
HAL Id: hal-03522038
https://hal.science/hal-03522038v2

Preprint submitted on 24 May 2022 (v2), last revised 13 Sep 2022 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep expectation-maximization for single-pixel image
reconstruction with signal-dependent noise

Antonio Lorente Mur, Françoise Peyrin, Nicolas Ducros

To cite this version:
Antonio Lorente Mur, Françoise Peyrin, Nicolas Ducros. Deep expectation-maximization for single-
pixel image reconstruction with signal-dependent noise. 2022. �hal-03522038v2�

https://hal.science/hal-03522038v2
https://hal.archives-ouvertes.fr


DRAFT ARTICLE, LAST COMPILED ON MAY 23, 2022 1

Deep expectation-maximization for single-pixel
image reconstruction with signal-dependent noise

A. Lorente Mur, F. Peyrin, Member, IEEE, N. Ducros, Member, IEEE,

Abstract—Image reconstruction from a sequence of a few
linear measurements that are corrupted by signal-dependent
normally distributed noise is an inverse problem with many
biomedical imaging applications, such as computerized tomogra-
phy and optical microscopy. In this study, we focus on single-pixel
imaging, where the set-up acquires a down-sampled Hadamard
transform of an image of the scene. Deep learning is a computa-
tionally efficient framework to solve inverse problems in imaging.
Several neural-network architectures provide a link between deep
and optimization-based image reconstruction methods. These
deep-learning methods rely on a forward operator and lead to
more interpretable networks. Here, we propose a novel network
architecture obtained by unrolling an expectation-maximization
algorithm. In particular, we compute the maximum a-posteriori
estimate of the unknown image given measurements corrupted
by normally distributed signal-dependent noise. We show that
the so-called expectation-maximization reconstruction network
(EM-Net) applies to mixed Skellam-Gaussian noise models that
are common in single-pixel imaging. We present reconstruction
results from simulated and experimental single-pixel acquisitions.
We show that EM-Net generalizes very well to noise levels not
seen during training, despite having fewer learned parameters
than alternative methods. The proposed EM-Net generally re-
constructs images with fewer artifacts and higher signal-to-noise
ratios, in particular in high-noise situations.

Index Terms—Image reconstruction, deep learning,
expectation-maximization, iterative algorithm, single-pixel
imaging, Skellam-Gaussian noise.

I. INTRODUCTION

S INGLE-pixel imaging is a computational imaging config-
uration where a single point detector is used to recover

an image [1]. It has been successfully applied to fluorescence
microscopy [2], hyperspectral imaging [3], [4], diffuse optical
tomography [5], image-guided surgery [6], and short-wave
infrared imaging [7]. A single-pixel camera acquires the
dot product between the image of a scene and some two-
dimensional light patterns that are displayed sequentially using
a spatial light modulator [8]. The image of the scene is then
reconstructed from the raw measurements. To limit acquisition
times, it is highly desirable to reduce the number of light
patterns, which leads to an under-determined inverse problem.

Recent advances in deep learning have revolutionized image
reconstruction [9], [10]. In particular, convolutional neural
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networks (CNNs) are very efficient for solving the computed
tomography problem, either by learning direct inverse mapping
[11], or through the use of adversarial neural networks [12].
Much effort is being devoted to bridging the gap between more
traditional model-based approaches for image reconstruction
and deep-learning-based approaches for inverse problems.
CNNs can provide sparsifying transforms [13] and model
the manifold of natural images [14], or of a projector onto
this space [15]. The CNN priors are then plugged into an
unrolled optimization algorithm [16], [17], [18] or used in
series expansions, like the Neumann series [19].

This trend also greatly benefits computational optics [20],
[21]. In single-pixel imaging, in particular, fully learned map-
ping from the measurement space to the image space can
outperform compressed sensing reconstructions [22]. [23] used
a deep auto-regressive model that is plugged into an alternat-
ing direction method of multiplier algorithm for single-pixel
images. In [24], we proposed a simple reconstruction CNN
where the first layer computes the conditional expectation
of the unknown image, given noiseless measurements. We
generalized this idea to the case of noisy data with varying
noise levels in [25], and we introduced an iterative architecture
in [26].

Single-pixel measurements result from the difference be-
tween two Poisson variables. Therefore single-pixel data are
corrupted by mixed Skellam-Gaussian noise, which has no
closed-form expression. For similar problems, such as mixed
Poissonian-Gaussian denoising, this difficulty is circumvented
by using variance stabilizing transforms, such as the general-
ized Anscombe transform [27], before processing the Gaussian
noise [28]. However, this introduces a bias [29]. Alternative
approaches rely on approximations. In [30], [31] and [32],
the likelihood of mixed Poisson-Gaussian is approximated as
a finite sum. The Poisson-Gaussian unbiased risk-estimator
linear expansion of thresholds [33] seeks to approximate an
unbiased estimate of the mean squared error with linear com-
binations of Wiener filters followed by a thresholding of Haar
wavelet coefficients. Other approaches simplify the problem
by either approximating the Poisson contribution by normally
distributed signal-dependent noise [34] or by neglecting the
normal distribution. The maximum a posteriori (MAP) can
then be computed using an expectation-maximization (EM)
algorithm [35]. However, the resulting optimization problem
is usually solved using hand-crafted priors (e.g., Hessian-based
or total variation [TV]-based penalization).
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A. Contribution

In this paper, we derive and analyze a deep neural-network
architecture based on the EM algorithm. The so-called EM
reconstruction network (EM-Net) can tackle inverse problems
with signal-dependent noise, such as those involved in compu-
tational optics. We significantly extend from our preliminary
results [26] in three directions. First, we model single-pixel
reconstruction as a mixed Skellam-Gaussian reconstruction
problem, for which we derive the corresponding likelihood. As
this is intractable numerically, we propose a normal approx-
imation that leads to signal-dependent covariance that cannot
be exactly estimated. Secondly, we propose a five-step iterative
algorithm, where the image prior is learnt from training
examples, and we show how to reduce the number of learnable
parameters. We also propose a training strategy where most of
the parameters of our EM-Net can be precomputed. Thirdly,
we conduct extensive numerical comparisons with data-driven
reconstruction methods designed for single-pixel imaging, and
also other modalities. As the noise level is usually unknown,
in practical experiments we focus on the robustness of the
methods in the presence of noise, where the level differs
from that used during training. We consider both simulated
measurements corrupted by mixed Skellam-Gaussian noise
and experimental data.

