
HAL Id: hal-03521904
https://hal.science/hal-03521904

Submitted on 11 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Polynomial algorithms for some scheduling problems
with one nonrenewable resource

Abderrahim Sahli, Jacques Carlier, Aziz Moukrim

To cite this version:
Abderrahim Sahli, Jacques Carlier, Aziz Moukrim. Polynomial algorithms for some scheduling
problems with one nonrenewable resource. RAIRO - Operations Research, 2021, 55, pp.3493-3511.
�10.1051/ro/2021164�. �hal-03521904�

https://hal.science/hal-03521904
https://hal.archives-ouvertes.fr

RAIRO-Oper. Res. 55 (2021) 3493–3511 RAIRO Operations Research
https://doi.org/10.1051/ro/2021164 www.rairo-ro.org

POLYNOMIAL ALGORITHMS FOR SOME SCHEDULING PROBLEMS WITH
ONE NONRENEWABLE RESOURCE

Abderrahim Sahli1,* , Jacques Carlier2 and Aziz Moukrim2

Abstract. This paper deals with the Extended Resource Constrained Project Scheduling Problem
(ERCPSP) which is defined by events, nonrenewable resources and precedence constraints between
pairs of events. The availability of a resource is depleted and replenished at the occurrence times of
a set of events. The decision problem of ERCPSP consists of determining whether an instance has a
feasible schedule or not. When there is only one nonrenewable resource, this problem is equivalent to
find a feasible schedule that minimizes the number of resource units initially required. It generalizes
the maximum cumulative cost problem and the two-machine maximum completion time flow-shop
problem. In this paper, we consider this problem with some specific precedence constraints: parallel
chains, series-parallel and interval order precedence constraints. For the first two cases, polynomial
algorithms based on a linear decomposition of chains are proposed. For the third case, a polynomial
algorithm is introduced to solve it. The priority between events is defined using the properties of interval
orders.

Mathematics Subject Classification. 90B35, 05C85.

Received February 7, 2021. Accepted October 26, 2021.

1. Introduction

In the literature, the Resource Constrained Project Scheduling Problem (RCPSP) plays a fundamental role
in scheduling theory. In this problem, non-preemptive activities requiring renewable resources, and subject to
precedence constraints, have to be scheduled in order to minimize the makespan. The RCPSP has led to an
impressive amount of research in recent decades. A very effective way of solving this NP-hard problem is to
decompose an RCPSP instance into as many Cumulative Scheduling Problems as there are resources. This
allows us to obtain tight lower bounds as well as efficient head-tail adjustments [6,7]. The RCPSP with general
time lag constraints has also been the subject of several papers [2, 8–10, 15, 19, 20]. Such works concern only
renewable resources such as the workforce. Renewable resources are assigned to activities at their starting times
and released at their completion times. On the contrary, nonrenewable resources are produced or consumed
by activities at their starting times only. Money is an example of nonrenewable resource for which Carlier and
Rinnooy Kan [3] introduced the financing problem.

Keywords. Scheduling problems, nonrenewable resource, decomposition method, series-parallel graph, interval order graph.

1 COSYS/GRETTIA, Univ Gustave Eiffel, CNRS, ESIEE Paris, F-77454 Marne-la-Vallée, France.
2 Sorbonne universités, Université de Technologie de Compiègne, CNRS, laboratoire Heudiasyc UMR 7253, CS 60 319,
60 203 Compiègne Cedex, France.
*Corresponding author: abderrahim.sahli@esiee.fr

c○ The authors. Published by EDP Sciences, ROADEF, SMAI 2021

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/ro/2021164
https://www.rairo-ro.org
https://orcid.org/0000-0002-1528-4849
mailto:abderrahim.sahli@esiee.fr
https://creativecommons.org/licenses/by/4.0

3494 A. SAHLI ET AL.

The Extended Resource Constrained Project Scheduling Problem (ERCPSP) is a general scheduling problem
where the availability of resources is depleted and replenished [4]. An instance of ERCPSP is defined by events,
nonrenewable resources and generalized precedence constraints between pairs of events. Each event produces or
consumes some units of resources at its occurrence time. The objective is to build a schedule that satisfies the
resource and precedence constraints and minimizes the makespan. ERCPSP is an extension of RCPSP where
activities requiring renewable resources are replaced by events consuming or producing nonrenewable resources.
In fact, we can associate with each instance of RCPSP an equivalent instance of ERCPSP [4,5]. Other authors
have worked on models similar to ERCPSP. We can quote the works of Neumann and Schwindt [18] and of
Laborie [14]. Neumann and Schwindt formalized the project scheduling problem with inventory constraints
where the availability of each resource is at any time upper and lower bounded. To solve this problem, they
introduced a branch-and-bound algorithm with a filtered beam search heuristic. Laborie [14] introduced the
concept of a Resource Temporal Network (RTN). He proposed a constraint propagation algorithm to solve the
problem.

The decision problem of ERCPSP consists of determining whether an instance has a feasible schedule or
not. When there is only one nonrenewable resource, it is equivalent to find a feasible schedule that minimizes
the number of resource units initially required. The maximum cumulative cost problem, which was shown
NP-complete [24], is the special case where the events are sequenced on one machine in such a way that the
maximum cumulative consumption is minimized. It corresponds to the problem investigated by authors of
[1, 12, 24]. Abdel-wahab and Kameda [1] have considered the special case where the precedence constraints
can be represented by a parallel chains graph and series-parallel graph. For the parallel chains case, they have
introduced an algorithm for finding optimal schedules. The algorithm decomposes each chain into subchains
then it provides an optimal schedule by sequencing these subchains. A dominant chain which minimizes the
maximum cumulative cost is obtained. This algorithm has been generalized for the series-parallel case. Other
authors worked on the Two-Machine Maximum Flow Time Problem with Series-Parallel Precedence Constraints.
We can quote the works of Monma and Sidney [16, 17] and of Sekiguchi [23]. Flow shop scheduling is a type
of scheduling where jobs need to be processed on a set of machines in identical order [25]. In [13], the authors
deal with the two-machine flow shop scheduling problem with unlimited periodic and synchronized maintenance
applied on both machines. Kaplan and Amir have introduced a simple method for determining the feasibility
of the relocation problem [12]. They have proved that the relocation feasibility problem is equivalent to the
two-machine flow-shop problem which can be solved in 𝑂(𝑛 log 𝑛) using the Johnson’s rule [11]. The relocation
problem can be considered as an ERCPSP problem with parallel chains precedence constraints where there are
only two events in each chain. Note that the events in ERCPSP are not sequenced on one machine. So instead
of sequencing events, we have to schedule them. Hence, more than one event can occur at the same time.

In this paper, we consider the decision problem of ERCPSP with one resource under some specific precedence
constraints. We study three special cases which can be solved in polynomial time: the parallel chains case, the
series-parallel case and the interval order case. A list algorithm is proposed to construct feasible schedules for
the parallel chains case. This algorithm is based on a different and simple decomposition of chains. We also
present another method of decomposition of chains which provides the same decomposition proposed in [1]. We
show that these subchains can be seen as jobs of a flow-shop with two machines. Hence, a feasible schedule
can be constructed by using the Johnson’s algorithm. An adaptation of this algorithm is presented for the
series-parallel case and for scheduling problem with cumulative continuous resources. Finally, a list algorithm is
introduced for the interval order case to construct feasible schedules. The priorities of events are defined using
the properties of interval orders.

The remaining of this paper is structured as follows. In Section 2 we formulate our problem. In Section 3 we
show the relation between scheduling and sequencing problems. In Section 4 we investigate the decision problem
of ERCPSP with one resource and parallel chains precedence constraints. In Section 5 we consider the decision
problem of ERCPSP with one resource and series-parallel precedence constraints. In Section 6 we solve the
decision problem of ERCPSP with one resource and interval order precedence graph, and finally we conclude
this paper in Section 7.

POLYNOMIAL ALGORITHMS FOR SOME SCHEDULING PROBLEMS 3495

2. Problem formulation

This paper deals with the Extended Resource Constrained Project Scheduling Problem (ERCPSP). An
instance 𝐼 = (𝑋, 𝐾,𝑈, 𝑎, 𝑣) of ERCPSP consists of a set 𝑋 = {0, 1, . . . , 𝑛, 𝑛 + 1} of events, a set 𝐾 of nonre-
newable resources, and a set 𝑈 of precedence constraints.

