Since u δ is bounded and lim (x,y)→∞ g = ∞, we have

w δ ≤ g in R m × R m \ B R for a suitable ball B R ⊂ R m ×R m .
In particular w δ -g admits a maximum point that we denote by ( x, ŷ). We have w δ ( x, ŷ) -g ( x, ŷ) > 0 and x = ŷ.

We introduce the matrix Σ(x, y) and the operator Ξ:

Σ(x, y) = τ(x)τ(x) T τ(x)τ(y) T τ(y)τ(x) T τ(y)τ(y) T , Ξv (x, y) = tr Σ(x, y)D 2 x y v ,
where D 2 x y v denotes the Hessian of v with respect both to x and y. Note that Σ is semidefinite positive for all (x, y) ∈ R m × R m . Claim 1: there holds

δw δ ( x, ŷ)-Ξw δ ( x, ŷ)+α x •D x w δ ( x, ŷ)+α ŷ •D y w δ ( x, ŷ)+b( x)•D x w δ ( x, ŷ)+b( ŷ)•D y w δ ( x, ŷ) ≤ C F | x -ŷ| γ log 1 + | x| 2 + log 1 + | ŷ| 2 + 1 .

Indeed we observe that

Ξw δ = tr τ(x)τ(x) T D 2 xx u δ (x) -tr τ(y)τ(y) T D 2 y y u δ (y) . Then we deduce δw δ ( x, ŷ) -Ξw δ ( x, ŷ) + (α x + b( x)) • D x w δ ( x, ŷ) + (α ŷ + b( ŷ)) • D y w δ ( x, ŷ) = F ( x) -F ( ŷ) ≤ C F | x -ŷ| γ log 1 + | x| 2 + log 1 + | ŷ| 2 + 1 ,
where the last inequality is due to (F 2).

Claim 2: there holds δg ( x, ŷ) -Ξg ( x, ŷ)

+ (α x + b( x)) D x g ( x, ŷ) + α ŷ + b( ŷ) D y g ( x, ŷ) ≤ C F | x -ŷ| γ log 1 + | x| 2 + log 1 + | ŷ| 2 + 1 .
Indeed it suffices to recall that ( x, ŷ) is a maximum point for w δ -g , that Claim 1 holds and to apply the maximum principle (using that Σ is semidefinite positive). Claim 3: there exist K 1 and K 2 such that: for any δ ∈ (0, 1), there exists d 0 > 0 (dependent on δ) such that the function g verifies

δg ( x, ŷ) -Ξg ( x, ŷ) + (α x + b( x))D x g ( x, ŷ) + (α ŷ + b( ŷ))D y g ( x, ŷ) > C F | x -ŷ| γ log 1 + | x| 2 + log 1 + | ŷ| 2 + 1 ∀d ∈ (0, d 0 ).
Note that Claim 3 contradicts Claim 2 so accomplishes the proof. Hence, we are left with proving Claim 3. In order to do this, we explicitly calculate the lefthand side of Claim 2. We need the following calculations. For functions T : R m → R, ψ : R m → R, we have

Ξ T (x -y) ψ(x) + ψ(y) = tr(C 1 +C 2 +C 3 +C 4 ),
where

C 1 = τ(x) -τ(y) τ(x) -τ(y) T D 2 T (x -y)(ψ(x) + ψ(y)) C 2 = τ(x) τ(x) -τ(y) T DT ⊗ Dψ(x) + τ(x) -τ(y) τ(x) T DT ⊗ Dψ(x) + τ(x) -τ(y) τ(y) T DT ⊗ Dψ(y) + τ(y) τ(x) -τ(y) T DT ⊗ Dψ(y) C 3 = τ(x)τ(x) T D 2 ψ(x), C 4 = τ(y)τ(y) T D 2 ψ(y).
We choose