The choice of the EM algorithm is motivated by the
unknown noise covariance matrix (although we have access
to an estimation of it). This makes the use of standard
methods challenging, as the MAP cost function depends on
the target image and the unknown signal-dependent noise
covariance matrix. The EM algorithm allows us to separate the
unknown noise covariance into an approximated covariance
and the covariance of the complete data. As the block of the
covariance of the complete data corresponding to the acquired
measurement is learned, the proposed method learns how to
correct the estimated noise covariance. It is also important to
note that the EM algorithm leads to a generalized Tikhonov
regularization problem for the data-consistency step, while
most unrolled methods use “normal” Tikhonov regularization;
i.e., the measurement covariance, and sometimes also the
image covariance, are assumed to be identity matrices. This
provides a stronger prior for the data consistency step of the
unrolled algorithm.

Upon acceptance, our reconstruction method will be made
available in the Python toolbox SPyRiT[36].

B. Organization of the paper

In Section II, we model single-pixel acquisition and de-
scribe the associated reconstruction problem. In Section III,
we introduce a deep network based on the EM algorithm.
In Section IV, we describe the numerical experiments and
experimental data that we considered to validate our approach.
Finally, we analyze our reconstruction results in Section V.

C. Notations

Throughout this paper, deterministic variables are indicated
by italics. In particular, we use normal font letters to denote

scalars (e.g., x ∈ R), lowercase bold letters for vectors
(e.g., x ∈ RN ), and capital bold letters for matrices (e.g.,
X ∈ RN×M ). The i-th element of the vector x ∈ RN is
denoted by (x)i. Diag (x) ∈ RN×N is a diagonal matrix,
where the diagonal elements are given by x ∈ RN , while
diag (A) ∈ RN is a vector, where the elements are taken
from the main diagonal of the matrix A ∈ RN×N . We define
the weighted squared norm as ‖x‖2A = x>Ax, where A is a
positive definite matrix.

We use nonitalic symbols to denote random vectors. An
N -dimensional random vector x that follows a multivariate
normal distribution with mean µ ∈ RN and covariance matrix
Σ ∈ RN×N is written as x ∼ N (µ,Σ). An N -dimensional
random vector x is said to follow a Poisson distribution with
mean µ ∈ RN , in notations x ∼ P(µ), if it contains N
independent Poisson-distributed random variables. We denote
the expected value of a random variable x by E (x). E (x |y)
is shorthand for E (x |y = y)

II. COMPRESSIVE SINGLE-PIXEL ACQUISITION

A. Compressed single-pixel acquisition

Let f ∈ [0, 1]N be the image to be acquired. The main idea
of compressive single-pixel imaging is to measure y = Hf
using hardware, and to recover f using software. The matrix
H = [h1, . . . ,hN ] ∈ RN×N collects the patterns that are
sequentially uploaded in a spatial light modulator. These pat-
terns can be chosen as a basis matrix, such as Fourier, discrete
cosines, wavelets, and Hadamard bases [37]. In practice, to
accelerate acquisition times, only a few patterns in a basis are
acquired. As the spatial light modulator cannot implement neg-
ative values, the patterns H are split into positive and negative
patterns H+ and H−, such that (H+)i,n = max((H)i,n, 0)
and (H−)i,n = max(−(H)i,n, 0) (see [38] for details).

We model the raw measurement as mixed Poisson-Gaussian
noise [39]

m̂α
+,− ∼ gP(αSH+,−f) +N (µdark, σ

2
dark) (1)

where P and N are the Poisson and Gaussian distributions,
S = [IM ,0] ∈ RM×N is a down-sampling matrix (where
M ≤ N ), g is a constant that represents the overall system
gain (in counts/electron), α is the intensity (in photons) of the
image, µdark is the dark current (in counts), and σdark is the
dark noise (in counts). We further hypothesize that g, µdark

and σdark are scalars independent of the image intensity α,
which can be estimated by calibration.

Rather than working on the raw measurements directly, they
are first combined and normalized

mα = (m̂α
+ − m̂α

−)/(αg). (2)

Although this step may look like a lossy subtraction, it does
not degrade the signal-to-noise ratio of the reconstruction1

(see Sec. 3.5.4 of [40]). Moreover, as the problem now reads
E (mα) = SHf , where H is the Hadamard transform, we
will benefit from fast forward and inverse transforms.

1One can compare the trace of Cov (x̂) with x̂ = A†y in the case A = H
and A = [H>

+ , H
>
+ ]>. For M ≥ N , the first case gives 2σ2/N while the

second gives 2σ2/(N + 1), where σ2 is the measurement variance.
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Plugging the noise model of the raw measurements given
by Equation (1) into the previous equation leads to the mixed
Skellam-Gaussian noise model

mα ∼ 1

α
Sk(αSH+f , αSH−f) +

2

αK
N (0, σ2

dark), (3)

where the Skellam distribution [41] Sk(µ1,µ2) is the dis-
tribution of the difference between two Poisson-distributed
variables with means of µ1 and µ2.