The occurrence time of each event 𝑖 ∈ 𝑋 is denoted 𝑆𝑖 (also denoted 𝑆(𝑖)). Of course 𝑆𝑖 is not given and has
to be determined. By convention, the two events 0 and 𝑛 + 1 are added to respectively define the start and the
end of the schedule.

For each event 𝑖 ∈ 𝑋, 𝑎𝑘
𝑖 represents the quantity of resource 𝑘 ∈ 𝐾 produced or consumed by event 𝑖. If 𝑎𝑘

𝑖 is
positive, then event 𝑖 produces the quantity 𝑎𝑘

𝑖 of resource 𝑘, whereas if 𝑎𝑘
𝑖 < 0, it consumes the quantity |𝑎𝑘

𝑖 |
of resource 𝑘. For each resource 𝑘 ∈ 𝐾, 𝑎𝑘

0 = 𝑄𝑘 corresponds to the initial level of resource 𝑘. At any time, the
resource availability must be positive or null for each resource 𝑘 ∈ 𝐾.

The precedence constraints express relations of start-to-start between pairs of events. They have the form
𝑆𝑖 + 𝑣𝑖𝑗 ≤ 𝑆𝑗 , where 𝑣𝑖𝑗 represents the time lag between events 𝑖 and 𝑗. In this paper, we suppose that we have
only positive time lags. So, if (𝑖, 𝑗) ∈ 𝑈 then event 𝑗 cannot occur before time 𝑆𝑖 + 𝑣𝑖𝑗 .

A schedule 𝒮 on event set 𝑋 is a function assigning an occurrence time 𝑆𝑖 to each event 𝑖 ∈ 𝑋. The makespan
of a schedule 𝒮 can be computed as 𝐶max = 𝑆𝑛+1. A schedule is feasible if it satisfies the precedence constraints
(2.1) and the resource constraints (2.2):

𝑆𝑖 + 𝑣𝑖𝑗 ≤ 𝑆𝑗 ∀(𝑖, 𝑗) ∈ 𝑈 (2.1)∑︁
𝑖∈𝑋(𝑆,𝑡)

𝑎𝑘
𝑖 ≥ 0 ∀𝑘 ∈ 𝐾,∀𝑡 ∈ {0, 1, . . . , 𝑇} (2.2)

where 𝑋(𝑆, 𝑡) = {𝑖 ∈ 𝑋 | 𝑆𝑖 ≤ 𝑡} is the set of events which have occurred by time 𝑡 ≥ 0, and 𝑇 is some given
upper bound on the makespan, which means that all events have to occur no latter than time 𝑇 . An optimal
schedule is a feasible schedule which minimizes the makespan.

In the following, we consider only the single-resource case of ERCPSP (|𝐾| = 1). So, each instance will be
defined by a quadruplet (𝑋, 𝑈, 𝑎, 𝑣). The number of resource units produced or consumed by event 𝑖 is 𝑎𝑖 and
the initial resource units of the project corresponds to 𝑎0.

2.1. Decision problem

Let 𝐼 = (𝑋, 𝑈, 𝑎, 𝑣) be an instance of ERCPSP. The Decision Problem consists of determining whether 𝐼
has a feasible schedule or not. Solving this problem is equivalent to find a feasible schedule that minimizes the
number of resource units initially required. In fact, let 𝑄* be the minimal number of resource units initially
required to get a feasible schedule. If 𝑄* ≤ 𝑎0, then instance 𝐼 is feasible. Otherwise, 𝐼 is infeasible.

Example 2.1. Let 𝑋 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} be the set of events. 𝑎0 = +5, 𝑎1 = −1, 𝑎2 = −2, 𝑎3 = −1,
𝑎4 = −1, 𝑎5 = −1, 𝑎6 = −1, 𝑎7 = +1, 𝑎8 = +1, 𝑎9 = +1, 𝑎10 = 0, 𝑣01 = 1 (event 1 must occur at least 1 time
unit after event 0), 𝑣0,2 = 𝑣0,3 = 𝑣1,4 = 𝑣1,5 = 𝑣2,6 = 𝑣3,6 = 𝑣4,7 = 𝑣5,7 = 𝑣6,8 = 𝑣7,9 = 𝑣8,10 = 𝑣9,10 = 1.

The graph resulting from Example 2.1 is shown in Figure 1. The number associated with a node represents
the number of resource units required for that event, and the number corresponding to an arc represents the
time lag. The number corresponding to event 0 is equal to the initial number of resource units for the project.

The minimal number of resource units initially required to get a feasible schedule is 𝑄* = 4. It will be
obtained by scheduling events 1, 4, 5, 7 and 9 before events 2, 3 and 6. Since 𝑄* < 𝑎0 = 5, the considered
instance is feasible.

An optimal schedule for this instance is 𝒮* = {𝑆0 = 0, 𝑆1 = 1, 𝑆2 = 1, 𝑆3 = 3, 𝑆4 = 2, 𝑆5 = 2, 𝑆6 =
4, 𝑆7 = 3, 𝑆8 = 5, 𝑆9 = 4, 𝑆10 = 6}. Figure 2 shows the resource availability over time associated with 𝒮*.
Note that we can verify that there is no schedule where event 6 precedes event 7.

3496 A. SAHLI ET AL.

Figure 1. An instance of ERCPSP with seven events and one resource.

Figure 2. Resource availability curve associated with 𝒮*.

The optimisation problem of ERCPSP is NP-hard in the strong sense. In fact, Carlier et al. [5] have shown
that the ERCPSP is an extension of the RCPSP which is NP-hard in the strong sense. The decision problem
of ERCPSP is NP-complete. In fact, the special case where 𝑎𝑖 ∈ {−1, +1}, 1 ≤ 𝑖 ≤ 𝑛, and 𝑣𝑖𝑗 = 1, ∀(𝑖, 𝑗) ∈ 𝑈
generalizes the cumulative cost problem. This problem was proved to be NP-complete in [24].

2.2. Notations

Let 𝐼 = (𝑋, 𝑈, 𝑎, 𝑣) be an instance of ERCPSP. We denote by 𝑋𝑝 = {𝑒 ∈ 𝑋|𝑎𝑒 ≥ 0} (resp. 𝑋𝑐 = {𝑒 ∈ 𝑋|𝑎𝑒 <
0}) the set of production (resp. consumption) events. We say that an event 𝑖 is a direct predecessor of an event
𝑗 if there exists a non-negative arc from 𝑖 to 𝑗 in the graph (𝑋, 𝑈), which is equivalent to say that 𝑗 is a direct
successor of 𝑖. 𝑙𝑖,𝑗 denotes the length of the longest path from 𝑖 to 𝑗. We say that an event 𝑖 is an ascendant
of an event 𝑗 if there exists a path from 𝑖 to 𝑗 with non-negative 𝑙𝑖,𝑗 , which is equivalent to say that 𝑗 is a
descendant of 𝑖. We denote the set of direct successors of an event 𝑖 as Γ+(𝑖), and the set of all descendants of 𝑖,
not including 𝑖, as Γ̄+(𝑖). The corresponding sets of direct predecessors and ascendants are denoted respectively
as Γ−(𝑖) and Γ̄−(𝑖). Thus, event 0 (resp. event 𝑛+1) is an ascendant (resp. a descendant) of all the other events.

3. Sequencing and scheduling problems

We consider a precedence graph with positive valuations. Let 𝑆 be a feasible schedule for a value 𝑄0 of initial
units of resource. We restrict ourselves to the case of a single resource. A sequence of events is said to be feasible,
if the event order respects the precedence constraints and for each event 𝑒𝑖 in the sequence, 𝑄0 + 𝑎𝑒𝑖

added to
the sum of resource units produced and consumed by events before 𝑒𝑖 is positive or null.

POLYNOMIAL ALGORITHMS FOR SOME SCHEDULING PROBLEMS 3497

Figure 3. Pretreatment.

Theorem 3.1. Let 𝐼 = (𝑋,𝑈, 𝑎, 𝑣) be an instance of ERCPSP. If all valuations are strictly positive then there
is a feasible sequence of events as soon as there is a feasible schedule.

Proof. Let 𝑆 be a feasible schedule. If all the couples events are not executed simultaneously, the total order
of events obtained by sequencing events in increasing order of their occurrence time is also feasible. Therefore,
the only difficulty concerns the events which are executed at the same time in 𝑆. So let us consider a subset of
events which are executed simultaneously in 𝑆. These events are independent (no precedence relations between
them) because a strictly positive arc would prevent two independent events to be simultaneously executed. So
we can sequence these events locally by ordering the production events before the consumption events. The
result is a feasible sequence. By abusing the notation, we also denote by 𝑆 the feasible sequence. �

One can generalize Theorem 3.1 in some cases of zero valuation by using the same reasoning.