T (x -y) = K 1 (d 2 + |x -y| γ ); ψ(z) = log 1 + |z| 2 + K 2 2 . Note that g (x, y) = T (x -y)(ψ(x) + ψ(y)) + K 1 d . Then we deduce -Ξg = -tr(C 1 ) -tr(C 2 ) -tr(C 3 ) -tr(C 4 ).
From now on, C is a constant independent of K 1 , K 2 , d , δ (and may depends on m, τ and b), which may change from line to line. We have The desired inequality of Claim 3 is ensured by

-tr(C 1 ) ≥ -L 2 τ |x -y| 2 K 1 γ(2 -γ)|x -y| γ-2 + mK 1 |x -y| γ-2 (ψ(x) + ψ(y)) ≥ -L 2 τ K 1 γ(m + 2 -γ)|x -y| γ log 1 + |x| 2 + log 1 + |y| 2 + K 2 -tr(C 2 ) ≥ -||τ|| ∞ L τ |x -y|K 1 γ|x -y| γ-1 C |x| 1 + |x| 2 + |y| 1 + |y| 2 -tr(C 3 ) ≥ -||τ|| ∞ K 1 d 2 + |x -y| γ C 1 + |x| 2 -tr(C 4 ) ≥ -||τ|| ∞ K 1 d 2 + |x -y| γ C 1 + |y| 2 .
E 1 + E 2 + E 3 > C F | x -ŷ| γ log 1 + | x| 2 + log 1 + | ŷ| 2 + 1 , (46) 
where

E 1 = K 1 δd + K 1 δd 2 K 2 + K 1 δd 2 log 1 + | x| 2 + log 1 + | ŷ| 2 + K 2 + K 1 δ| x -ŷ| γ log 1 + | x| 2 + log 1 + | ŷ| 2 + K 2 E 2 = -2K 1 d 2 ||τ|| 2 ∞ -K 1 L 2 τ γ(m + 2 -γ)| x -ŷ| γ log 1 + | x| 2 + log 1 + | ŷ| 2 + K 2 -K 1 C | x -ŷ| γ E 3 = K 1 αγ| x -ŷ| γ log 1 + | x| 2 + log 1 + | ŷ| 2 + K 2 -K 1 C d 2 -K 1 C | x -ŷ| γ -K 1 L b γ| x -ŷ| γ log 1 + | x| 2 + log 1 + | ŷ| 2 + K 2 + αK 1 d 2 + | x -ŷ| γ 2| x| 2 1 + | x| 2 + 2| ŷ| 2 1 + | ŷ| 2 .
Inequality ( 46) is ensured by

| x -ŷ| γ log 1 + | x| 2 + log 1 + | ŷ| 2 + 1 K 1 δ -K 1 L 2 τ γ(m + 2 -γ) + K 1 αγ -K 1 γL b -C F + K 1 δd -C d 2 + | x -ŷ| γ (K 2 -1)K 1 δ -L 2 τ γ(m + 2 -γ) + αγ -γL b -K 1 C > 0.
We observe that there holds

| x -ŷ| γ log 1 + | x| 2 + log 1 + | ŷ| 2 + 1 K 1 δ -K 1 L 2 τ γ(m + 2 -γ) + K 1 αγ -K 1 γL b -C F > 0 (47) provided that K 1 δ -L 2
τ γ(m + 2 -γ) + αγ -γL b > C F ; in turns, this inequality is ensured by assumption (H2) and choosing K 1 sufficiently large. Moreover there holds

| x -ŷ| γ (K 2 -1)K 1 δ -L 2 τ γ(m + 2 -γ) + αγ -γL b -K 1 C > 0 ( 48 
)
provided that δ -L 2 τ γ(m + 2 -γ) + αγ -γL b > C K 2 -1 ; in turns, this inequality is ensured by (H2) and choosing K 2 sufficiently large. Finally, K 1 δd -C d 2 > 0 is ensured by d < C δ . In conclusion (recall that C depends only on m, τ and b), by (H2), we consider: (i) d 0 = C 2δ , (ii) K 1 sufficiently large to have (47), (iii) K 2 sufficiently large to have (48). Hence, we achieve the statement of claim 3. This concludes the proof.