B. Normal approximation of the mixed Skellam-Gaussian
noise model

The likelihood of the mixed Skellam-Gaussian noise model
involves an infinite sum of exponentials multiplied by modified
Bessel functions (see Appendix A for the derivation). Exploita-
tion of this analytical expression is numerically intractable,
as it involves an infinite series and the evaluation of Bessel
functions.

p(m|f) ∝
M∏
i=1

∑
n∈N

e−α(h
>
i,+f+h

>
i,−f)

(
h>i,+f

h>i,−f

)n−αh>i f

2α

I|nα−h>f |
(

2α
√

(h>i,+f)(h>i,−f)
)
e
−

(mi−
n
α

)2

β2 . (4)

Similar to work that has addressed mixed Poisson-Gaussian
noise, we propose to introduce an approximation. As the
Gaussian distributions are good approximations of Poisson
distributions with means greater than 5 (see [42]) – single-
pixel measurements are typically several orders of magnitude
above this – we use the normal approximation to the Poisson
distributions in Equation (3). We obtain

mα = SHf + εα,with εα ∼ N (0,Σα(f)) (5)

where the noise covariance Σα(f) is given by

Σα(f) = Diag (σα(f)) , with (6)

σα(f) =
1

α
SH+f +

1

α
SH−f +

2σ2
dark

g2α2
. (7)

Note that the noise variance σα(f) is unknown, as it
depends on the unknown image f .

III. PROPOSED DEEP EM NETWORK

A. Objective

We adopt a Bayesian framework and reconstruct f from
mα by computing a point-wise estimator of p(f |mα). In
particular, we aim to compute the MAP solution that solves

argmax
f

log p(mα|f) + log p(f), (8)

where we assume the probability density function p(mα|f) ∝
exp

(
− 1

2‖SHf −m
α‖2Σ-1

α (f)

)
according to Equation (5),

while p(f) is an unknown probability density function.
Since Σα(f) is a signal-dependant noise, we cannot use

signal-independent strategies for solving this problem.

B. The EM algorithm

The EM algorithm [35] has commonly been used to estimate
the MAP for image reconstruction tasks [43]. This is an itera-
tive algorithm that produces a sequence of estimations {f (k)}
such that the sequence {log p(f (k)|mα)}k is monotonically
nondecreasing. Every iteration of the EM algorithm is based
on two steps: the expectation step, and the maximization step.

The expectation step computes the conditional expectation
of the log-likelihood of f with respect to an auxiliary random
variable x, given the current estimate f (k) ∈ RN and the
measurements mα ∈ RM

Q(f |f (k)) = Ex[log p(x|f)|mα,f (k)] + p(f). (9)

In the EM literature, the variable x ∈ RN is referred to as the
complete data, as it may contain some unobserved data.

This conditional expectation is then maximized with respect
to f during the maximization step, to produce the next
iteration

f (k+1) = argmax
f

Q(f |f (k)). (10)

The EM algorithm requires the complete data x to satisfy
some admissibility properties. As p(mα|f) is Gaussian, x and
mα|x can be chosen as Gaussian vectors [44]. In particular,
we will choose to interpret x as the full measurement vector
and mα|x as the subsampled measurements by setting

x ∼ N (Hf ,C), (11)

mα|x ∼ N (Sx.Σ̃), (12)

C. Unrolling the EM algorithm

Under the Gaussian assumption, Equation (11)–Equation
(12), the expectation step of Equation (9) simplifies to [44]

x̄(k) = E(x|mα, f (k)), (13)
Q(f |f (k)) = log p(x̄(k)|f) + log p(f). (14)

Using classical properties of Gaussian vectors (see Chapter 5
of [45]), we can rewrite these steps as

x̄(k) = argmin
x
‖Sx−mα‖2

(Σ̃(k))−1 + ‖x−Hf (k)‖2(C(k))−1

(15a)

f (k+1) = argmin
f
‖x̄(k) −Hf‖2(C(k))−1 − log p(f). (15b)

Note that the design covariance matrices can be chosen for
each iteration independently. As p(f) is unknown, we propose
to replace Equation (15b) by a nonlinear model Dω(k)

x̄(k) = argmin
x
‖Sx−mα‖2

(Σ̃(k))-1 + ‖x−Hf (k)‖2(C(k))-1

(16a)

f (k+1) = Dω(k)(
1

N
H>x̄(k)), (16b)

where ω(k) represents the parameters of the model D, which
will be optimized during a training phase, such that Equation
(16b) solves Equation (15b).

In the literature on deep unrolled methods, Equation (16a)
is commonly called the data-consistency layer. Introducing the
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variable y(k) = x̄(k)−Hf (k), the analytical solution of Equation
(16a) is given by (see Appendix B)

y(k) =

[
C (k)

1

C (k)

2

]
(Σ̃(k) +C (k)

1 )−1(mα − SHf (k)), (17)

where C (k)

1 ∈ RM×M and C (k)

2 ∈ R(N−M)×M are the blocks
of the covariance C (k) defined by

C (k) =

[
C (k)

1 (C (k)

2 )>

C (k)

2 C (k)

3

]
. (18)

D. Choice of the design covariance matrices

The covariance matrices C (k) and Σ̃(k) can be chosen in
any way provided that the variance of mα|f derived from
Equations (11)–(12) equals that from Equation (7). Therefore,
the following consistency condition applies to each iteration:

Σα(f) = Σ̃(k) + SC (k)S> (19)

= Σ̃(k) +C (k)

1 . (20)

Here, we choose Σ̃(k) as the noise covariance of the iterate
f (k) obtained from Equation (7), i.e.,

Σ̃(k) = Σα(f (k)) (21)

Our idea is to approximate the true variance from the variance
of the current iterate, while C (k)

1 is a correction term.
Moreover, this choice both reduces the memory footprint

and computational burden of Equation (17). Indeed, as Σα(f)
is diagonal, choosing a diagonal Σ̃(k) implies that C (k)

1 is
diagonal too. Hence, we choose

C (k)

1 = Diag
(
c(k)

1

)
(22)

and Equation (17) simplifies to

y(k)

1 = c(k)

1 /(c
(k)

1 + σ̃(k))(mα − SHf (k)) (23a)

y(k)

2 = C (k)

2 Diag
(
1/c(k)

1

)
y(k)

1 (23b)

where the division and multiplication between vectors apply
element-wise. As there is no consistency condition on C (k)

2 ,
we choose it such that

y(k)

2 = R(k)y(k)

1 , (24)

where R(k) ∈ R(N−M)×M is a matrix that is precomputed (see
Section III-F for more details).