Corollary 3.2. If there are arcs with zero valuation, but none of them is between a consumption event and a
production event, then there is an optimal sequence, as soon as there is an optimal schedule.

Corollary 3.3. If a consumption event is the only predecessor of a production event and the valuation of the
corresponding arc is 0, it is dominant to execute these two events at the same time.

So a pretreatment by fusion of such two events leads to the condition of Corollary 3.2. Similar fusion can
treat the case of non-negative valuations with directed cycles of zero valuation (see Fig. 3).

4. The parallel chains case

In this section we investigate a special case of ERCPSP with one resource, where the precedence graph consists
of a set of parallel chains with positive valuations. This special case is an extension of the problem considered
by Abdel-wahab and Kameda [1], where more than one event can be executed at the same time. These authors
introduced an algorithm for minimizing the maximum cumulative cost. The algorithm calculates the change of
resource level, then determines production and consumption subchains in each chain. An optimal schedule is
obtained by merging the production subchains in nondecreasing order of their rise, followed by consumption
subchains in nonincreasing order of their fall. Thus, a dominant chain which minimizes the maximum cumulative
cost is obtained.

3498 A. SAHLI ET AL.

Figure 4. ERCPSP instance with three parallel chains.

In this section, we propose a list algorithm to construct feasible schedules for the parallel chains case. This
algorithm is based on a different and simple decomposition of chains into production and consumption subchains.
We also adapt the algorithm proposed in [1] to our problem. It always consists of determining the minimum
amount of initial resources required. Abdel-wahab and Kameda sequenced the events because they are executed
on one machine. In our problem there is no machine. Thus, some events can be executed at the same time. To
use our algorithms, a pretreatment is required. For each consumption event 𝑒𝑐 and for each production event
𝑒𝑝, if 𝑒𝑐 is the predecessor of 𝑒𝑝 and the valuation of the corresponding arc is 0, then we merge these two events
into one event 𝑒 such that 𝑎𝑒 = 𝑎𝑒𝑝 + 𝑎𝑒𝑐. After the pretreatment, we will be in the condition of Corollary 3.2.
So finding a feasible schedule will be equivalent to finding a feasible sequence.

The algorithm is actually very similar. It is also based on a decomposition of chains into production and
consumption subchains. We will see that these subchains can be seen as jobs of a flow-shop with two machines.
The idea is to construct a standard schedule, where the events of each subchain are scheduled next to each other.
Then, we apply the Johnson’s rule to these subchains in order to obtain an optimal sequence. This method will
be illustrated by the example given in Figure 4.

4.1. Definition of OP-subchains and OC-subchains

Suppose that chain ℎ contains 𝑙 events, 𝑒1, 𝑒2, . . . , 𝑒𝑙, in the order of precedence constraints. Chain ℎ will be
decomposed into a sequence of optimal subchains. These optimal subchains can be seen as jobs of a flow-shop
with two machines. Each subchain consists of two parts which respectively consumes and produces a quantity
of resource. The consumption on the first part of the subchain corresponds to the processing time on the first
machine, while the production on the second part of the subchain corresponds to the processing time on the
second machine.

An optimal subchain is said to be an optimal production subchain (OP-subchain) if it produces more than
it consumes. Otherwise, it is an optimal consumption subchain (OC-subchain).

Definition 4.1. Let 𝑒𝛼, . . . , 𝑒𝛾 be a subchain of chain 𝑒1, 𝑒2, . . . , 𝑒𝑙.
𝑒𝛼, . . . , 𝑒𝛾 is an optimal subchain if it can be decomposed into two subchains 𝑒𝛼, . . . , 𝑒𝛽 and 𝑒𝛽+1, . . . , 𝑒𝛾 such

that:

–
∑︀𝑖=𝑗

𝑖=1 𝑎𝑒𝑖
≤ 0 ∀𝑗 ∈ {1, . . . , 𝛽}.

–
∑︀𝑖=𝛽

𝑖=𝑗 𝑎𝑒𝑖
≤ 0 ∀𝑗 ∈ {1, . . . , 𝛽}.

–
∑︀𝑖=𝑗

𝑖=𝛽+1 𝑎𝑒𝑖
≥ 0 ∀𝑗 ∈ {𝛽 + 1, . . . , 𝛾}.

–
∑︀𝑖=𝛾

𝑖=𝑗 𝑎𝑒𝑖
≥ 0 ∀𝑗 ∈ {𝛽 + 1, . . . , 𝛾}.

POLYNOMIAL ALGORITHMS FOR SOME SCHEDULING PROBLEMS 3499

As a consequence,
∑︀𝑖=𝑗

𝑖=1 𝑎𝑒𝑖
reach its minimum, when 𝑗 is equal to 𝛽. Furthermore,

∑︀𝑖=𝑗
𝑖=𝛽+1 𝑎𝑒𝑖

will reach

its maximum when 𝑗 = 𝛾. The fall ∆− of an optimal subchain is equal to −
∑︀𝑖=𝛽

𝑖=1 𝑎𝑒𝑖
, which is positive or null

according to Definition 4.1. The fall corresponds to the processing time on the first machine of the flow-shop.
The rise ∆+ of an optimal subchain is equal to

∑︀𝑖=𝛾
𝑖=𝛽+1 𝑎𝑒𝑖 , which is positive or null according to Definition 4.1.

The rise corresponds to the processing time on the second machine of the flow-shop.
An optimal subchain can be a production subchain (OP-subchain) or a consumption subchain (OC-subchain).

An OP-subchain is an optimal subchain such that ∆− ≤ ∆+. An OC-subchain is an optimal subchain such
that ∆− > ∆+. It is possible that the first part of an optimal subchain does not exist: 𝛽 is not defined if the
optimal subchain starts with a production event. It is also possible that the second part of an optimal subchain
does not exist: 𝛽 = 𝛾.

Let us consider the example of Figure 4. The subchain (1, 2, 3) is an OP-subchain: 𝑒𝛼 = 1, 𝑒𝛽 = 2, 𝑒𝛾 =
3, ∆− = −𝑎1 − 𝑎2 = 2 and ∆+ = 𝑎3 = 4. The subchain (7, 8, 9, 10) is an OC-subchain: 𝑒𝛼 = 7, 𝑒𝛽 = 9, 𝑒𝛾 =
10, ∆− = −𝑎7 − 𝑎8 − 𝑎9 = 4 and ∆+ = 𝑎10 = 1. The subchain (13, 14) is an OP-subchain where 𝛽 does not
exists. So, ∆− = 0 and ∆+ = 𝑎13 + 𝑎14 = 3

Theorem 4.2. Given an optimal subchain, there exists a feasible sequence in which all events of this subchain
are sequenced next to each other, as soon as a feasible schedule exists.

Proof. Let us consider a feasible schedule of events. According to Theorem 3.1, we can deduce a feasible sequence
of events 𝑆. Let 𝑒1, 𝑒2, . . . , 𝑒𝑙 be a chain of events and 𝑒𝛼, . . . , 𝑒𝛾 be one of its optimal subchains. Let 𝑒 be an
event not belonging to {𝑒1, . . . , 𝑒𝑙}.

– If 𝑒 is before 𝑒𝛼 or after 𝑒𝛾 in 𝑆, then we do not move it.
– If 𝑒 is the first event between 𝑒𝛼 and 𝑒𝛽 , then we shift 𝑒 just before 𝑒𝛼. This respects the precedence

constraints because there is no precedence relation between 𝑒 and the events of {𝑒𝛼, . . . , 𝑒𝛽}. It respects also
the resource constraints because according to the definition of an optimal subchain

∑︀𝑖=𝑗
𝑖=𝛼 𝑎𝑒𝑖

≤ 0 for each
𝑒𝑗 before 𝑒 in 𝑆.

– If 𝑒 is the last event between 𝑒𝛽+1 and 𝑒𝛾 , then we shift 𝑒 just after 𝑒𝛾 . This also respects precedence and
resource constraints for the same reasons.

By iterating these modifications, the events of an optimal subchain will be consecutively sequenced. �

Definition 4.3. A sequence in which all events of each optimal subchain are ordered next to each other is said
to be of standard form.

Corollary 4.4. There exists a feasible sequence of standard form, as soon as there exists a feasible schedule.