B. PRELIMINARY ESTIMATES

In the following lemma we establish some useful estimates for proving Proposition 3.9, Proposition 4.4 and Proposition 4.6.Consider a family of bounded functions u ǫ = u ǫ (x, y) and a bounded function v = v (x). Set M = sup ||u ǫ || ∞ , ||v || ∞ . Let w = w(y; x) be a function which satisfies the two estimates in Lemma 3.4 i) and ii). The same result holds if w satisfies the two estimates of Lemma 4.2 i) and ii). Since the proof is the same we give it in the case of Lemma 3.4. For ǫ, η, σ > 0 and χ(y) = |y| 2 , we consider the function ψ(x, y) := u ǫ (x, y) -v (x) -ǫw(x; y) -ǫηχ(y) -σ|x| 2 .

By the boundedness of u ǫ and v , by the at most logarithmic growth at infinity of w, the function ψ must have a global maximum point ( x, ȳ). 

3. 1 .

 1 The cell problem. For each x ∈ R n , we consider the cell problem L y, D y w, D 2 y y w + f (x, y) = λ(x), w(0) = 0 in R m .

3. 2 .

 2 Effective problem. By virtue of the properties of λ(x) found in subsection 3.1, we can now tackle the effective problem (2). Lemma 3.6. Assume (H1), (H2) and (H4).i) the comparison principle holds for problem (2); ii) there exists a unique bounded solution u to problem (2). Moreover, there holds: u ∞ ≤ C +C 1 where C and C 1 are the constants introduced respectively in (H) and in (F ).

)

  Case b: y ∈ ∂B 0, C ǫη . In order to have ψ(x, y) ≤ ψ( x, 0), ∀(x, y) ∈ B( x, r ) × ∂B 0, C ǫη (24) it suffices ǫηχ(y) ≥ 4M+ǫ|w(y; x)|-σ |x| 2 -| x| 2 , where M = max ||u ǫ || ∞ , ||u ρ || ∞ . By Lemma 3.4 i) and recalling that χ(y) = C 2 (ǫη) -1 for y ∈ ∂B 0, C ǫη , it suffices to have C 2 ≥ 4M + ǫC 5 1 + log 1 + C 2 ǫη + σ | x| 2 -|x| 2 . Note that σ | x| 2 -|x| 2 = σ(| x| -|x|)(| x| + |x|) ≤ σr (2| x| + r );

  Now we first prove Theorem 4.3 and after Proposition 4.4. Proof of Theorem 4.3. The results of Lemma 3.8 still hold true. Hence, by Lemma 3.8 and Proposition 4.4, as ρ → 0 + , we get

- 1 + | x| 2 +ŷ| 2 1 + | ŷ| 2 D 2 = 2 D 3 =

 1212223 Ξg ( x, ŷ) ≥ -K 1 L 2 τ γ(m + 2 -γ)| x -ŷ| γ log 1 + | x| 2 + log 1 + | ŷ| 2 + K 2 -K 1 C | x -ŷ| γ -2K 1 d 2 ||τ|| 2 ∞ .Moreover, by definition of g , we have(α x + b( x))D x g ( x, ŷ) + (α ŷ + b( ŷ))D y g ( x, ŷ) = D 1 + D 2 + D 3whereD 1 = α( xŷ)DT ( xŷ)(ψ( x) + ψ( ŷ)) + αT ( xŷ) x • Dψ( x) + y • Dψ( ŷ ) ≥ α( xŷ)K 1 γ| x -ŷ| γ-2 ( xŷ) log 1 + | x| 2 + log 1 + | ŷ| 2 + K 2 +αK 1 d 2 + | x -ŷ| γ 2| x| 2 2| b( x) -b( ŷ) DT ( xŷ)(ψ( x) + ψ( ŷ)) ≥ -L b | x -ŷ|K 1 γ| x -ŷ| γ-1 log 1 + | x| 2 + log 1 + | ŷ| 2 + K b( x)T ( xŷ)Dψ( x) + b( ŷ)T ( xŷ)Dψ( ŷ) ≥ -C K 1 d 2 + | x -ŷ| γ .