E. Algorithm summary and interpretation

We can summarize our algorithm by the following five steps

σ̃(k) =
1

α
(SH+f

(k) + SH−f
(k)) +

2σ2
dark

g2α2
IM , (25a)

y(k)

1 = c(k)

1 /(c
(k)

1 + σ̃(k))(mα − SHf (k)), (25b)
y(k)

2 = R(k)y(k)

1 , (25c)

f̄ (k) = f (k) +
1

N
H>y(k), (25d)

f (k+1) = Dω(k)(f̄ (k)). (25e)

which can be seen as the unrolled network depicted in Fig. 1.
At each iteration, we estimate the measurement variance, the
first layer denoises the measurements, the second completes
the missing measurements, the third maps the completed
measurements to the image space, and the last denoises the
solution in the image space.

We refer to this network as EM-Net, and denote it by

f (K) = GKθ (mα) (26)

where K is the number of EM iterations. For f (0) = 0, the
case K = 1 corresponds to the denoised completion network
(i.e., the DC-Net) proposed in [25].

F. EM-Net training strategy and initialization

Given an image database {fs}, 1 ≤ s ≤ S and the
corresponding measurements {mα

s } and 1 ≤ s ≤ S, simulated
via Equation (2)–Equation (3), we train the neural network in
an end-to-end fashion

min
θ

1

S

S∑
s=1

‖G(K)
θ (mα

s )− fs‖22 + λ‖θ‖22, (27)

where θ represents the learnable parameters of the network,
K is the number of iterations, and λ is the weight decay
parameter. We set f (0) = 0 and choose to learn the variance
correction c(k)

1 , for all iterations except the initial one, and the
parameters of the image-domain denoiser for all iterations, i.e.,

θ = {c(k),ω(k′)

1 }, 1 ≤ k ≤ K and 0 ≤ k′ ≤ K. (28)

To precompute c(0) and R(k), we exploit the interpretation
of Equation (15), i.e., Hf (k) and C (k) are the mean and
covariance of the prior x(k). We extract c(0) from the diagonal
of Cov (Hf), which is estimated prior to training as

C (0) =
1

S − 1

S∑
s=1

H(fs − µ(0))(fs − µ(0))>H>, (29)

where µ(0) = 1
S

∑S
s=1 fs. Accordingly, we compute R(0) as

C (0)

2 (C (0)

1 )−1. The initial measurement variance is estimated
from the raw measurements as in [25]

σ̃(0) =
1

α2K
(m̂α

+ + m̂α
− − 2µdark1) +

2σ2
dark

K2α2
1. (30)

Then, we precompute R(k), 1 ≤ k ≤ K, after having trained
a one-iteration EM-Net and estimated C (1) as

C(1) =
1

S − 1

S∑
s=1

H(fs − f (1)
s )(fs − f (1)

s )>H>, (31)

where f (1)
s = G(1)θ (mα

s ). Finally, we compute R(k), 1 ≤
k ≤ K, as C (1)

2 (C (1)

1 )−1. Note that we do not enforce the
consistency condition on c(k)

1 explicitly, but we rely on end-
to-end training to find appropriate values of c(k)

1 for a given
R(k). Nevertheless, the consistency Equation (20) justifies our
choice for a diagonal matrix C1.
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Fig. 1. Proposed EM-Net framework for single-pixel image reconstruction. (a) The recursive algorithm that alternates between completion and denoising in
the measurement domain for Equations (25b),(25c), and denoising in the image domain for Equation (25e). (b) Architecture of the neural network in charge
of the image domain denoising step.

IV. EXPERIMENTS

A. Comparison methods

We implemented two variants of the proposed EM-Net. The
first one EN-Net shared (EM-Net-s) considers that the weights
of the image-domain network in Equation (25e) are shared
across iterations (i.e., ω(k) = ω, for all k), while the weights
of the second variant, EM-Net un-shared (EM-Net-u) are not
shared (i.e., ω(k) can differ for different values of k). This
greatly reduces the number of parameters to be optimized (see
Table I).

The two variants of the proposed EM-Net are compared
with four methods. We first consider a hand-crafted MAP
solution where the prior log p(f) is the total variation, which
we compute using the EM algorithm and the split-Bregman
algorithm [46] (EM-TV). The other three methods are data-
driven approaches based on deep neural networks. First, we
postprocess the Moore-Penrose pseudo-inverse using a neural
network chosen as either the CNN presented in Fig. 1.b or
a U-Net [47]. We refer to the two variants as CNN and
U-Net, respectively. Secondly, we consider the model-based

reconstruction with deep learned priors (MoDL) [14]. MoDL
is an unrolled algorithm with a convolutional neural-network-
based regularization prior. Finally, we consider a Neumann
network (NN) [19], as a neural-network architecture based on
the Neumann series decomposition.

Model-based reconstruction with deep learned priors is a
particular case of the proposed deep-EM algorithm, which as-
sumes additive signal-independent Gaussian noise; i.e., Σ2 =
0 and Σ1 = λI in Equation (25), where λ is a regularization
term. CNN and U-Net are one-iteration EM-Nets that further
assume no noise; i.e., K = 1 and Σα = 0.

B. Datasets

We train the networks using two different datasets, and also
consider an experimental dataset to test them.

1) STL-10: The STL-10 [48] dataset is an image datasetthat
contains 120,000 images, as 100,000 unlabeled images, 5,000
labeled images called the ‘training’ set, and 8,000 images
called the ‘test’ set. Our methods are trained using the 105,000
images from the training and unlabeled sets, and are tested
on the test set. We randomly crop 64 × 64 patches from the
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original 96 × 96 images, and transform these into gray-scale
images.