Proof. Given a feasible schedule, we deduce a feasible sequence 𝑆. Then, we successively apply the modifications
described in the previous proof to the optimal subchains. We finally obtain a feasible sequence of standard
form. We can remark that when the events of an OP-subchain (resp: OC-subchain) are already consecutive,
they remain consecutive when applying the method to another OP-subchain (resp: OC-subchain). �

4.2. Decomposition of a chain into optimal subchains

In this section, we prove that one can decompose a chain into a subsequence of OP-subchains, followed by a
subsequence of OC-subchains. For that, we report an algorithm to find the first and the shortest OP-subchain
OP1 of a chain. By removing OP1 and iterating, we get the other OP-subchains. When there is no more OP-
subchains, we can apply the same algorithm on the mirror chain of the remaining chain to get the OC-subchains.
In fact, the definitions of OP-subchains and OC-subchains are perfectly symmetrical. Note that a chain 𝑒′1, . . . , 𝑒

′
𝑙

is said to be the mirror chain of 𝑒1, . . . , 𝑒𝑙 iff ∀𝑖 ∈ 1, . . . , 𝑙, 𝑎𝑒′𝑖
= −𝑎𝑒𝑙+1−𝑖

.

3500 A. SAHLI ET AL.

Theorem 4.5. A chain 𝑒1, . . . , 𝑒𝑙 can be decomposed into a subsequence of OP-subchains, followed by a subse-
quence of OC-subchains. We note:

𝑒1, . . . , 𝑒𝑙 = OP1, . . . , OP𝑟, OC1, . . . , OC𝑠.

Proof. Algorithm 1 determines the shortest initial OP-subchain of a chain. By removing this OP-subchain
and iterating, we get the other OP-subchains. When there are no more OP-subchains, we can apply the
same algorithm on the mirror chain of the remaining chain to get the OC-subchains. Note that with this
method of decomposition the sequence of the optimal subchains will not necessary respect the Johnson’s rule
(i.e. the fall (resp. rise) of the successive OP-subchains (resp. OC-subchains) monotonically increases (resp.
decreases)). To do that, we have to search for the longest OP-subchain with minimal fall as it is explained in
Section 4.4. �

Algorithm 1: Algorithm to determine the shortest initial OP-subchain.
𝛼1 ← 1, 𝑖← 1, 𝛽1 ← 0, 𝛾1 ← 0, Sum← 𝑎𝑒𝑖

, Min← 0;
while Sum < 0 do

𝑖← 𝑖 + 1
if 𝑖 > 𝑙 then exit; /* OP1 does not exist */
Sum← Sum + 𝑎𝑒𝑖

if Sum < Min then 𝛽 ← 𝑖; Min← Sum; FALL1 ← −Sum
if Sum ≥ 0 then 𝛾1 ← 𝑖; RISE1 ← Sum−Min

end

4.3. List schedule for parallel chains case

We present here a method to solve the decision problem of ERCPSP with parallel chains precedence con-
straints. The idea is to decompose each chain into OP-subchains followed by OC-subchains which do not
necessary respect the Johnson’s rule. Then we use a list algorithm to construct a feasible schedule of standard
form if the considered instance of ERCPSP admits solutions.

In the first phase of the algorithm, a priority is attributed to each optimal subchain. Based on this priority,
the events which belong to the optimal subchain with the highest priority among the available subchains, are
the first to be scheduled. The priorities of optimal subchains are defined as follows:

– Each OP-subchain has a higher priority than any OC-subchain.
– An OP-subchain OP1 has a higher priority than an OP-subchain OP2 iff the two OP-subchains are available

and the fall of OP1 is smaller than the fall of OP2.
– An OC-subchain OC1 has a higher priority than an OC-subchain OC2 iff the two OC-subchains are available

and the rise of OC1 is larger than the rise of OC2.

Theorem 4.6. Algorithm 2 constructs a feasible schedule, as soon as the considered instance of ERCPSP with
parallel chains precedence constraints admits any solution.

Proof. Let 𝐼 be an instance of ERCPSP with parallel chains precedence graph. Suppose that 𝐼 is feasible
and Algorithm 2 detects an over-consumption during the execution of an optimal production subchain OP𝑖.
According to the algorithm, all the optimal subchains executed before OP𝑖 are production subchains which
provide resources. So, even if OP𝑖 is executed before, an over-consumption will be detected. Moreover, according
to the algorithm all the optimal subchains which can be scheduled instead of OP𝑖 have a larger fall than OP𝑖

(they need more resources to be scheduled). So we can deduce that if 𝐼 is feasible then Algorithm 2 cannot
detect an over-consumption during the execution of any OP-subchain. Symmetrically and similarly, we can
prove that if 𝐼 is feasible then this algorithm cannot detect an over-consumption during the execution of any
OC-subchain. �

POLYNOMIAL ALGORITHMS FOR SOME SCHEDULING PROBLEMS 3501

Algorithm 2: List algorithm to construct a feasible schedule.
Determine the OP-subchains of each chain using Algorithm 1
Determine the OC-subchains of each chain using Algorithm 1
𝑝𝑟 ← total number of optimal subchains
while Some OP-subchains have not yet a priority do

Let ℱ𝒫 be the set of the first OP-subchains without priority of chains
Attribute priority 𝑝𝑟 to the OP-subchain of ℱ𝒫 having the smallest fall
𝑝𝑟 ← 𝑝𝑟 − 1

end
𝑝𝑟 ← 0
while Some OC-subchains have not yet a priority do

Let ℱ𝒞 be the set of the last OC-subchains without priority of chains
Attribute priority 𝑝𝑟 to the OC-subchain of ℱ𝒞 having the smallest rise
𝑝𝑟 ← 𝑝𝑟 + 1

end
Let 𝒪 be the set of all the optimal subchains
while |𝒪| > 0 do

Let 𝑜 be the optimal subchain of 𝒪 with the highest priority
Schedule the events of 𝑜
𝒪 ← 𝒪 ∖ {𝑜}
if an over-consumption is detected then return(“Infeasible instance”)

end
return(“Feasible instance”)

4.4. Adaptation of the Johnson’s rule

In this section, we present an adaptation of the Johnson’s algorithm to solve the decision problem of ERCPSP
with parallel chains precedence constraints. The idea is to determine the OP-subchains and OC-subchains of
each parallel chain which respect the Johnson’s rule: the fall (resp. the rise) monotonically increases (resp.
decreases) for the successive OP-subchains (resp. OC-subchains). Then we construct a schedule of standard
form that respects also the Johnson’s rule. The obtained sequence minimizes the required amount of initial
resources, so it is optimal.

Theorem 4.7. A chain 𝑒1, . . . , 𝑒𝑙 can be decomposed into a subsequence of OP-subchains, followed by a sub-
sequence of OC-subchains which respect the Johnson’s rule: The fall monotonically increases for the successive
OP-subchains and the rise monotonically decreases for the successive OC-subchains.

Proof. Algorithm 3 determines the longest OP-subchain with minimal fall of a given chain. It can be iteratively
used to find all the OP-, and OC-subchains in 𝑂(𝑙), where 𝑙 is the number of events of the chain.

If 𝑎𝑒1 ≤ 0, then the algorithm returns a subsequence of events (𝑒𝛼, . . . , 𝑒𝛽 , . . . , 𝑒𝛾) which yields resources.
Event 𝑒𝛽 corresponds to the event giving the minimum value of SUM which represents the fall of OP1. If 𝑎𝑒1 > 0,
then 𝑒𝛽 does not exist and the fall of OP1 is equal to 0.

Algorithm 3 is defined so that the following minimum value of SUM is larger than the previous one. So, if
OP2 exists, then its fall is larger than the fall of OP1. As a consequence, the fall of the successive OP-subchains
monotonically increases. Hence, one of the conditions of the Johnson’s rule is respected.

When we construct the OC-subchains using the mirror chain, we find that the rise of the successive OC-
subchains monotonically decreases.