Lemma B. 1 . 2 | ȳ| 2 - ǫη 2 | ȳ| 2 - 2 | ȳ| 2 - 2 | 2 | 2 ≤ 2 and the proof is completed by noticing that ǫ log 12M -2ǫC 5 log ǫ + ǫ 2 ǫ 2 = 4 . 1 .

 1222222222241 The following estimates hold for ǫ small enough:i) | x| ≤ 6M-ǫC 5 log η σ ii) | ȳ| ≤ 12M-2ǫC 5 log η ǫη iii) σ| x| 2 ≤ 5M, for η = ǫ.Proof. First we prove i). By the estimate in Lemma 3.4 ii) and for ǫ small enough, we haveψ(x, y) ≤ 2M + ǫ C 5 logC 5 -C 5 log η + η -σ|x| 2 ≤ 4M -ǫC 5 log η -σ|x| 2 , hence ψ( x, ȳ) ≤ 4M -ǫC 5 log η -σ| x| 2 ≤ -2M < ψ(0, 0), provided that σ| x| 2 > 6M -ǫC 5 log η.Then, since ( x, ȳ) is a global maximum point, we deduce i). Now we prove ii). By Lemma 3.4 ii), for ǫ small enough, we haveψ( x, ȳ) ≤ 2M -ǫw( ȳ, x) -ǫη σ| x| 2 ≤ 4M -ǫC 5 log ηǫη σ| x| 2 .Hence we have ψ( x, ȳ) ≤ 4M -ǫC 5 log ηǫη ȳ| 2 -σ| x| 2 ≤ -2M -σ| x| 2 < ψ( x, 0) provided that ǫη ȳ| 2 > 6M -ǫC 5 log η. Now we prove iii). Since ψ( x, ȳ) ≥ ψ(0, ȳ), we haveu ǫ ( x, ȳ) -v ( x) -w( ȳ; x) -ǫηχ( ȳ ) -σ| x| 2 ≥ u ǫ (0, ȳ) -v (0) -ǫw( ȳ; 0) -ǫηχ( ȳ).By Lemma 3.4 i) and taking η = ǫ, we getσ| x| 2 ≤ 4M + ǫ(w( ȳ, 0) -w( ȳ, x)) ≤ 4M + 2ǫC 5 1 + log 1 + | ȳ| 4M + 2ǫC 5 1 + log 12M -2ǫC 5 log ǫ + ǫ 2 ǫ ǫ log 12M -2ǫC 5 log ǫ + ǫ 2 -2ǫ logǫ = o(1)as ǫ → 0. Acknowledgements. The authors want to thank prof. Paola Mannucci and prof. Nicoletta Tchou for many discussions and several useful suggestions. The second author was partially supported by GNAMPA-INDAM.

  ǫD y w(y τ ; x) + ǫηD y χ(y τ ), ǫD 2 y y w(y τ ; x) + ǫηD 2 y y χ(y τ ) + ǭ||A 2 ||I + f (x τ , y τ ), which, by linearity of L , implies0 ≥ u ǫ (x τ , y τ ) + H x τ , 2σx τ + 2c(x τ -x) + 2τ(x τ -ξ τ ), X 2 + 2(σ + c)I + ǭ||A 2 ||I

	+L y τ , D y w(y τ , x), D 2 y y w(y τ ; x) +ηL y τ , D y χ(y τ ), D 2 y y χ(y τ ) +	ǭ ǫ	||A 2 ||L (y τ , 0, I )+ f (x τ , y τ ). (33)
	By (10), we have		
	L y τ , D y w(y τ ; x), D 2 y y w(y τ