2) ImageNet: The ImageNet dataset [49] is a large-scale
dataset that includes a training set of 1,281,167 images,
and 50,000 validation images. Here, we consider the ‘down-
sampled ImageNet’ [50] dataset, where all of the images have
been resized to 64× 64 images.

3) SPIHIM: The SPIHIM dataset [51] contains 20 hy-
perspectral cubes acquired with a single-pixel camera. Each
hyperspectral image has 2,048 channels in the visible range;
however, we limit ourselves to the channel λ = 610 nm. As the
dataset has a small number of hyperspectral images, we did not
train any neural network based on this dataset; instead, we used
this dataset to validate the generalization of our algorithms.

C. Metrics

We evaluate our reconstructed images with the peak signal-
to-noise ratio (PSNR) and the structural similarity (SSIM).
Given the ground-truth image f , we compute the PSNR of a
reconstructed image f∗ as

PSNR(f∗,f) = 10 log10

22

‖f∗ − f‖22
. (32)

Similarly, we compute the SSIM as

SSIM(f ,f∗) =
(2µµ∗ + d1)(2σ̃ + d2)

(µ2 + µ2
∗ + d1)(σ2 + σ2

∗ + d2)
(33)

where µ is the average of f , µ∗ is the average of f∗, σ is the
variance of f , σ∗ is the variance of f∗, σ̃ is the covariance
of f and f∗, d1 = (k1L)2 and d2 = (k2L)2 are two variables
that are meant to stabilize the division, where L is the dynamic
range of pixel values, and k1 = 0.01 and k2 = 0.03 by default.

D. Implementation and training details

In our experiments, we consider M = 512 and M = 1, 024
Hadamard patterns of size N = 64 × 64 pixels from both
the STL-10 and ImageNet databases. We set the number of
iterations to K = 5 for all of the iterative networks (i.e.,
MoDL, NN, EM-Net). MoDL, NN, and the proposed EM-Net-
u and EM-Net-s rely on a learned image-domain denoiser. For
MoDL and NN, we chose this as a U-Net, which is the state-of-
the-art architecture. For EM-Net, we considered a tiny CNN
with fewer parameters. The numbers of learned parameters
were 28,993 for CNN, 499,985 for U-Net, 499,986 for MoDL,
499,986 for NN, 28,993+M × (K − 1) for EM-Net-s and
28,993×K +M × (K − 1) for EM-Net-u and are reported in
Table I. The weights of the image-domain denoiser in MoDL,
NN, and EM-Net were initialised as the weights of a Gaussian
denoiser. All of the networks were implemented using Pytorch
[52], and trained in an end-to-end fashion for the same noise
level corresponding to α = 10 photons. We considered the
ADAM optimiser for 100 epochs, with an initial step size of
10−3 that we divided by a factor of 5 every 10 epochs. We
set the weight decay regularization parameter to 10−6. We
stopped the training early after 60 epochs if the networks had
reached convergence (i.e., the relative variations of the cost
function were below 1%).

Method M = 512 M = 1024

EM-TV 0 0

CNN 28,993 28,993

U-Net 499,985 499,985

MoDL 499,986 499,986

NN 499,986 499,986

EM-Net-s 31,041 33,089

EM-Net-u 147,013 149,061
TABLE I

NUMBER OF LEARNED PARAMETERS FOR THE DIFFERENT
RECONSTRUCTION METHODS AT TWO DIFFERENT COMPRESSION RATES

(M = 512, M = 1024).

V. RESULTS AND DISCUSSION

A. Reconstruction metric for the STL-10 and ImageNet
datasets

Table II gives the comparisons of the reconstruction qual-
ities of the four methods on 200 images from the STL-10
test set. All of the networks were trained using the STL-10
dataset for α = 10 photons. Similarly, the four methods are
compared for 500 images of the ImageNet test in Table III.
All of the networks were trained with the ImageNet dataset
for α = 10 photons. To explore the robustness of the methods
in the presence of noise, the levels of which are unknown in
practice, all of the networks were tested at a higher noise level
(α = 3 photons) and a lower noise level (α = 50 photons).

According to our simulations at M = 1, 024, the best
performing methods are EM-Net-u at higher noise (α = 3
photons) and MoDL at lower noise (α = 50 photons). For
M = 1, 024, EM-TV, CNN, and MoDL perform relatively
well at low levels of noise, with PSNR values typically less
than 1 dB below the best PSNR (-1.67 dB for CNN, -1.39
dB for EM-TV, -0.56 dB for U-Net, with MoDL as the best
at 20.02 dB). At the high level of noise, their reconstruction
PSNRs are significantly lower than the best one (-6.12 dB for
CNN, -3.46 dB for EM-TV, -1.03 dB for U-Net, -3.71 dB for
MoDL). The opposite was seen for NN, which yields good
PSNR for higher noise (only -1.12 dB compared to EM-Net-
u), but performs poorly for lower noise (-2.85 dB compared
to MoDL). The same trend is observed for M = 512,
except that NN also strongly degrades at higher noise (-2.2
dB compared to EM-Net-u). For high levels of noise, the
PSNR might be worse for M = 1, 024 than for M = 512.
This is explained on the basis that mostly noise is acquired
for the high frequency coefficients. This addition of noisy
information can highly degrade the image quality despite the
higher number of acquisitions.

The proposed EM-Net-u method is very effective in a wide
variety of situations. At high noise (i.e., α = 3 ph), EM-
Net-u is the best performing method in terms of PSNR and
SSIM for both the STL-10 and ImageNet images, whatever the
compression ratio. At lower noise (i.e., α = 50 ph), EM-Net-u
is the best for M = 512, and second-best performing method
for M = 1, 024, only slightly behind the best performing
method (-0.16 dB compared to MoDL).