�

3502 A. SAHLI ET AL.

Algorithm 3: Algorithm to determine the initial longest OP-subchain.
𝛼1 ← 1, 𝑖← 1, 𝛽1 ← 0, 𝛾1 ← 0, Sum← 𝑎𝑒𝑖

, Min← 0
while Sum < 0 do

𝑖← 𝑖 + 1
if 𝑖 > 𝑙 then exit; /* OP1 does not exist */
Sum← Sum + 𝑎𝑒𝑖

if Sum < Min then 𝛽1 ← 𝑖, Min← Sum, FALL1 ← −Sum,
if Sum ≥ 0 then

𝛾1 ← 𝑖, Max← Sum, RISE1 ← Max−Min
𝛼2 ← 𝑖 + 1 /* Starting the construction of OP2 */

end
end
while Sum ≥ Min do

𝑖← 𝑖 + 1
if 𝑖 > 𝑙 then return (𝑒𝛼1 , . . . , 𝑒𝛾1) ; /* OP1 = (𝑒𝛼1 , . . . , 𝑒𝛾1) */
Sum← Sum + 𝑎𝑒𝑖

if Sum > Max then
𝛾1 ← 𝑖, Max← Sum, RISE1 ← Max−Min
𝛼2 ← 𝑖 + 1 /* Starting the construction of OP2 */

end
end

Theorem 4.8. There is an optimal sequence of standard form respecting the Johnson’s rule, as soon as there
exists a feasible schedule.

Algorithm 4: Algorithm to construct an optimal sequence.
Determine the OP-subchains of each chain using Algorithm 3
Determine the OC-subchains of each chain using Algorithm 3
Schedule the OP-subchains sequentially in increasing order of their fall
Schedule the OC-subchains sequentially in decreasing order of their rise

Proof. Let us consider a sequence 𝑆 of standard form respecting the Johnson’s rule obtained by applying
Algorithm 4. According to Corollary 4.4, we can deduce an optimal sequence 𝑆′ of standard form from a given
optimal schedule.

Now, suppose that an OP-subchain immediately succeeds an OC-subchain. We shift the OP-subchain imme-
diately before the OC-subchain since the OP-subchain produces the resources and the OC-subchain consumes
the resources. By iterating we obtain a new optimal sequence in which the OP-subchains are followed by the
OC-subchains.

After that, we repeatedly interchange two adjacent OP-subchains, if the fall of the first OP-subchain is larger
than the fall of the second one. Subsequently, we interchange two adjacent OC-subchains, if the rise of the first
OC-subchain is smaller than the rise of the second one. By iterating we obtain a new optimal sequence 𝑆′′ of
standard form respecting the Johnson’s rule.

Finally, we can deduce 𝑆 from 𝑆′′ by interchanging the adjacent OP-subchains (resp. OC-subchains) which
have the same fall (resp. rise). So, Algorithm 4 constructs an optimal sequence that minimizes the required
amount of initial resources. �

4.5. Application: continuous case

In ERCPSP, the action of producing or consuming resources is instantaneous. This assumption is generally
made in the literature [26]. So, the level of resource is modified at some time point and remains constant till the

POLYNOMIAL ALGORITHMS FOR SOME SCHEDULING PROBLEMS 3503

Figure 5. OP-, and OC-subchains of the example of Figure 4.

next discrete change (i.e. the level of resource is a step-wise function). However, this instantaneous production
and consumption is inadequate for some real-world process scheduling problems. For example, the filling or the
emptying of a tank by a liquid is usually subject to a constant rate depending of the number and the size of
the siphons and taps. A second typical example is the load and unload of batteries.

This section addresses a scheduling problem with a cumulative continuous resource. Let 𝑌 be a set of pre-
emptive tasks. Each task 𝑖 has a processing time 𝑝𝑖 and requires a continuously divisible resource during its
processing time. The initial availability of this resource is equal to 𝑄0. We consider the case where the resource
amount required by a task 𝑖 at each time 𝑡 is not fixed but is described by a continuous function. Let 𝑏𝑖(𝜏) be
the resource requirement function of task 𝑖. Note that 𝑏𝑖(𝜏) is equal to the quantity of resource produced or
consumed by 𝑖 when its elapsed processing time is equal to 𝜏 .

Let 𝑥𝑖(𝑡) be a continuous function which determines whether a task 𝑖 is in process or not at time 𝑡:

𝑥𝑖(𝑡) =

{︃
1 if 𝑖 is in process
0 otherwise.

The elapsed processing time of 𝑖 at time 𝑡 is given by 𝑦𝑖(𝑡):

𝑦𝑖(𝑡) =
∫︁ 𝑡

0

𝑥𝑖(𝑢) d𝑢.

We denote by 𝐵𝑖(𝑡) the cumulative production and consumption of task 𝑖 at time 𝑡:

𝐵𝑖(𝑡) =
∫︁ 𝑡

0

𝑥𝑖(𝑢)𝑏𝑖(𝑦𝑖(𝑢)) d𝑢.

So the level of resource at time 𝑡 is given by
∑︀

𝑖∈𝑌 𝐵𝑖(𝑡) + 𝑄0.
A schedule consists of determining for each task 𝑖 ∈ 𝑌 a function 𝑥𝑖(𝑡) which allows to know when task 𝑖

is executed, i.e. we determine for each task 𝑖 ∈ 𝑌 the time intervals [𝛿𝑖
0, 𝛿

𝑖
1], . . . , [𝛿𝑖

𝑑−1, 𝛿
𝑖
𝑑] during which 𝑖 is in

process. Thus, we have:

𝑥𝑖(𝑡) =

{︃
1 if 𝑡 ∈ [𝛿𝑖

0, 𝛿
𝑖
1] ∪ . . . ∪ [𝛿𝑖

𝑑−1, 𝛿
𝑖
𝑑]

0 otherwise.

3504 A. SAHLI ET AL.

Table 1. An instance with 6 tasks.

Tasks 𝑝𝑖 𝑏𝑖(𝑥) �̄�𝑖(𝑥)

1 3 2𝑥− 2 𝑥2 − 2𝑥
2 3 2𝑥− 4 𝑥2 − 4𝑥
3 3 −2𝑥 + 2 −𝑥2 + 2𝑥
4 3 3𝑥2 − 9𝑥 + 6 𝑥3 − 9

2
𝑥2 + 6𝑥

5 5 −3𝑥2 + 15𝑥− 12 −𝑥3 + 15
2

𝑥2 − 12𝑥

6 5 3𝑥2 − 15𝑥 + 12 𝑥3 − 15
2

𝑥2 + 12𝑥

A schedule is said to be feasible if
∑︀

𝑖∈𝑌 𝐵𝑖(𝑡) + 𝑄0 ≥ 0,∀𝑡 ≥ 0. The objective in this problem is to construct a
feasible schedule that minimizes the number 𝑄0 of resource units available initially.

To solve this problem, we start by decomposing each task into a sequence of subtasks that will be executed
without preemption. These subtasks can be seen as jobs of a flow-shop with two machines. Each one of them
consists of two parts that respectively consumes and produces a quantity of resource. The consumption of the
first part corresponds to the processing time on the first machine, while the production of the second part
corresponds to the processing time on the second machine. The subtasks of each task respect the Johnson’s
rule. Once the decomposition is done, the Johnson’s rule is used to get an optimal sequence of subtasks that
minimizes 𝑄0.

Each task 𝑖 can be decomposed using Algorithm 3. Let us denote as �̄�𝑖(𝑡) the cumulative production and
consumption of task 𝑖 at time 𝑡, if it is continuously executed in [0, 𝑝𝑖] (i.e. �̄�𝑖(𝑡) =

∫︀ 𝑡

0
𝑏𝑖(𝑢) d𝑢, ∀𝑡 ∈ [0, 𝑝𝑖]).

Let 𝑡0 = 0 < 𝑡1 < . . . < 𝑡𝑙−1 < 𝑡𝑙 = 𝑝𝑖 be the critical points of �̄�𝑖(𝑡), i.e. �̄�𝑖(𝑡0), �̄�𝑖(𝑡1), . . . , �̄�𝑖(𝑡𝑙) are the local
extrema of �̄�𝑖(𝑡) in [0, 𝑝𝑖]. We associate with each task 𝑖 a chain of events, where each event 𝑒𝑗 corresponds
to a critical point 𝑡𝑗 ∈ {𝑡0, . . . , 𝑡𝑙} of �̄�𝑖(𝑡). The resource consumption or production of event 𝑒𝑗 is defined as
follows:

𝑎𝑒𝑗
=

{︃
0 if 𝑗 = 0
�̄�𝑖(𝑡𝑗)− �̄�𝑖(𝑡𝑗−1) otherwise.