EM-Net-s yields reconstructions with slightly lower metrics
than EM-Net-u for M = 512 (−0.79 dB for α = 3 photons
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GT EM-TV CNN U-Net MoDL NN EM-Net-s EM-Net-u

Fig. 2. Reconstructions of the simulated images using the different methods. Top row: STL-10 horse image with M = 512 and α = 3 photons. Second
row: STL-10 duck with M = 1, 024 and α = 30 photons. Third row: ImageNet hall with M = 512 and α = 2 photons. Fourth row: ImageNet couch with
M = 1, 024 and α = 5 photons. The images were reconstructed from simulated measurements from the ground-truth (GT) image. The following columns
show reconstructions using an expectation-maximization total variation (EM-TV) algorithm, the ConvNet reconstructor presented in Fig. 1b (CNN), a U-Net
reconstructor [47] (U-Net), a model-based reconstruction with deep learned priors [14] (MoDL), and the proposed method (EM-Net-s) and (EM-Net-u).

GT EM-TV CNN U-Net MoDL NN EM-Net-s EM-Net-u

Fig. 3. Reconstructions of the three experimental datasets using the six different methods. Top row: LED lamp with M = 512 measurements. Second row:
STL-10 cat with M = 512 measurements. Third row: Siemens star with M = 2, 048 measurements. The ground-truth (GT) images were reconstructed from
a fully sampled dataset acquired with high image intensity (first column: α = 148 photons, α = 195 photons, α = 295 photons). The following columns
show reconstructions from the down-sampled measurements acquired from a fully sampled dataset with lower image intensity (α = 9 ph, α = 10 photons
and α = 14 photons) using expectation-maximization total variation (EM-TV) algorithm, the ConvNet reconstructor presented in Fig. 1b (CNN), a U-Net
reconstructor [47] (U-Net), a model-based reconstruction with deep learned priors [14] (MoDL), and the proposed method (EM-Net-s) and (EM-Net-u).
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and 0.13 dB for α = 50 photons) and for M = 1024 (−0.57
dB for α = 3 photons and −0.6 dB for α = 50 photons).
Despite being outperformed by EM-Net-u, EM-Net-s always
outperforms U-Net, CNN, NN and EM-TV. Finally, MoDL
only outperforms EM-Net-s at high photon counts (i.e., α = 50
photons), with a modest PSNR gain of 0.03 dB and 0.22 dB
for M = 512 and M = 1024, respectively.

In summary, the metrics indicate that EM-Net-u is the best
method when the data is heavily under-sampled, or under
high noise levels. Furthermore, EM-Net-s is among the best
methods that we assessed here. Both variants of the proposed
EM-Net algorithm offer excellent reconstruction under noise
levels that differ from that used during training, which is
often the case in real-life applications, and also under different
compression ratios.

B. Visual assessment of the reconstructed images

1) Simulated data: Fig. 2 shows the assessment of our deep
EM-Net with data simulated from the STL-10 and ImageNet
databases. In particular, we consider two images from the STL-
10 dataset, a horse and a duck. We simulate the acquisition of
the horse image with M = 512 measurements and α = 3 ph,
and that of the duck with M = 1, 024 measurements and α =
30 photons. We also consider two images from the ImageNet
test set, a couch and a hall. We simulate the acquisition of the
couch with M = 1, 024 measurements and α = 5 ph, and that
of the hall with M = 512 measurements and α = 2 photons.

In all of the simulations, the EM-TV reconstruction pro-
duces images that are piece-wise linear and lack some fine
details. NN suffers from grid-like or staircase artefacts. While
it preserves more image details at the lower compression ratio
(i.e., M = 1, 024), the NN reconstruction presents strong
artifacts at the high compression ratio (i.e., M = 512). CNN,
U-Net, MoDL, EM-Net-s and EM-Net-u perform visually
better than EM-TV and NN. However, these reconstructions
have different behaviors, as indicated in Fig. 2 using red and
blue rectangles. The red rectangles highlight areas where the
ground-truth images are mostly flat, while the blue rectangle
highlights an area where a detail is present. In the red areas,
the CNN, U-Net, and MoDL reconstructions tend to include
worm-like artifacts that are not seen for either EM-Net (e.g.,
compare the image homogeneity within the red rectangles of
the horse image in Fig. 2). On the other hand, despite low
noise conditions, U-Net blurs fine details, such as the white
detail in the blue rectangle, while MoDL and both EM-Net
variants mostly keep these fine details intact.

While both variants of the proposed method produce similar
results, EM-Net-u appears better at removing artifacts (such
as those in the red rectangle in the horse and couch images)
while retaining more details (such as the white spot in the red
rectangle in the duck image).

In summary, U-Net, MoDL, and the proposed EM-Net
variants are visually best performing. Among these methods,
the EM-Net variants do not show most of the grid-like and
worm-like artifacts at low photon counts, while they preserve
the fine details at higher photon counts, which can be blurred
with U-Net and MoDL. This visual assessment confirms the

excellent robustness of EM-Net to a wide variety of simulation
parameters.

2) Experimental Data: Fig. 3 shows the assessment of the
different methods using experimental data from the SPIHIM
experimental dataset. In particular, this includes the images
of a LED lamp, a cat from the STL-10 dataset printed on a
transparent sheet, and the 32 branch Siemens star [53]. We
display the images that we reconstruct with fully sampled
measurements (i.e., M = 4, 096) in the first and second
columns of Fig. 3. The first column corresponds to very
low noise acquisitions, and the second to the higher noise
acquisitions that we assessed for these methods. We estimated
the image intensities for each of the acquisitions, and obtained
α̃ = 9 photons for the LED, α̃ = 10 photons for the cat, and
α̃ = 14 photons for the Siemens star. Then, we down-sampled
the acquisitions a posteriori, keeping M = 512 measurements
for the LED and for the cat, and M = 1, 024 for the Siemens
star.

For the LED lamp, as for the simulated measurements, there
are grid-like artefacts in the EM-TV and NN reconstructions,
which are most visible at the borders of the LED disks and
in the background. On the other hand, the CNN, MoDL,
U-Net, and EM-Net reconstructors are more smooth. Here
again, CNN, U-Net, and MoDL present worm-like artefacts,
while EM-Net-u and EM-Net-s leads to a more homogeneous
background and LED disks.

For the STL-10 cat, as for the LED lamp, high-frequency
grid artefacts are seen for the EM-TV and NN reconstructions,
while the other methods are visually more similar. However,
EM-Net removes some of the reconstruction artifacts seen in
CNN, U-Net, and EM-TV (e.g., compare the red rectangles in
the second row of Fig. 3; the ear of the cat is mostly artifact
free using EM-Net). We further note that EM-Net preserves
image details well (e.g., compare the blue rectangles in the
second row of Fig. 3; EM-Net preserves the edge of the door
while keeping the image intensity closer to the ground-truth
grayscale value).

For the Siemens star, U-Net and EM-Net-u best reconstruct
the branches of the target. This is particularly visible for
the upper left branches that are completely removed by the
other methods. Both methods also create some artifacts in the
center of the target, but these are less present than with other
reconstruction methods such as MoDL or CNN. U-Net and
EM-Net-u are also less prone to oversmoothing than EM-Net-
s, NN and EM-TV. This object has a high-frequency content,
and structures that are not like any of the images in the training
set, which make it a challenging sample.

C. Comparison of the number of learned parameters
Table I shows that EM-Net-s has the second lowest number

of learned parameters. EM-Net-s is very close to CNN in
terms of the number of parameters, and has about 16 times
fewer parameters compared to U-Net, MoDL, and NN. Table I
also shows that EM-Net-u has about 3 times fewer learned
parameters than U-Net, NN and MoDL. As shown in the
previous section, the metrics and the visuals indicate that the
two EM-Net variants are among the best of the methods as-
sessed. EM-Net-u is usually the best performing method, while
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M = 512 M = 1024

α = 3 α = 50 α = 3 α = 50

EM-TV
PSNR 13.91±1.39 18.29±3.46 12.33±0.95 18.63±3.61
SSIM 0.68±0.14 0.90±0.05 0.59±0.16 0.92±0.04

CNN
PSNR 13.2±1.05 19.19±3.75 9.67±0.82 18.35±3.23
SSIM 0.66±0.16 0.94±0.05 0.43±0.19 0.92±0.05

U-Net
PSNR 16.17±2.04 19.29±3.75 14.76±1.43 19.46±3.83
SSIM 0.79±0.13 0.92±0.07 0.72±0.16 0.93±0.07

MoDL
PSNR 14.8±1.55 19.47±3.87 12.08±0.78 20.02±4.19
SSIM 0.73±0.15 0.93±0.07 0.58±0.18 0.95±0.05

NN
PSNR 14.87±1.58 18.3±3.26 15.27±2.1 17.07±3.21
SSIM 0.6±0.27 0.71±0.33 0.39±0.43 0.48±0.47

EM-Net-s
PSNR 16.28±2.06 19.45±3.89 15.82±1.8 19.8±4.08
SSIM 0.8±0.13 0.93±0.06 0.78±0.15 0.94±0.05

EM-Net-u
PSNR 17.07±2.49 19.58±3.94 16.39±2.1 19.86±4.07
SSIM 0.83±0.11 0.94±0.06 0.8±0.15 0.95±0.05

TABLE II
PEAK SIGNAL-TO-NOISE RATIOS (PSNR) AND STRUCTURAL SIMILARITIES (SSIM) FOR THE DIFFERENT RECONSTRUCTION METHODS. THE METRICS
ARE COMPUTED FROM 200 SIMULATED IMAGES FROM THE STL-10 DATASET. ALL OF THE NEURAL NETWORKS WERE TRAINED USING THE STL-10

DATASET WITH α = 10 PHOTONS, AND WERE TESTED FOR α = 3 AND α = 50 PHOTONS FOR DIFFERENT COMPRESSION RATES (M = 512, M = 1, 024).
RESULTS ARE SHOWN FOR AN EXPECTATION-MAXIMIZATION TOTAL VARIATION (EM-TV) ALGORITHM, DIRECT U-NET RECONSTRUCTOR (U-NET),
MODEL-BASED RECONSTRUCTION WITH DEEP LEARNED PRIORS (MODL), NEUMANN NETWORKS (NN), AND THE TWO VARIANTS OF THE PROPOSED

METHOD (EM-NET-U AND EM-NET-S). BLUE INDICATES THE HIGHEST PSNRS; GREEN INDICATES THE HIGHEST SSIMS.

M = 512 M = 1024

α = 3 α = 50 α = 3 α = 50

EM-TV
PSNR 13.4±1.75 17.17±3.78 11.99±1.29 17.51±3.93
SSIM 0.66±0.14 0.88±0.06 0.58±0.14 0.90±0.06

CNN
PSNR 12.94±1.35 17.89±4.12 10.49±0.82 17.3±3.66
SSIM 0.65±0.17 0.92±0.06 0.49±0.17 0.91±0.06

U-Net
PSNR 15.27±2.35 17.97±4.09 14.16±1.79 18.2±4.21
SSIM 0.77±0.14 0.91±0.08 0.71±0.15 0.91±0.08

MoDL
PSNR 14.03±1.83 18.22±4.28 10.88±0.82 18.65±4.53
SSIM 0.7±0.17 0.91±0.08 0.51±0.17 0.94±0.06

NN
PSNR 14.82±2.35 16.2±3.18 14.34±2.01 17.42±3.79
SSIM 0.51±0.35 0.6±0.34 0.6±0.26 0.72±0.32

EM-Net-s
PSNR 15.53±2.47 18.08±4.22 15.27±2.28 18.42±4.41
SSIM 0.78±0.14 0.91±0.08 0.77±0.15 0.93±0.07

EM-Net-u
PSNR 16.12±2.86 18.22±4.29 15.58±2.49 18.45±4.35
SSIM 0.81±0.13 0.92±0.07 0.79±0.14 0.93±0.07