There is an arc valued by 𝑡𝑗 − 𝑡𝑗−1 between each pair of events (𝑒𝑗−1, 𝑒𝑗). We decompose this chain into a
sequence of optimal subchains using Algorithm 3. Each optimal subchain 𝑒𝛼, . . . , 𝑒𝛾 defines a subtask of 𝑖 whose
processing time is equal to 𝑡𝛾 − 𝑡𝛼−1 (we assume that 𝑡𝛼−1 = 0 if 𝛼 = 0). Its resource requirement, when
the elapsed processing time is equal to 𝜏 , is given by 𝑏𝑖(𝑡𝛼−1 + 𝜏). If 𝑒𝛼, . . . , 𝑒𝛾 is an OP-subchain (resp. OC-
subchain), then the subtask is said to be an optimal production (resp. consumption) subtask and is denoted as
OP𝑖(𝑡𝛼−1, 𝑡𝛾) (resp. OC𝑖(𝑡𝛼−1, 𝑡𝛾)).

Example 4.9. Let us consider the instance provided in Table 1 which consists of 6 tasks 𝑌 = {1, 2, 3, 4, 5, 6}.

The associated event chain and the optimal subtasks associated with each task of Example 4.9 are provided
in Figure 6. For instance, Task 5 has 4 critical points {0, 1, 4, 5}. So, it is associated with a chain of four events.
The resource requirements of these events are respectively 0, �̄�(1) − �̄�(0) = −5.5, �̄�(4) − �̄�(1) = 13.5 and
�̄�(5) − �̄�(4) = −5.5. This chain consists of an OP-subchain of length 3 followed by an OC-subchain of length
1. Task 5 is therefore decomposed into optimal production subtask OP5(0, 4) followed by optimal consumption
subtask OC5(4, 5). The processing times of these two subtasks are respectively equal to 4 and 1. Each subtask
can be seen as a job of a flow-shop with two machines. For instance, the processing time on the first machine
of OP5(0, 4) is equal to the fall of the associated subchain (i.e. it is equal to 5.5). Its processing time on the
second machine is equal to the rise of the associated subchain (i.e. it is equal to 13.5).

POLYNOMIAL ALGORITHMS FOR SOME SCHEDULING PROBLEMS 3505

Figure 6. Decomposition of tasks.

Using the Johnson’s rule, an optimal schedule can be obtained by sequencing the optimal subtasks as follows:
OP3(0, 1), OP4(0, 3), OP6(0, 1), OP1(0, 3), OP5(0, 4), OC6(1, 5), OC2(0, 3), OC3(1, 3), OC5(4, 5).

5. The series-parallel case

We now consider a more general case, where the precedence relations involved can be represented by a series-
parallel graph. This special case of ERCPSP is an extension of the problem considered by [1], where more than
one event can be executed at the same time.

A series-parallel graph 𝐺 = (𝑋, 𝑈) is a directed graph which can be obtained recursively from a single node
by two operations, the series composition (Def. 5.1) and the parallel composition (Def. 5.2) of two series-parallel
subgraphs [27].

Definition 5.1. Let 𝐺1 = (𝑋1, 𝑈1) and 𝐺2 = (𝑋2, 𝑈2) be two series-parallel graphs on disjoint sets. The series
composition 𝐺𝑠 = (𝑋𝑠, 𝑈𝑠) of 𝐺1 and 𝐺2 is defined as follows. 𝑋𝑠 = 𝑋1 ∪ 𝑋2 and 𝑖 ≺ 𝑗 ∈ 𝑈𝑠 if and only if
𝑖 ≺ 𝑗 ∈ 𝑈1 ∪ 𝑈2, or 𝑖 ∈ 𝑋1 and 𝑗 ∈ 𝑋2. The sets 𝑋1 and 𝑋2 are called the series blocks of 𝐺𝑠.

Definition 5.2. Let 𝐺1 = (𝑋1, 𝑈1) and 𝐺2 = (𝑋2, 𝑈2) be two series-parallel graphs on disjoint sets. The
parallel composition 𝐺𝑝 = (𝑋𝑝, 𝑈𝑝) of 𝐺1 and 𝐺2 is defined as follows. 𝑋𝑝 = 𝑋1 ∪ 𝑋2 and 𝑖 ≺ 𝑗 ∈ 𝑈𝑝 if and
only if 𝑖 ≺ 𝑗 ∈ 𝑈1 ∪ 𝑈2. The sets 𝑋1 and 𝑋2 are called the parallel blocks of 𝐺𝑝.

Abdel-wahab and Kameda [1] define the series-parallel graphs as follows.

Definition 5.3 ([1]). A graph is a series-parallel graph if it can be reduced to a graph consisting of only two
nodes with an arc between them by a sequence of the following operations.

(1) Replace two arcs, (𝑢, 𝑣) and (𝑣, 𝑤), and the node 𝑣 by a single arc (𝑢, 𝑤) if |Γ−(𝑣)| = |Γ+(𝑣)| = 1.
(2) Delete an arc in parallel to another arc.

From Definition 5.3, any series-parallel graph has a subgraph consisting of two chains (see Fig. 7), unless
it is a single chain. If the precedence relations are represented by a series-parallel graph, then a total order of
events can be defined as follows. We first find two parallel chains using the method proposed by [1]. Then we

3506 A. SAHLI ET AL.

Figure 7. Series-parallel graph.

Figure 8. Example.

apply Algorithm 4 to obtain a locally optimal sequence. By reasoning as with previous section, we can show
that this sequence is locally dominant. We replace the two parallel chains by a single chain obtained by adding
an arc between two adjacent subchains according to the optimal sequence. Thus, we obtain another simpler
series-parallel graph. By iterating the outcome is a single chain which corresponds to a total order of events.
This method is illustrated by the example of Figure 8. Abdel-wahab and Kameda proved that any schedule,
which respects this total order of events, minimizes the required amount of initial resources. The same proof
can be used in the case of ERCPSP. It is based on the same principle as the case of parallel chains (The events

POLYNOMIAL ALGORITHMS FOR SOME SCHEDULING PROBLEMS 3507

of each subchain are clustered around the pivot event, then the subchains are merged). Moreover, the feasibility
of the problem in this case can be calculated using an 𝑂(𝑛2) algorithm [1].

6. The interval order case

In this section, we investigate the special case of ERCPSP with one resource, where the precedence graph
𝐺 = (𝑋, 𝑈) is an interval order graph and the time lags are strictly positive. We introduce for this special case a
list algorithm to construct feasible schedules if any exists. The priorities of events are defined using the properties
of interval orders, such that all production events are scheduled when they are ready, and all consumption events
are scheduled when they are ready and are predecessors of all unscheduled production events.

6.1. Interval order graph

An interval order graph 𝐺 = (𝑋, 𝑈) is a directed acyclic graph, such that for each 𝑖 ∈ 𝑋, one can associate
a closed interval 𝑙(𝑖) in the real line, such that for all 𝑖, 𝑗 ∈ 𝑋, (𝑖, 𝑗) ∈ 𝑈 if and only if 𝑥 < 𝑦 for all 𝑥 ∈ 𝑙(𝑖) and
𝑦 ∈ 𝑙(𝑗) [22]. The system of intervals 𝑙(𝑖) is called an interval representation of 𝐺. Figure 9 provides an example
of interval order graph and Figure 10 shows an interval representation of this example.

Proposition 6.1 ([21]). Let (𝑋, 𝑈) be an interval order graph. Then for 𝑖, 𝑗 ∈ 𝑋, either all the successors of 𝑖
are also successors of 𝑗, or all the successors of 𝑗 are also successors of 𝑖.

For any interval order graph, we can find a total order of elements (𝑖0, 𝑖1, . . . , 𝑖𝑛+1), such that Γ+(𝑖𝑛+1) ⊆
Γ+(𝑖𝑛) ⊆ . . . ⊆ Γ+(𝑖0) (the successors of 𝑖0 include the successors of 𝑖1 which include the successors of 𝑖2, . . .,
which include the successors of 𝑖𝑛+1). In the example of Figure 9, we have Γ+(1) = {2, 4, 5, 7}, Γ+(2) = {4, 7}
Γ+(3) = {4, 7}, Γ+(4) = {}, Γ+(5) = {7}, Γ+(6) = {4, 7}, Γ+(7) = {}. We can note that Γ+(7) ⊆ Γ+(4) ⊆
Γ+(5) ⊆ Γ+(6) ⊆ Γ+(3) ⊆ Γ+(2) ⊆ Γ+(1). This property can be used to solve the decision problem of the
interval order case. The idea is to schedule the production events as soon as possible, and the consumption
events when they are available and respect the list (𝑖0, 𝑖1, . . . , 𝑖𝑛+1). An event is said to be available at time 𝑡
if and only if all its predecessors are scheduled strictly before 𝑡.

Figure 9. Interval order graph.

3508 A. SAHLI ET AL.

Figure 10. Interval representation.

Figure 11. The subsets associated with event 𝑒.

6.2. List schedule for interval order case

Let 𝐼 = (𝑋, 𝑈, 𝑎, 𝑣) be an ERCPSP instance with interval order precedence graph and strictly positive time
lags. For each event 𝑒 ∈ 𝑋, let 𝑌𝑒 be the subset which contains all the predecessors of all the successors of 𝑒. So,
an event 𝑦 belongs to 𝑌𝑒 if and only if for each event 𝑒′ ∈ Γ+(𝑒), 𝑦 is a predecessor of 𝑒′. The subset 𝑌𝑒 can be
partitioned into two subsets 𝑌 =

𝑒 and 𝑌 >
𝑒 , where 𝑌 =

𝑒 contains the events which have the same successors than 𝑒
and 𝑌 >

𝑒 contains the events which have more successors than 𝑒.

𝑌 >
𝑒 = {𝑒′ ∈ 𝑋 | Γ+(𝑒) ⊂ Γ+(𝑒′)}, 𝑌 =

𝑒 = {𝑒′ ∈ 𝑋 | Γ+(𝑒) = Γ+(𝑒′)}

Let 𝑇𝑒 be the subset which contains all the events not belonging to 𝑌𝑒∪Γ+(𝑒). The subset 𝑇𝑒 can be partitioned
into two subsets 𝑇 𝑝

𝑒 and 𝑇 𝑐
𝑒 , where 𝑇 𝑝

𝑒 contains the production events of 𝑇𝑒 and 𝑇 𝑐
𝑒 contains the consumption

events. For each event 𝑒′ ∈ 𝑇𝑒, 𝑒 has more successors than 𝑒′. It follows that there is no precedence relation
between each pair of events of 𝑇𝑒 ∪ 𝑌 =

𝑒 . Figure 11 shows the different subsets associated with event 𝑒.
Algorithm 5 is a list algorithm which can be used to solve the decision problem of this special case of ERCPSP.

In each iteration of the algorithm, all the available production events are scheduled first, followed by all the
available consumption events which have the largest number of successors. If during some iteration the level of
resource is negative, the algorithm increases enough the required initial resource units 𝑄* to satisfy the resource
constraints. The algorithm terminates when a full schedule is constructed. We will show that at the end of the
algorithm, the obtained schedule minimizes the required amount of initial resources. So if 𝑄* ≤ 𝑄0, then the
considered instance of ERCPSP is feasible.

POLYNOMIAL ALGORITHMS FOR SOME SCHEDULING PROBLEMS 3509

Algorithm 5: Algorithm to solve the interval order case.
Let 𝑋* be the set of events that are already scheduled;
𝑋* ← {0};
𝑄* ← −∞; 𝑡← 0;
while 𝑋* ̸= 𝑋 do

while some available production event 𝑒𝑝 is not yet scheduled do
/* Schedule 𝑒𝑝 as soon as possible */
𝑆𝑒𝑝 ← max(𝑡, max{𝑆𝑖 + 𝑣𝑖,𝑒𝑝 | 𝑖 ∈ Γ−(𝑒𝑝)});
𝑡← 𝑆𝑒𝑝 + 1;
𝑋* ← 𝑋* ∪ {𝑒𝑝};

end
if some available consumption events are not yet scheduled then

Let 𝑒𝑐 be the one with the largest number of successors;
/* Schedule all the consumption events of 𝑌 =

𝑒𝑐 */
𝑡← max(𝑡, max{𝑆𝑖 + 𝑣𝑖,𝑗 | 𝑗 ∈ 𝑌 =

𝑒𝑐 ∩𝑋𝑐 and 𝑖 ∈ Γ−(𝑗)}})
for all 𝑖 ∈ 𝑌 =

𝑒𝑐 ∩𝑋𝑐 do 𝑆𝑖 ← 𝑡
𝑡← 𝑡 + 1;
𝑋* ← 𝑋* ∪ 𝑌 =

𝑒𝑐 // 𝑋* = 𝑌𝑒𝑐 ∪ 𝑇 𝑝
𝑒𝑐

end
if

∑︀
𝑒∈𝑋*∖{0} 𝑎𝑒 + 𝑄* < 0 then

/* Increase the required amount of initial resources */
𝑄* ← −

∑︀
𝑒∈𝑋*∖{0} 𝑎𝑒

end
end

Proposition 6.2. If a consumption event 𝑒𝑐 is executed at time 𝑡 by Algorithm 5, then all the events scheduled
before or at time 𝑡 are the ones belonging to 𝑌𝑒𝑐 ∪ 𝑇 𝑝

𝑒𝑐.

Proof. The consumption events are scheduled by Algorithm 5 in decreasing order of the number of their suc-
cessors. Let 𝑒𝑐1 and 𝑒𝑐2 be two consumption events scheduled respectively at 𝑡1 and 𝑡2 such that 𝑡1 < 𝑡2.
We suppose without loss of generality that between 𝑡1 and 𝑡2 only production events are processed. The first
scheduled production event was not available at time 𝑡1. So 𝑒𝑐1 is one of its predecessors. By iterating we show
that 𝑒𝑐1 is a predecessor of all the production events scheduled between 𝑒𝑐1 and 𝑒𝑐2. Concerning 𝑒𝑐2, if it was
available at time 𝑡1, its priority is strictly inferior to the one of 𝑒𝑐1. So 𝑒𝑐1 has more successors than 𝑒𝑐2. Conse-
quently 𝑒𝑐1 belongs to 𝑌 >

𝑒𝑐2
. Otherwise if 𝑒𝑐2 was not available at time 𝑡1, then a production event 𝑒𝑝 scheduled

before 𝑡2 by the algorithm precedes 𝑒𝑐2 and by transitivity 𝑒𝑐1 precedes 𝑒𝑐2. So 𝑒𝑐1 has more successors than 𝑒𝑐2.
Consequently 𝑒𝑐1 belongs to 𝑌 >

𝑒𝑐2
. As a result, if a consumption event 𝑒𝑐 is executed at time 𝑡 by Algorithm 5,

then all the consumption events of 𝑌 >
𝑒𝑐 are executed before 𝑡 and no event of 𝑇 𝑐

𝑒𝑐 is executed before 𝑡. Moreover,
according to Algorithm 5 all the consumption events of 𝑌 =

𝑒𝑐 are scheduled at time 𝑡.
Now we show that all the production events scheduled after 𝑒𝑐 are successors of 𝑒𝑐. In fact, let 𝑒𝑐1, 𝑒𝑐2 and 𝑒𝑐3

be three consumption events scheduled at different and increasing times. All the production events scheduled
strictly after 𝑒𝑐2 and before 𝑒𝑐3, are successors of 𝑒𝑐2. So they are also successors of 𝑒𝑐1 because the successors
of 𝑒𝑐1 include the successors of 𝑒𝑐2. As a result, all the production events scheduled after 𝑒𝑐 are successors of
𝑒𝑐. From this it follows that all the events of 𝑇 𝑝

𝑒𝑐 and all the production events of 𝑌𝑒𝑐 are scheduled before or at
time 𝑡. �

Theorem 6.3. Let 𝐼 be an ERCPSP instance with interval order precedence graph and strictly positive time
lags. 𝐼 is feasible if and only if for each event 𝑒 ∈ 𝑋 we have

∑︀
𝑖∈𝑌𝑒∪𝑇 𝑝

𝑒
𝑎𝑖 ≥ 0.

Proof. This condition is necessary. In fact, let us consider a feasible schedule 𝑆 and a time 𝑡 when the first
event 𝑒1 of Γ+(𝑒) is executed. All the predecessors of 𝑒1 are necessary executed strictly before 𝑡. All the events

3510 A. SAHLI ET AL.

belonging to 𝑌𝑒 are predecessors of 𝑒1 and each predecessor of 𝑒1 not belonging to 𝑌𝑒 belongs to 𝑇𝑒. Let 𝑇 ′𝑒 be
the set of all the events of 𝑇𝑒 scheduled strictly before 𝑡. Hence the events which are executed strictly before 𝑡
are the ones belonging to 𝑌𝑒 ∪ 𝑇 ′𝑒.