TABLE III
PEAK SIGNAL-TO-NOISE RATIOS (PSNR) AND STRUCTURAL SIMILARITIES (SSIM) FOR THE DIFFERENT RECONSTRUCTION METHODS. THE METRICS

WERE COMPUTED FROM 200 SIMULATED IMAGES FROM THE IMAGENET DATASET. ALL OF THE NEURAL NETWORKS WERE TRAINED USING THE
IMAGENET DATASET WITH α = 10 PHOTONS, AND WERE TESTED FOR α = 3 AND α = 50 PHOTONS FOR DIFFERENT COMPRESSION RATES (M = 512,
M = 1, 024). RESULTS ARE SHOWN FOR AN EXPECTATION-MAXIMIZATION TOTAL VARIATION (EM-TV) ALGORITHM, DIRECT U-NET RECONSTRUCTOR

(U-NET), MODEL-BASED RECONSTRUCTION WITH DEEP LEARNED PRIORS (MODL), NEUMANN NETWORKS (NN), AND THE TWO VARIANTS OF THE
PROPOSED METHOD (EM-NET-U AND EM-NET-S). BLUE INDICATES THE HIGHEST PSNRS; GREEN INDICATES THE HIGHEST SSIMS.

it has 3 times fewer parameters than its main competitors,
e.g., U-Net and MoDL. EM-Net-s performs slightly poorer
than EM-Net-u; however, it has a comparable performance
to reconstructors that have 16 times more learned parameters.
EM-Net-s clearly outperforms CNN that has roughly the same
number of parameters.

VI. CONCLUSIONS AND PERSPECTIVES

We propose an iterative network based on the EM al-
gorithm. This deep EM network can solve linear under-
determined inverse problems where the measurements are

corrupted by normally distributed signal-dependent noise (e.g.,
Poisson noise, mixed Poisson-Gaussian noise, mixed Skellam-
Gaussian noise). The EM-Net alternates over five steps, which
have straightforward interpretation, as estimation of the noise
covariance, measurement denoising, measurement completion,
measurement to image domain mapping, and image denoising.

Most unrolled networks assume additive Gaussian noise
with constant variance. Therefore, they tend to generalize
poorly to different noise levels, and might be ill-suited to
applications where the noise levels cannot be predicted before-
hand. On the contrary, the proposed EM-Net method explicitly
estimates the noise covariance to denoise the measurement
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domain. As a consequence, EM-Net generalizes very well
to noise levels that differ to that used during training. In
particular, it outperforms all of the other methods assessed
here when in the presence of noise with variance higher than
that used during training, and it is comparable to the best
method in the presence of noise with lower variance.
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APPENDIX A
LIKELIHOOD OF SKELLAM-GAUSSIAN MEASUREMENTS

We first rewrite the i-th component of mα in Equation (3),
denoted m for simplicity, as

m = h>f + εf + ε, (34)

where

εf ∼
1

α
Sk(αh>+f , αh

>
−f)− h>f , (35)

ε ∼ N (0, β2), β2 =
2σ2

dark

K2α2
. (36)

where h = h+−h− represents a row of the Hadamard matrix.
To derive the probability mass function of εf , we recall that

of a Skellam-distributed random variable Z ∼ Sk(µ1, µ2) [41]

P(Z = k;µ1, µ2) = e−(µ1+µ2)

(
µ1

µ2

) k
2

I|k|(2
√
µ1µ2), (37)

where I· are the modified Bessel functions of the first kind. By
linear tranformation of Equation (37) according to Equation
(35), we obtain pn = P(εf = n

α − h
>f), ∀n ∈ N,

pn = e−α(h
>
+f+h

>
−f)

(
h>+f

h>−f

)n−αh>f
2α

I|nα−h>f |
(

2α
√

(h>+f)(h>−f)

)
. (38)

Therefore, the probability density function of εf is

p(εf ) =
∑
n∈N

pnδ(εf −
n

α
+ h>f), (39)

where δ denotes the Dirac delta function. As the probability
density function of E = ε+ εf is the convolution of Equation
(39) with the probability density function of ε [54], we have

pE(E) =
∑
n∈N

pn
1√

2πβ2
exp

(
−

(E − n
α − h

>f)2

β2

)
. (40)

Next, we write the likelihood of the measurement as

p(m|f) = pE(m− h>f) (41)

=
∑
n∈N

pn
1√

2πβ2
exp

(
−

(m− n
α )2

β2

)
. (42)

Assuming independent measurements, the chain rule leads to

p(m|f) =

M∏
i=1

p(mi|f). (43)

Substituting Equation (42) and the expression of pn in Equa-
tion (38) into Equation (43), we finally obtain

p(m|f) =

M∏
i=1

∑
n∈N

e−α(h
>
i,+f+h

>
i,−f)

(
h>i,+f

h>i,−f

)n−αh>i f

2α

I|nα−h>f |
(

2α
√

(h>i,+f)(h>i,−f)
) 1√

2πβ2
e
−

(mi−
n
α

)2

β2 .

(44)

APPENDIX B
QUADRATIC SOLUTION OF UNDER-SAMPLED ORTHOGONAL

ACQUISITION

The analytical solution to the quadratic minimization prob-
lem of Equation (16a) is given by (see p. 66 of [45])

x̄(k) = Hf (k) +CS>(SCS> + Σ̃)−1(mα − SHf (k)).

(45)

We first introduce y(k) = x̄(k) −Hf (k), which leads to

y(k) = CS>(SCS> + Σ̃)−1(mα − SHf (k)). (46)

Then, recalling that S = [IM ,0], where IM is the identity
matrix, we have the following two identities

CS> =

[
C1

C2

]
, and SCS> = C1, (47)

where C1 and C2 are the blocks of C defined according
to Equation (18). Finally, substituting Equation (47) into
Equation (46), we obtain

y(k) =

[
C1

C2

]
(Σ̃ +C1)−1(mα − SHf (k)). (48)
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