Since 𝑆 is feasible, the level of resource at time 𝑡− 𝜖 must be positive. So we have∑︁
𝑖∈𝑌𝑒

𝑎𝑖 +
∑︁
𝑖∈𝑇 ′𝑒

𝑎𝑖 ≥ 0. (6.1)

It is clear that ∑︁
𝑖∈𝑇 𝑝

𝑒

𝑎𝑖 ≥
∑︁
𝑖∈𝑇 ′𝑒

𝑎𝑖. (6.2)

From (6.1) and (6.2) it follows that
∑︀

𝑖∈𝑌𝑒∪𝑇 𝑝
𝑒

𝑎𝑖 ≥ 0.
Now we show that this condition is sufficient by studying the properties of Algorithm 5. Let 𝑆 be the schedule

obtained by using Algorithm 5. It is easy to verify that 𝑆 is a time-feasible schedule. In fact, all the events are
scheduled respecting all the precedence constraints. Moreover, suppose that a consumption event 𝑒𝑐 is scheduled
by the algorithm at time 𝑡. According to Proposition 6.2, all the events scheduled before or at time 𝑡 are the
ones belonging to 𝑌𝑒𝑐 ∪ 𝑇 𝑝

𝑒𝑐. So, if the condition of the theorem is true, the algorithm will construct a feasible
schedule. Otherwise if for some consumption event 𝑒𝑐,

∑︀
𝑖∈𝑌𝑒𝑐∪𝑇 𝑝

𝑒𝑐
𝑎𝑖 is negative, the algorithm will increase

enough the required initial resource units to satisfy the necessary condition of the theorem. This shows that
at the end of the algorithm, we obtain a time-feasible schedule that minimizes the required amount of initial
resources. �

7. Conclusion

In this paper we have considered the ERCPSP which is a general scheduling problem where the availability
of resources is depleted and replenished. We have introduced the decision problem of ERCPSP and we have
reported some complexity results. The decision problem in the general case is NP-complete, however some
specific cases can be solved in polynomial time. We have presented three polynomial cases which are the parallel
chains case, the series-parallel case and the interval order case. Of course, these algorithms cannot be applied
directly to the general case because the problem is NP-hard. It is necessary to adapt them, for instance, by
factoring arcs or suppression of arcs. This adaptation is the perspective of our work.

Acknowledgements. The authors would like to thank the anonymous reviewers whose comments have improved the
quality of this article.

References

[1] H. Abdel-wahab and T. Kameda, Scheduling to minimize maximum cumulative cost subject to series-parallel precedence
constraints. Oper. Res. 26 (1978) 141–158.

[2] M. Bartusch, R. Möhring and F. Radermacher, Scheduling project network with resource constraints and time windows. Ann.
Oper. Res. 16 (1988) 201–240.

[3] J. Carlier and A.H.G. Rinnooy Kan, Scheduling subject to nonrenewable-resource constraints. Oper. Res. Lett. 1 (1982) 52–55.

[4] J. Carlier, A. Moukrim and H. Xu, The project scheduling problem with production and consumption of resources: a list-
scheduling based algorithm. Discrete Appl. Math. 157 (2009) 3631–3642.

[5] J. Carlier, A. Moukrim and A. Sahli, Lower bounds for the event scheduling problem with consumption and production of
resources. Discrete Appl. Math. 234 (2016) 178–194.

[6] J. Carlier, E. Pinson, A. Sahli and A. Jouglet, An 𝑂(𝑛2) algorithm for time-bound adjustments for the cumulative scheduling
problem. Eur. J. Oper. Res. 286 (2020) 468–476.

[7] J. Carlier, A. Sahli, A. Jouglet and E. Pinson, A faster checker of the energetic reasoning for the cumulative scheduling problem.
Int. J. Prod. Res. (2021) 1–16. DOI: 10.1080/00207543.2021.1923853

[8] A. Cesta, A. Oddi and S. Smith, A constraint-based method for project scheduling with time windows. J. Heuristics 8 (2002)
109–136.

https://doi.org/10.1080/00207543.2021.1923853

POLYNOMIAL ALGORITHMS FOR SOME SCHEDULING PROBLEMS 3511

[9] S.J. Edwards, D. Baatar, K. Smith-Miles and A.T. Ernst, Symmetry breaking of identical projects in the high-multiplicity
rcpsp/max. J. Oper. Res. Soc. 72 (2021) 1822–1843.

[10] S. Hartmann and D. Briskorn, An updated survey of variants and extensions of the resource-constrained project scheduling
problem. Eur. J. Oper. Res. 297 (2021) 1–14.

[11] S. Johnson, Optimal two and three-stage production schedules with setup times included. Nav. Res. Logistics Q. 1 (1954)
61–68.

[12] E. Kaplan and A. Amir, A fast feasibility test for relocation problems. Eur. J. Oper. Res. 35 (1988) 201–205.

[13] I. Krimi, R. Benmansour, S. Hanafi and N. Elhachemi, Two-machine flow shop with synchronized periodic maintenance.
RAIRO-Oper. Res. 53 (2019) 351–365.

[14] P. Laborie, Algorithms for propagating resource constraints in AI planning and scheduling: existing approaches and new results.
Artif. Intell. 143 (2002) 151–188.

[15] L.V.D. Melo and T.A.D. Queiroz, Integer linear programming formulations for the RCPSP considering multi-skill, multi-mode,
and minimum and maximum time lags. IEEE Lat. Am. Trans. 19 (2021) 5–16.

[16] C.L. Monma, The two-machine maximum flow time problem with series-parallel precedence constraints: an algorithm and
extensions. Oper. Res. 27 (1979) 792–798.

[17] C.L. Monma and J.B. Sidney, Sequencing with series-parallel precedence constraints. Math. Oper. Res. 4 (1979) 215–224.

[18] K. Neumann and C. Schwindt, Project scheduling with inventory constraints. Math. Methods Oper. Res. 56 (2002) 513–533.

[19] K. Neumann and J. Zhan, Heuristics for the minimum project-duration problem with minimal and maximal time lags under
fixed resource constraints. J. Intell. Manuf. 19 (1997) 205–217.

[20] K. Neumann, C. Schwindt and J. Zimmermann, Resource-constrained project scheduling with time windows: recent develop-
ments and new applications. In: Perspectives in Modern Project Scheduling, edited by J. Jozefowska and J. Weglarz. Kluwer,
Boston (2006) 375–407.

[21] K.V. Palem and B.B. Simons, Scheduling time-critical instructions on risc machines. ACM Trans. Program. Lang. Syst. 15
(1993) 632–658.

[22] C.H. Papadimitriou and M. Yannakakis, Scheduling interval-ordered tasks. SIAM J. Comput. 8 (1979) 405–409.

[23] Y. Sekiguchi, A decomposition theory based on a dominance relation and composite jobs. Discrete Appl. Math. 17 (1987)
187–211.

[24] R. Sethi, Complete register allocation problems. SIAM J. Comput. 4 (1975) 226–248.

[25] H. Singh, J.S. Oberoi and D. Singh, Multi-objective permutation and non-permutation flow shop scheduling problems with
no-wait: a systematic literature review. RAIRO-Oper. Res. 55 (2021) 27–50.

[26] F. Sourd and J. Rogerie, Continuous filling and emptying of storage systems in constraint-based scheduling. Eur. J. Oper.
Res. 165 (2005) 510–524.

[27] J. Valdes, R. Tarjan and E. Lawler, The recognition of series-parallel digraphs. SIAM J. Comput. 11 (1982) 298–313.

This journal is currently published in open access under a Subscribe-to-Open model (S2O). S2O is a transformative
model that aims to move subscription journals to open access. Open access is the free, immediate, online availability of
research articles combined with the rights to use these articles fully in the digital environment. We are thankful to our
subscribers and sponsors for making it possible to publish this journal in open access, free of charge for authors.

Please help to maintain this journal in open access!

Check that your library subscribes to the journal, or make a personal donation to the S2O programme, by contacting
subscribers@edpsciences.org

More information, including a list of sponsors and a financial transparency report, available at: https://www.
edpsciences.org/en/maths-s2o-programme

mailto:subscribers@edpsciences.org
https://www.edpsciences.org/en/maths-s2o-programme
https://www.edpsciences.org/en/maths-s2o-programme

	Introduction
	Problem formulation
	Decision problem
	Notations

	Sequencing and scheduling problems
	The parallel chains case
	Definition of OP-subchains and OC-subchains
	Decomposition of a chain into optimal subchains
	List schedule for parallel chains case
	Adaptation of the Johnson's rule
	Application: continuous case

	The series-parallel case
	The interval order case
	Interval order graph
	List schedule for interval order case

	Conclusion
	References

